Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Low dosages: new chemotherapeutic weapons on the battlefield of immune-related disease

Abstract

Chemotherapeutic drugs eliminate tumor cells at relatively high doses and are considered weapons against tumors in clinics and hospitals. However, despite their ability to induce cellular apoptosis, chemotherapeutic drugs should probably be regarded more as a class of cell regulators than cell killers, if the dosage used and the fact that their targets are involved in basic molecular events are considered. Unfortunately, the regulatory properties of chemotherapeutic drugs are usually hidden or masked by the massive cell death induced by high doses. Recent evidence has begun to suggest that low dosages of chemotherapeutic drugs might profoundly regulate various intracellular aspects of normal cells, especially immune cells. Here, we discuss the immune regulatory roles of three kinds of chemotherapeutic drugs under low-dose conditions and propose low dosages as potential new chemotherapeutic weapons on the battlefield of immune-related disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hirsch J . An anniversary for cancer chemotherapy. JAMA 2006; 296: 1518–1520.

    Article  CAS  PubMed  Google Scholar 

  2. Kuhn A, Ochsendorf F, Bonsmann G . Treatment of cutaneous lupus erythematosus. Lupus 2010; 19: 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  3. Cao Y, Zhao J, Yang Z, Cai Z, Zhang B, Zhou Y et al. CD4+FOXP3+ regulatory T cell depletion by low-dose cyclophosphamide prevents recurrence in patients with large condylomata acuminata after laser therapy. Clin Immunol 2010; 136: 21–29.

    Article  CAS  PubMed  Google Scholar 

  4. Boehm IB, Boehm GA, Bauer R . Management of cutaneous lupus erythematosus with low-dose methotrexate: indication for modulation of inflammatory mechanisms. Rheumatol Int 1998; 18: 59–62.

    Article  CAS  PubMed  Google Scholar 

  5. Castano AP, Mroz P, Wu MX, Hamblin MR . Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proc Natl Acad Sci USA 2008; 105: 5495–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stamp L, Roberts R, Kennedy M, Barclay M, O'Donnell J, Chapman P . The use of low dose methotrexate in rheumatoid arthritis—are we entering a new era of therapeutic drug monitoring and pharmacogenomics? Biomed Pharmacother 2006; 60: 678–687.

    Article  CAS  PubMed  Google Scholar 

  7. Rampton DS . Methotrexate in Crohn's disease. Gut 2001; 48: 790–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rich SJ, Bello-Quintero CE . Advancements in the treatment of psoriasis: role of biologic agents. J Manag Care Pharm 2004; 10: 318–325.

    PubMed  Google Scholar 

  9. Sadiq SA, Simon EV, Puccio LM . Intrathecal methotrexate treatment in multiple sclerosis. J Neurol 2010; 257: 1806–1811.

    Article  CAS  PubMed  Google Scholar 

  10. Rooney PH, Telfer C, McFadyen MC, Melvin WT, Murray GI . The role of cytochrome P450 in cytotoxic bioactivation: future therapeutic directions. Curr Cancer Drug Targets 2004; 4: 257–265.

    Article  CAS  PubMed  Google Scholar 

  11. Kay NE, Geyer SM, Call TG, Shanafelt TD, Zent CS, Jelinek DF et al. Combination chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B chronic lymphocytic leukemia. Blood 2007; 109: 405–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Makhani N, Gorman MP, Branson HM, Stazzone L, Banwell BL, Chitnis T . Cyclophosphamide therapy in pediatric multiple sclerosis. Neurology 2009; 72: 2076–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Young SD, Whissell M, Noble JC, Cano PO, Lopez PG, Germond CJ . Phase II clinical trial results involving treatment with low-dose daily oral cyclophosphamide, weekly vinblastine, and rofecoxib in patients with advanced solid tumors. Clin Cancer Res 2006; 12: 3092–3098.

