Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Trogocytosis of CD80 and CD86 by induced regulatory T cells

Abstract

Trogocytosis is a process which involves the transfer of membrane fragments and cell surface proteins between cells. Various types of T cells have been shown to be able to acquire membrane-bound proteins from antigen-presenting cells and their functions can be modulated following trogocytosis. However, it is not known whether induced regulatory T cells (iTregs) can undergo trogocytosis, and if so, what the functional consequences of this process might entail. In this study, we show that iTregs can be generated from CD80−/−CD86−/− double knockout (DKO) mice. Using flow cytometry and confocal fluorescence microscopy, we demonstrate that iTregs generated from DKO mice are able to acquire both CD80 and CD86 from mature dendritic cells (mDCs) and that the acquisition of CD86 occurs to a higher extent than that of CD80. Furthermore, we found that after co-incubation with iTregs, dendritic cells (DCs) downregulate their surface expression of CD80 and CD86. The trogocytosis of both CD80 and CD86 occurs in a cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), CD28 and programmed death ligand-1 (PDL1)-independent manner. Importantly, we showed that iTregs that acquired CD86 from mDCs expressed higher activation markers and their ability to suppress naive CD4+ T-cell proliferation was enhanced, compared to iTregs that did not acquire CD86. These data demonstrate, for the first time, that iTregs can acquire CD80 and CD86 from mDCs, and the acquisition of CD86 may enhance their suppressive function. These findings provide novel understanding of the interaction between iTregs and DCs, suggesting that trogocytosis may play a significant role in iTreg-mediated immune suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Vignali D . How many mechanisms do regulatory T cells need? Eur J Immunol 2008; 38: 908–911.

    Article  CAS  PubMed  Google Scholar 

  2. Curotto de Lafaille MA, Lafaille JJ . Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009; 30: 626–635.

    Article  CAS  PubMed  Google Scholar 

  3. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA . Natural and induced CD4+CD25+ cells educate CD4+. J Immunol 2004; 172: 5213–5221.

    Article  CAS  PubMed  Google Scholar 

  4. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF . Cutting edge: TGF-beta induces a regulatory phenotype in CD4+. J Immunol 2004; 172: 5149–5153.

    Article  CAS  PubMed  Google Scholar 

  5. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al. Conversion of peripheral CD4+. J Exp Med 2003; 198: 1875–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cobbold SP, Castejon R, Adams E, Zelenika D, Graca L, Humm S et al. Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 2004; 172: 6003–6010.

    Article  CAS  PubMed  Google Scholar 

  7. Fantini MC, Becker C, Tubbe I, Nikolaev A, Lehr HA, Galle P et al. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis. Gut 2006; 55: 671–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fantini MC, Dominitzki S, Rizzo A, Neurath MF, Becker C . In vitro generation of CD4+CD25+ regulatory cells from murine naive T cells. Nat Protoc 2007; 2: 1789–1794.

    Article  CAS  PubMed  Google Scholar 

  9. Bluestone JA, Abbas AK . Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003; 3: 253–257.

    Article  CAS  PubMed  Google Scholar 

  10. Acuto O, Michel F . CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 2003; 3: 939–951.

    Article  CAS  PubMed  Google Scholar 

  11. Egen JG, Allison JP . Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002; 16: 23–35.

    Article  CAS  PubMed  Google Scholar 

  12. Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP . B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 2004; 21: 401–413.

    Article  CAS  PubMed  Google Scholar 

  13. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S . Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 2008; 105: 10113–10118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 2011; 332: 600–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Joly E, Hudrisier D . What is trogocytosis and what is its purpose? Nat Immunol 2003; 4: 815.

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed KA, Munegowda MA, Xie Y, Xiang J . Intercellular trogocytosis plays an important role in modulation of immune responses. Cell Mol Immunol 2008; 5: 261–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mukherjee S, Maiti PK, Nandi D . Role of CD80, CD86, and CTLA4 on mouse CD4+ T lymphocytes in enhancing cell-cycle progression and survival after activation with PMA and ionomycin. J Leukoc Biol 2002; 72: 921–931.

    CAS  PubMed  Google Scholar 

  18. Zeng M, Guinet E, Nouri-Shirazi M . B7-1 and B7-2 differentially control peripheral homeostasis of CD4+CD25+Foxp3+ regulatory T cells. Transpl Immunol 2009; 20: 171–179.

