Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

C-type lectin receptor-induced NF-κB activation in innate immune and inflammatory responses

Abstract

The C-type lectin receptors (CLRs) belong to a large family of proteins that contain a carbohydrate recognition domain (CRD) and calcium binding sites on their extracellular domains. Recent studies indicate that many CLRs, such as Dectin-1, Dectin-2 and Mincle, function as pattern recognition receptors (PRRs) recognizing carbohydrate ligands from infected microorganisms. Upon ligand binding, these CLRs induce multiple signal transduction cascades through their own immunoreceptor tyrosine-based activation motifs (ITAMs) or interacting with ITAM-containing adaptor proteins such as FcRγ. Emerging evidence indicate that CLR-induced signaling cascades lead to the activation of nuclear factor kappaB (NF-κB) family of transcriptional factors through a Syk- and CARD9-dependent pathway(s). The activation of NF-κB plays a critical role in the induction of innate immune and inflammatory responses following microbial infection and tissue damages. In this review, we will summarize the recent progress on the signal transduction pathways induced by CLRs, and how these CLRs activate NF-κB and contribute to innate immune and inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Niedergang F, Chavrier P . Regulation of phagocytosis by Rho GTPases. Curr Top Microbiol Immunol 2005; 291: 43–60.

    CAS  PubMed  Google Scholar 

  2. Kumar H, Kawai T, Akira S . Pathogen recognition by the innate immune system. Int Rev Immunol 2011; 30: 16–34.

    CAS  PubMed  Google Scholar 

  3. Yamamoto M, Takeda K . Current views of Toll-like receptor signaling pathways. Gastroenterol Res Pract. 2010; 2010: 240365.

    PubMed  PubMed Central  Google Scholar 

  4. Kawai T, Akira S . TLR signaling. Cell Death Differ 2006; 13: 816–825.

    CAS  PubMed  Google Scholar 

  5. Kawai T, Akira S . Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34: 637–650.

    CAS  PubMed  Google Scholar 

  6. Muzio M, Ni J, Feng P, Dixit VM . IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 1997; 278: 1612–1615.

    CAS  PubMed  Google Scholar 

  7. Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M et al. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol 2000; 164: 554–557.

    CAS  PubMed  Google Scholar 

  8. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003; 301: 640–643.

    CAS  PubMed  Google Scholar 

  9. Loo YM, Gale M Jr . Immune signaling by RIG-I-like receptors. Immunity 2011; 34: 680–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 2005; 6: 981–988.

    CAS  PubMed  Google Scholar 

  11. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 2005; 437: 1167–1172.

    CAS  PubMed  Google Scholar 

  12. Seth RB, Sun L, Ea CK, Chen ZJ . Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005; 122: 669–682.

    CAS  PubMed  Google Scholar 

  13. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB . VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 2005; 19: 727–740.

    CAS  PubMed  Google Scholar 

  14. Martinon F, Tschopp J . Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 2004; 117: 561–574.

    CAS  PubMed  Google Scholar 

  15. Elinav E, Strowig T, Henao-Mejia J, Flavell RA . Regulation of the antimicrobial response by NLR proteins. Immunity 2011; 34: 665–679.

    CAS  PubMed  Google Scholar 

  16. Veldhuizen EJ, van Eijk M, Haagsman HP . The carbohydrate recognition domain of collectins. FEBS J 2011; 278: 3930–3941.

    CAS  PubMed  Google Scholar 

  17. Kanazawa N, Tashiro K, Miyachi Y . Signaling and immune regulatory role of the dendritic cell immunoreceptor (DCIR) family lectins: DCIR, DCAR, dectin-2 and BDCA-2. Immunobiology 2004; 209: 179–190.

    CAS  PubMed  Google Scholar 

  18. Kanazawa N . Dendritic cell immunoreceptors: C-type lectin receptors for pattern-recognition and signaling on antigen-presenting cells. J Dermatol Sci 2007; 45: 77–86.

    CAS  PubMed  Google Scholar 

  19. Graham LM, Brown GD . The Dectin-2 family of C-type lectins in immunity and homeostasis. Cytokine 2009; 48: 148–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huysamen C, Brown GD . The fungal pattern recognition receptor, Dectin-1, and the associated cluster of C-type lectin-like receptors. FEMS Microbiol Lett 2009; 290: 121–128.