    Article  CAS  PubMed  Google Scholar 

  14. Awwad M, North RJ . Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res 1989; 49: 1649–1654.

    CAS  PubMed  Google Scholar 

  15. Berd D, Mastrangelo MJ . Effect of low dose cyclophosphamide on the immune system of cancer patients: reduction of T-suppressor function without depletion of the CD8+ subset. Cancer Res 1987; 47: 3317–3321.

    CAS  PubMed  Google Scholar 

  16. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 2004; 34: 336–344.

    Article  CAS  PubMed  Google Scholar 

  17. Lutsiak ME, Semnani RT, de Pascalis R, Kashmiri SV, Schlom J, Sabzevari H . Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005; 105: 2862–2868.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B . Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 2010; 70: 4850–4858.

    Article  CAS  PubMed  Google Scholar 

  19. Daenen LG, Shaked Y, Man S, Xu P, Voest EE, Hoffman RM et al. Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol Cancer Ther 2009; 8: 2872–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wada S, Yoshimura K, Hipkiss EL, Harris TJ, Yen HR, Goldberg MV et al. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 2009; 69: 4309–4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dupin N . Genital warts. Clin Dermatol 2004; 22: 481–486.

    Article  PubMed  Google Scholar 

  22. Dunne EF, Markowitz LE . Genital human papillomavirus infection. Clin Infect Dis 2006; 43: 624–629.

    Article  PubMed  Google Scholar 

  23. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 2007; 56: 641–648.

    Article  CAS  PubMed  Google Scholar 

  24. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204: 1257–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lazarowski ER, Boucher RC, Harden TK . Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 2003; 64: 785–795.

    Article  CAS  PubMed  Google Scholar 

  26. Gamcsik MP, Dolan ME, Andersson BS, Murray D . Mechanisms of resistance to the toxicity of cyclophosphamide. Curr Pharm Des 1999; 5: 587–605.

    CAS  PubMed  Google Scholar 

  27. Dirven HA, van OB, van Bladeren PJ . Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 1994; 54: 6215–6220.

    CAS  PubMed  Google Scholar 

  28. Rajagopalan PT, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG . Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc Natl Acad Sci USA 2002; 99: 13481–13486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sterba J, Valík D, Bajciová V, Kadlecová V, Gregorová V, Mendelová D . High-dose methotrexate and/or leucovorin rescue for the treatment of children with lymphoblastic malignancies: do we really know why, when and how? Neoplasma 2005; 52: 456–463.

    CAS  PubMed  Google Scholar 

  30. Mantadakis E, Cole PD, Kamen BA . High-dose methotrexate in acute lymphoblastic leukemia: where is the evidence for its continued use? Pharmacotherapy 2005; 25: 748–755.

    Article  CAS  PubMed  Google Scholar 

  31. Joannon P, Oviedo I, Campbell M, Tordecilla J . High-dose methotrexate therapy of childhood acute lymphoblastic leukemia: lack of relation between serum methotrexate concentration and creatinine clearance. Pediatr Blood Cancer 2004; 43: 17–22.

    Article  PubMed  Google Scholar 

  32. Gokbuget N, Hoelzer D . High-dose methotrexate in the treatment of adult acute lymphoblastic leukemia. Ann Hematol 1996; 72: 194–201.

    Article  CAS  PubMed  Google Scholar 

  33. Skärby TV, Anderson H, Heldrup J, Kanerva JA, Seidel H, Schmiegelow K et al. High leucovorin doses during high-dose methotrexate treatment may reduce the cure rate in childhood acute lymphoblastic leukemia. Leukemia 2006; 20: 1955–1962.

    Article  PubMed  CAS  Google Scholar 

  34. Bocci G, Tuccori M, Emmenegger U, Liguori V, Falcone A, Kerbel RS et al. Cyclophosphamide-methotrexate “metronomic” chemotherapy for the palliative treatment of metastatic breast cancer. A comparative pharmacoeconomic evaluation. Ann Oncol 2005; 16: 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez Baron M, Garcia Giron C, Zamora P, Garcia de Paredes ML, Feliu J, Ordoñez A et al. Non-small-cell lung cancer (NSCLC): chemotherapy in advanced disease. Our experience in ten years. Am J Clin Oncol 1992; 15: 23–28.