    Article  CAS  PubMed  Google Scholar 

  19. Sabzevari H, Kantor J, Jaigirdar A, Tagaya Y, Naramura M, Hodge J et al. Acquisition of CD80 (B7-1) by T cells. J Immunol 2001; 166: 2505–2513.

    Article  CAS  PubMed  Google Scholar 

  20. Tatari-Calderone Z, Semnani RT, Nutman TB, Schlom J, Sabzevari H . Acquisition of CD80 by human T cells at early stages of activation: functional involvement of CD80 acquisition in T cell to T cell interaction. J Immunol 2002; 169: 6162–6169.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou J, Tagaya Y, Tolouei-Semnani R, Schlom J, Sabzevari H . Physiological relevance of antigen presentasome (APS), an acquired MHC/costimulatory complex, in the sustained activation of CD4+ T cells in the absence of APCs. Blood 2005; 105: 3238–3246.

    Article  CAS  PubMed  Google Scholar 

  22. Hwang I, Huang JF, Kishimoto H, Brunmark A, Peterson PA, Jackson MR et al. T cells can use either T cell receptor or CD28 receptors to absorb and internalize cell surface molecules derived from antigen-presenting cells. J Exp Med 2000; 191: 1137–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008; 322: 271–275.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng SG, Wang JH, Stohl W, Kim KS, Gray JD, Horwitz DA . TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol 2006; 176: 3321–3329.

    Article  CAS  PubMed  Google Scholar 

  26. Sandner SE, Clarkson MR, Salama AD, Sanchez-Fueyo A, Domenig C, Habicht A et al. Role of the programmed death-1 pathway in regulation of alloimmune responses in vivo. J Immunol 2005; 174: 3408–3415.

    Article  CAS  PubMed  Google Scholar 

  27. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ . Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007; 27: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12: 431–440.

    Article  CAS  PubMed  Google Scholar 

  29. Cox JH, McMichael AJ, Screaton GR, Xu XN . CTLs target Th cells that acquire bystander MHC class I-peptide complex from APCs. J Immunol 2007; 179: 830–836.

    Article  CAS  PubMed  Google Scholar 

  30. LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED . HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl Acad Sci USA 2004; 101: 7064–7069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davis DM . Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol 2007; 7: 238–243.

    Article  CAS  PubMed  Google Scholar 

  32. Lumsden JM, Roberts JM, Harris NL, Peach RJ, Ronchese F . Differential requirement for CD80 and CD80/CD86-dependent costimulation in the lung immune response to an influenza virus infection. J Immunol 2000; 164: 79–85.

    Article  CAS  PubMed  Google Scholar 

  33. Balbo P, Silvestri M, Rossi GA, Crimi E, Burastero SE . Differential role of CD80 and CD86 on alveolar macrophages in the presentation of allergen to T lymphocytes in asthma. Clin Exp Allergy 2001; 31: 625–636.

    Article  CAS  PubMed  Google Scholar 

  34. Bahcheli D, Hay V, Nadeau JL, Piccirillo CA . Transfer of cell membrane components via trogocytosis occurs in CD4+Foxp3+CD25+ regulatory T-cell contact-dependent suppression. Autoimmunity 2011; 44: 607–615.

    Article  CAS  PubMed  Google Scholar 

  35. LeMaoult J, Caumartin J, Daouya M, Favier B, Le RS, Gonzalez A et al. Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood 2007; 109: 2040–2048.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L . Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 2000; 6: 782–789.

    Article  CAS  PubMed  Google Scholar 

  37. Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M et al. Isolation and characterization of human antigen-specific TCR alpha beta+ CD4−CD8− double-negative regulatory T cells. Blood 2005; 105: 2828–2835.

    Article  CAS  PubMed  Google Scholar 

  38. Rosenits K, Keppler SJ, Vucikuja S, Aichele P . T cells acquire cell surface determinants of APC via in vivo trogocytosis during viral infections. Eur J Immunol 2010; 40: 3450–3457.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou G, Ding ZC, Fu J, Levitsky HI . Presentation of acquired peptide–MHC class II ligands by CD4+ regulatory T cells or helper cells differentially regulates antigen-specific CD4+ T cell response. J Immunol 2011; 186: 2148–2155.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, P., Fang Gao, J., D'Souza, C. et al. Trogocytosis of CD80 and CD86 by induced regulatory T cells. Cell Mol Immunol 9, 136–146 (2012). https://doi.org/10.1038/cmi.2011.62

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.62

Keywords

This article is cited by

Search

Quick links