    CAS  PubMed  Google Scholar 

  21. Cao W, Zhang L, Rosen DB, Bover L, Watanabe G Bao M et al. BDCA2/Fc epsilon RI gamma complex signals through a novel BCR-like pathway in human plasmacytoid dendritic cells PLoS Biol 2007; 5: e248.

    PubMed  PubMed Central  Google Scholar 

  22. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T . Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 2008; 9: 1179–1188.

    CAS  PubMed  Google Scholar 

  23. Kanazawa N, Tashiro K, Inaba K, Miyachi Y . Dendritic cell immunoactivating receptor, a novel C-type lectin immunoreceptor, acts as an activating receptor through association with Fc receptor gamma chain. J Biol Chem 2003; 278: 32645–32652.

    CAS  PubMed  Google Scholar 

  24. Kanazawa N, Tashiro K, Inaba K, Lutz MB, Miyachi Y . Molecular cloning of human dectin-2. J Invest Dermatol 2004; 122: 1522–1524.

    CAS  PubMed  Google Scholar 

  25. Brown GD, Gordon S . Immune recognition. A new receptor for beta-glucans. Nature 2001; 413: 36–37.

    CAS  PubMed  Google Scholar 

  26. Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L et al. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 2002; 196: 407–412.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McGreal EP, Rosas M, Brown GD, Zamze S, Wong SY, Gordon S et al. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 2006; 16: 422–430.

    CAS  PubMed  Google Scholar 

  28. Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 2006; 281: 38854–38866.

    CAS  PubMed  Google Scholar 

  29. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 2010; 32: 681–691.

    CAS  PubMed  Google Scholar 

  30. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O et al. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 2009; 206: 2879–2888.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F et al. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol 2010; 184: 2756–2760.

    CAS  PubMed  Google Scholar 

  32. Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci USA 2009; 106: 1897–1902.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006; 442: 651–656.

    CAS  PubMed  Google Scholar 

  34. Oeckinghaus A, Hayden MS, Ghosh S . Crosstalk in NF-kappaB signaling pathways. Nat Immunol 2011; 12: 695–708.

    CAS  PubMed  Google Scholar 

  35. Vallabhapurapu S, Karin M . Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009; 27: 693–733.

    CAS  PubMed  Google Scholar 

  36. Chen ZJ, Parent L, Maniatis T . Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 1996; 84: 853–862.

    CAS  PubMed  Google Scholar 

  37. Tang ED, Wang CY, Xiong Y, Guan KL . A role for NF-kappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha. J Biol Chem 2003; 278: 37297–37305.

    CAS  PubMed  Google Scholar 

  38. Zhou H, Wertz I, O'Rourke K, Ultsch M, Seshagiri S, Eby M et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 2004; 427: 167–171.

    CAS  PubMed  Google Scholar 

  39. Delhase M, Hayakawa M, Chen Y, Karin M . Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 1999; 284: 309–313.

    CAS  PubMed  Google Scholar 

  40. Schmid JA, Birbach A . IkappaB kinase beta (IKKbeta/IKK2/IKBKB)—a key molecule in signaling to the transcription factor NF-kappaB. Cytokine Growth Factor Rev 2008; 19: 157–165.

    CAS  PubMed  Google Scholar 

  41. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 1995; 9: 1586–1597.

    CAS  PubMed  Google Scholar 

  42. Scherer DC, Brockman JA, Chen Z, Maniatis T, Ballard DW . Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci USA 1995; 92: 11259–11263.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vermeulen L, de Wilde G, Notebaert S, Vanden Berghe W, Haegeman G . Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol 2002; 64: 963–970.

    CAS  PubMed  Google Scholar 

  44. Chen LF, Greene WC . Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 2004; 5: 392–401.

    CAS  PubMed  Google Scholar 

  45. Sun SC . Non-canonical NF-kappaB signaling pathway. Cell Res 2011; 21: 71–85.

    CAS  PubMed  Google Scholar 

  46. Underhill DM, Goodridge HS . The many faces of ITAMs. Trends Immunol 2007; 28: 66–73.

    CAS  PubMed  Google Scholar 

  47. Kerrigan AM, Brown GD . Syk-coupled C-type lectins in immunity. Trends Immunol 2011; 32: 151–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mocsai A, Ruland J, Tybulewicz VL . The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10: 387–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Underhill DM, Rossnagle E, Lowell CA, Simmons RM . Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 2005; 106: 2543–2550.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 2005; 22: 507–517.

    CAS  PubMed  Google Scholar 

  51. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Gross O et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 2009; 206: 2037–2051.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007; 8: 630–638.

