Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Microparticles released by Listeria monocytogenes-infected macrophages are required for dendritic cell-elicited protective immunity

Abstract

Interplay between macrophages and dendritic cells in the processing and presentation of bacterial antigens for T-cell immune responses remains poorly understood. Using a Listeria monocytogenes (Lm) infection model, we demonstrate that dendritic cells (DCs) require the support of macrophages to elicit protective immunity against Lm infection. DCs themselves were inefficient at taking up Lm but capable of taking up microparticles (MPs) released by Lm-infected macrophages. These MPs transferred Lm antigens to DCs, allowing DCs to present Lm antigen to effector T cells. MP-mediated Lm antigen transfer required MHC class I participation, since MHC class I deficiency in macrophages resulted in a significant reduction of T-cell activation. Moreover, the vaccination of mice with MPs from Lm-infected macrophages produced strong protective immunity against Lm infection. We here identify an intrinsic antigen transfer program between macrophages and DCs during Lm infection, and emphasize that macrophages also play an essential role in DC-elicited Lm-specific T-cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Blander JM, Medzhitov R . Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 2006; 440: 808–812.

    Article  CAS  PubMed  Google Scholar 

  2. Pamer EG . Immune responses to Listeria monocytogenes. Nat Rev Immunol 2004; 4: 812–823.

    Article  CAS  PubMed  Google Scholar 

  3. Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for TH1 priming. Nat Immunol 2004; 5: 1260–1265.

    Article  PubMed  Google Scholar 

  4. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  5. Underhill DM, Ozinsky A . Phagocytosis of microbes: complexity in action. Annu Rev Immunol 2002; 20: 825–852.

    Article  CAS  PubMed  Google Scholar 

  6. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  PubMed  Google Scholar 

  7. Jutras I, Desjardins M . Phagocytosis: at the crossroads of innate and adaptive immunity. Annu Rev Cell Dev Biol 2005; 21: 511–527.

    Article  CAS  PubMed  Google Scholar 

  8. Jung S, Unutmaz D, Wong P, Sano G, de los Santos K, Sparwasser T et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 2002; 17: 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kolb-Mäurer A, Pilgrim S, Kämpgen E, McLellan AD, Bröcker EB, Goebel W et al. Antibodies against listerial protein 60 act as an opsonin for phagocytosis of Listeria monocytogenes by human dendritic cells. Infect Immun 2001; 69: 3100–3109.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Steinman RM, Idoyaga J . Features of the dendritic cell lineage. Immunol Rev 2010; 234: 5–17.

    Article  CAS  PubMed  Google Scholar 

  11. Bode AP, Sandberg H, Dombrose FA, Lentz BR . Association of factor V activity with membranous vesicles released from human platelets: requirement for platelet stimulation. Thromb Res 1985; 39: 49–61.

    Article  CAS  PubMed  Google Scholar 

  12. Jurk K, Kehrel BE . Platelets: physiology and biochemistry. Semin Thromb Hemost 2005; 31: 381–392.

    Article  CAS  PubMed  Google Scholar 

  13. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R . Microparticles in cardiovascular diseases. Cardiovasc Res 2003; 59: 277–287.

    Article  CAS  PubMed  Google Scholar 

  14. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ . Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20: 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng SJ, Jiang J, Shen H, Chen YH . Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J Immunol 2004; 73: 5652–5658.

    Article  Google Scholar 

  16. Tang K, Liu J, Yang Z, Zhang B, Zhang H, Huang C et al. Microparticles mediate enzyme transfer from platelets to mast cells: a new pathway for lipoxin A4 biosynthesis. Biochem Biophys Res Commun 2010; 400: 432–436.

    Article  CAS  PubMed  Google Scholar 

  17. György B, Módos K, Pállinger E, Pálóczi K, Pásztói M, Misják P et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 2011; 117: 39–48.