    Article  CAS  PubMed  Google Scholar 

  36. Giaccone G . Teniposide alone and in combination chemotherapy in small cell lung cancer. Semin Oncol 1992; 19: 75–80.

    CAS  PubMed  Google Scholar 

  37. Specenier PM, Vermorken JB . Current concepts for the management of head and neck cancer: chemotherapy. Oral Oncol 2009; 45: 409–415.

    Article  CAS  PubMed  Google Scholar 

  38. Algazi AP, Kadoch C, Rubenstein JL . Biology and treatment of primary central nervous system lymphoma. Neurotherapeutics 2009; 6: 587–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaffe N . Osteosarcoma: review of the past, impact on the future. The American experience. Cancer Treat Res 2009; 152: 239–262.

    Article  PubMed  Google Scholar 

  40. Korn S, DeHoratius RJ . Methotrexate in the treatment of rheumatoid arthritis. Am Fam Physician 1989; 40: 243–246.

    CAS  PubMed  Google Scholar 

  41. Swierkot J, Szechinski J . Methotrexate in rheumatoid arthritis. Pharmacol Rep 2006; 58: 473–492.

    CAS  PubMed  Google Scholar 

  42. Sato EI . Methotrexate therapy in systemic lupus erythematosus. Lupus 2001; 10: 162–164.

    Article  CAS  PubMed  Google Scholar 

  43. Kalb RE, Strober B, Weinstein G, Lebwohl M . Methotrexate and psoriasis: 2009 National Psoriasis Foundation Consensus Conference. J Am Acad Dermatol 2009; 60: 824–837.

    Article  PubMed  Google Scholar 

  44. Sun JH, Das KM . Low-dose oral methotrexate for maintaining Crohn's disease remission: where we stand. J Clin Gastroenterol 2005; 39: 751–756.

    Article  CAS  PubMed  Google Scholar 

  45. Cronstein BN . Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 2005; 57: 163–172.

    Article  CAS  PubMed  Google Scholar 

  46. Khanna D, Park GS, Paulus HE, Simpson KM, Elashoff D, Cohen SB et al. Reduction of the efficacy of methotrexate by the use of folic acid: post hoc analysis from two randomized controlled studies. Arthritis Rheum 2005; 52: 3030–3038.

    Article  CAS  PubMed  Google Scholar 

  47. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Caldwell J et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis 2005; 64: 1180–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Genestier L, Paillot R, Fournel S, Ferraro C, Miossec P, Revillard JP . Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest 1998; 102: 322–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olsen NJ, Murray LM . Antiproliferative effects of methotrexate on peripheral blood mononuclear cells. Arthritis Rheum 1989; 32: 378–385.

    Article  CAS  PubMed  Google Scholar 

  50. Chan ES, Cronstein BN . Methotrexate—how does it really work? Nat Rev Rheumatol 2010; 6: 175–178.

    Article  CAS  PubMed  Google Scholar 

  51. Alam MS, Kurtz CC, Wilson JM, Burnette BR, Wiznerowicz EB, Ross WG et al. A2A adenosine receptor (AR) activation inhibits pro-inflammatory cytokine production by human CD4+ helper T cells and regulates Helicobacter-induced gastritis and bacterial persistence. Mucosal Immunol 2009; 2: 232–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Allegra CJ, Drake JC, Jolivet J, Chabner BA . Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc Natl Acad Sci USA 1985; 82: 4881–4885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thiel M, Chambers JD, Chouker A, Fischer S, Zourelidis C, Bardenheuer HJ et al. Effect of adenosine on the expression of beta2 integrins and L-selectin of human polymorphonuclear leukocytes in vitro. J Leukoc Biol 1996; 59: 671–682.