    Article  Google Scholar 

  18. Huang B, Zhao J, Shen S, Li H, He KL, Shen GX et al. Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res 2007; 67: 4346–4352.

    Article  CAS  PubMed  Google Scholar 

  19. Harty JT, Bevan MJ . Specific immunity to Listeria monocytogenes in the absence of IFN gamma. Immunity 1995; 3: 109–117.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282–289.

    Article  CAS  PubMed  Google Scholar 

  21. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 2008; 14: 275–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH . Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol 2007; 179: 7577–7584.

    Article  CAS  PubMed  Google Scholar 

  23. Kim GY, Kim KH, Lee SH, Yoon MS, Lee HJ, Moon DO et al. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J Immunol 2005; 174: 8116–8124.

    Article  CAS  PubMed  Google Scholar 

  24. Macagno A, Napolitani G, Lanzavecchia A, Sallusto F . Duration, combination and timing: the signal integration model of dendritic cell activation. Trends Immunol 2007; 28: 227–233.

    Article  CAS  PubMed  Google Scholar 

  25. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86–89.

    Article  CAS  PubMed  Google Scholar 

  26. Harshyne LA, Watkins SC, Gambotto A, Barratt-Boyes SM . Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol 2001; 166: 3717–3723.

    Article  CAS  PubMed  Google Scholar 

  27. Dolan BP, Gibbs KD Jr, Ostrand-Rosenberg S . Dendritic cells crossdressed with peptide MHC class I complexes prime CD8+ T cells. J Immunol 2006; 177: 6018–6024.

    Article  CAS  PubMed  Google Scholar 

  28. Luketic L, Delanghe J, Sobol PT, Yang P, Frotten E, Mossman KL et al. Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J Immunol 2007; 179: 5024–5032.

    Article  CAS  PubMed  Google Scholar 

  29. Barton GM, Kagan JC . A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009; 9: 535–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Watts C, West MA, Zaru R . TLR signalling regulated antigen presentation in dendritic cells. Curr Opin Immunol 2010; 22: 124–130.

    Article  CAS  PubMed  Google Scholar 

  31. Köppler B, Cohen C, Schlöndorff D, Mack M . Differential mechanisms of microparticle transfer to B cells and monocytes: anti-inflammatory properties of microparticles. Eur J Immunol 2006; 36: 648–660.

    Article  PubMed  Google Scholar 

  32. López-Bravo M, Ardavín C . In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity 2008; 29: 343–351.

    Article  PubMed  Google Scholar 

  33. Villadangos JA, Schnorrer P . Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 2007; 7: 543–555.

    Article  CAS  PubMed  Google Scholar 

  34. Zielinski CE, Corti D, Mele F, Pinto D, Lanzavecchia A . Dissecting the human immunologic memory for pathogens. Immunol Rev 2011; 240: 40–51.

    Article  CAS  PubMed  Google Scholar 

  35. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A . The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126: 1121–1133.

    Article  CAS  PubMed  Google Scholar 

  36. Edelson BT, Bradstreet TR, Hildner K, Carrero JA, Frederick KE, Kc W et al. CD8alpha+ dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 2011; 35: 236–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM . Development of Th1 CD41 T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–549.

    Article  CAS  PubMed  Google Scholar 

  38. Meeks D, Sieve AN, Kolls JK, Ghilardi N, Berg RE . IL-23 is required for protection against systemic infection with Listeria monocytogenes. J Immunol 2009; 183: 8026–8034.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2012CB932500), Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (30911120482), the Program for New Century Excellent Talents in University (NCET-08-0219) and the Fundamental Research Funds for the Central Universities (HUST-2010JC024, HUST-2011TS027).

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, R., Zhang, H. et al. Microparticles released by Listeria monocytogenes-infected macrophages are required for dendritic cell-elicited protective immunity. Cell Mol Immunol 9, 489–496 (2012). https://doi.org/10.1038/cmi.2012.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.33

Keywords

This article is cited by

Search

Quick links