    Article  CAS  PubMed  Google Scholar 

  54. Neurath MF, Hildner K, Becker C, Schlaak JF, Barbulescu K, Germann T et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin Exp Immunol 1999; 115: 42–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dolhain RJ, Tak PP, Dijkmans BA, de Kuiper P, Breedveld FC, Miltenburg AM . Methotrexate reduces inflammatory cell numbers, expression of monokines and of adhesion molecules in synovial tissue of patients with rheumatoid arthritis. Br J Rheumatol 1998; 37: 502–508.

    Article  CAS  PubMed  Google Scholar 

  56. Sperling RI, Coblyn JS, Larkin JK, Benincaso AI, Austen KF, Weinblatt ME . Inhibition of leukotriene B4 synthesis in neutrophils from patients with rheumatoid arthritis by a single oral dose of methotrexate. Arthritis Rheum 1990; 33: 1149–1155.

    Article  CAS  PubMed  Google Scholar 

  57. Thomas R, Carroll GJ . Reduction of leukocyte and interleukin-1 beta concentrations in the synovial fluid of rheumatoid arthritis patients treated with methotrexate. Arthritis Rheum 1993; 36: 1244–1252.

    Article  CAS  PubMed  Google Scholar 

  58. Ferrari S, Palmerini E . Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr Opin Oncol 2007; 19: 341–346.

    Article  CAS  PubMed  Google Scholar 

  59. Rabik CA, Dolan ME . Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2007; 33: 9–23.

    Article  CAS  PubMed  Google Scholar 

  60. Kelland L . The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007; 7: 573–584.

    Article  CAS  PubMed  Google Scholar 

  61. Jamieson ER, Lippard SJ . Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 1999; 99: 2467–2498.

    Article  CAS  PubMed  Google Scholar 

  62. Sarosy GA, Hussain MM, Seiden MV, Fuller AF, Nikrui N, Goodman A et al. Ten-year follow-up of a phase 2 study of dose-intense paclitaxel with cisplatin and cyclophosphamide as initial therapy for poor-prognosis, advanced-stage epithelial ovarian cancer. Cancer 2010; 116: 1476–1484.

    Article  CAS  PubMed  Google Scholar 

  63. Pan P, Cardinal J, Dhupar R, Rosengart MR, Lotze MT, Geller DA et al. Low-dose cisplatin administration in murine cecal ligation and puncture prevents the systemic release of HMGB1 and attenuates lethality. J Leukoc Biol 2009; 86: 625–632.

    Article  CAS  PubMed  Google Scholar 

  64. Cardinal J, Pan P, Dhupar R, Ross M, Nakao A, Lotze M et al. Cisplatin prevents high mobility group box 1 release and is protective in a murine model of hepatic ischemia/reperfusion injury. Hepatology 2009; 50: 565–574.

    Article  CAS  PubMed  Google Scholar 

  65. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A . HMGB1: endogenous danger signaling. Mol Med 2008; 14: 476–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bianchi ME, Manfredi AA . High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007; 220: 35–46.

    Article  CAS  PubMed  Google Scholar 

  67. Scaffidi P, Misteli T, Bianchi ME . Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418: 191–195.

    Article  CAS  PubMed  Google Scholar 

  68. Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia–reperfusion. J Exp Med 2005; 201: 1135–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Limana F, Germani A, Zacheo A, Kajstura J, Di Carlo A, Borsellino G et al. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res 2005; 97: e73–e83.

    Article  CAS  PubMed  Google Scholar 

  70. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285: 248–251.

    Article  CAS  PubMed  Google Scholar 

  71. Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA 2002; 99: 12351–12356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Uesugi H, Ozaki S, Sobajima J, Osakada F, Shirakawa H, Yoshida M et al. Prevalence and characterization of novel pANCA, antibodies to the high mobility group non-histone chromosomal proteins HMG1 and HMG2, in systemic rheumatic diseases. J Rheumatol 1998; 25: 703–709.

    CAS  PubMed  Google Scholar 

  73. Wittemann B, Neuer G, Michels H, Truckenbrodt H, Bautz FA . Autoantibodies to nonhistone chromosomal proteins HMG-1 and HMG-2 in sera of patients with juvenile rheumatoid arthritis. Arthritis Rheum 1990; 33: 1378–1383.

    Article  CAS  PubMed  Google Scholar 

  74. Ek M, Popovic K, Harris HE, Naucler CS, Wahren-Herlenius M . Increased extracellular levels of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in minor salivary glands of patients with Sjogren's syndrome. Arthritis Rheum 2006; 54: 2289–2294.

    Article  CAS  PubMed  Google Scholar 

  75. Ulfgren AK, Grundtman C, Borg K, Alexanderson H, Andersson U, Harris HE et al. Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum 2004; 50: 1586–1594.

    Article  CAS  PubMed  Google Scholar 

  76. Ayer LM, Senecal JL, Martin L, Dixon GH, Fritzler MJ . Antibodies to high mobility group proteins in systemic sclerosis. J Rheumatol 1994; 21: 2071–2075.

    CAS  PubMed  Google Scholar 

  77. Shen FZ, Wang J, Liang J, Mu K, Hou JY, Wang YT . Low-dose metronomic chemotherapy with cisplatin: can it suppress angiogenesis in H22 hepatocarcinoma cells? Int J Exp Pathol 2010; 91: 10–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pasquier E, Kavallaris M, Andre N . Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 2010; 7: 455–465.

    Article  PubMed  Google Scholar 

  79. Zhu Q, Liu JY, Yang CM, Xu HW, Zhang AZ, Cui Y et al. Influence of antitumor drugs on the expression of Fas system in SW480 colon cancer cells. Eur J Gastroenterol Hepatol 2006; 18: 1071–1077.

    Article  CAS  PubMed  Google Scholar 

  80. Sundelin K, Roberg K, Grenman R, Hakansson L . Effects of cisplatin, alpha-interferon, and 13-cis retinoic acid on the expression of Fas (CD95), intercellular adhesion molecule-1 (ICAM-1), and epidermal growth factor receptor (EGFR) in oral cancer cell lines. J Oral Pathol Med 2007; 36: 177–183.

    Article  CAS  PubMed  Google Scholar 

  81. Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O et al. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 2004; 64: 3593–3598.

    Article  CAS  PubMed  Google Scholar 

  82. Ménard C, Martin F, Apetoh L, Bouyer F, Ghiringhelli F . Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother 2008; 57: 1579–1587.

    Article  PubMed  CAS  Google Scholar 

  83. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  84. Dougan M, Dranoff G . Immune therapy for cancer. Annu Rev Immunol 2009; 27: 83–117.

    Article  CAS  PubMed  Google Scholar 

  85. Rozados VR, Sánchez AM, Gervasoni SI, Berra HH, Matar P, Graciela Scharovsky O . Metronomic therapy with cyclophosphamide induces rat lymphoma and sarcoma regression, and is devoid of toxicity. Ann Oncol 2004; 15: 1543–1550.

    Article  CAS  PubMed  Google Scholar 

  86. Borne E, Desmedt E, Duhamel A, Mirabel X, Dziwniel V, Mortier L et al. Oral metronomic cyclophosphamide in elderly with metastatic melanoma. Invest New Drugs 2010; 28: 684–689.

    Article  CAS  PubMed  Google Scholar 

  87. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G . Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008; 8: 59–73.

    Article  CAS  PubMed  Google Scholar 

  88. Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X et al. The Therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010; 18: 160–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30871020 and 30972667), Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (30911120482), Program for New Century Excellent Talents in University (NCET-08-0219), Fundamental Research Funds for the Central Universities (HUST-2010JC024) and Scientific Research Foundation of Wuhan City Human Resource for Returned Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Hu or Bo Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Zhao, J., Hu, L. et al. Low dosages: new chemotherapeutic weapons on the battlefield of immune-related disease. Cell Mol Immunol 8, 289–295 (2011). https://doi.org/10.1038/cmi.2011.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.6

Keywords

This article is cited by

Search

Quick links