    CAS  PubMed  Google Scholar 

  53. Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol 2007; 8: 619–629.

    CAS  PubMed  Google Scholar 

  54. Thome M . CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol 2004; 4: 348–359.

    CAS  PubMed  Google Scholar 

  55. Wegener E, Krappmann D . CARD–Bcl10–Malt1 signalosomes: missing link to NF-kappaB Sci STKE 2007; 2007: pe21.

    PubMed  Google Scholar 

  56. Hara H, Saito T . CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol 2009; 30: 234–242.

    CAS  PubMed  Google Scholar 

  57. Bi L, Gojestani S, Wu W, Hsu YM, Zhu J, Ariizumi K et al. CARD9 mediates dectin-2-induced IkappaBalpha kinase ubiquitination leading to activation of NF-kappaB in response to stimulation by the hyphal form of Candida albicans. J Biol Chem 2010; 285: 25969–25977.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gorjestani S, Yu M, Tang B, Zhang D, Wang D, Lin X . Phospholipase Cgamma2 (PLCgamma2) is a key component in Dectin-2 signaling pathway, mediating anti-fungal innate immune responses. J Biol Chem 2011; 286: 43651–43659.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SC et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 2009; 10: 203–213.

    CAS  PubMed  Google Scholar 

  60. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 2000; 97: 13766–13771.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM . Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 2003; 197: 1107–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S . Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 2003; 197: 1119–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. DiCarlo EF, Kahn LB . Inflammatory diseases of the bones and joints. Semin Diagn Pathol 2011; 28: 53–64.

    PubMed  Google Scholar 

  64. Rosenzweig HL, Clowers JS, Nunez G, Rosenbaum JT, Davey MP . Dectin-1 and NOD2 mediate cathepsin activation in zymosan-induced arthritis in mice. Inflamm Res 2011; 60: 705–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Esteban A, Popp MW, Vyas VK, Strijbis K, Ploegh HL, Fink GR . Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci USA 2011; 108: 14270–1425.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jouault T, El Abed-El Behi M, Martinez-Esparza M, Breuilh L, Trinel PA, Chamaillard M et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 2006; 177: 4679–4687.

    CAS  PubMed  Google Scholar 

  67. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000; 100: 575–585.

    CAS  PubMed  Google Scholar 

  68. Lozach PY, Kuhbacher A, Meier R, Mancini R, Bitto D, Bouloy M et al. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 2011; 10: 75–88.

    CAS  PubMed  Google Scholar 

  69. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000; 100: 587–597.

    CAS  PubMed  Google Scholar 

  70. Alvarez CP, Lasala F, Carrillo J, Muniz O, Corbi AL, Delgado R . C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 2002; 76: 6841–6844.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lozach PY, Lortat-Jacob H, de Lacroix de Lavalette A, Staropoli I, Foung S, Amara A et al. DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 2003; 278: 20358–20366.

    CAS  PubMed  Google Scholar 

  72. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003; 197: 823–829.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 2003; 197: 121–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cambi A, Gijzen K, de Vries JM, Torensma R, Joosten B, Adema GJ et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 2003; 33: 532–538.

    CAS  PubMed  Google Scholar 

  75. Geijtenbeek TB, van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 2003; 197: 7–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G . Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 2001; 166: 7477–7485.

    CAS  PubMed  Google Scholar 

  77. Gringhuis SI, Wevers BA, Kaptein TM, van Capel TM, Theelen B, Boekhout T et al. Selective C-Rel activation via Malt1 controls anti-fungal TH-17 immunity by dectin-1 and dectin-2 PLoS Pathog 2011; 7: e1001259.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheng SC, van de Veerdonk FL, Lenardon M, Stoffels M, Plantinga T, Smeekens S et al. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leukoc Biol 2011; 90: 357–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T, et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 2010; 116: 5394–5402.

    CAS  PubMed  Google Scholar 

  80. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 2007; 8: 31–38.

    CAS  PubMed  Google Scholar 

  81. Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM, Schwiebert LM et al. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol 2009; 182: 4938–4946.

    CAS  PubMed  Google Scholar 

  82. Saijo S, Fujikado N, Furuta T, Chung SH, Kotaki H, Seki K et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 2007; 8: 39–46.

    CAS  PubMed  Google Scholar 

  83. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 2009; 361: 1760–1767.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sousa Mda G, Reid DM, Schweighoffer E, Tybulewicz V, Ruland J, Langhorne J et al. Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin. Cell Host Microbe 2011; 9: 436–443.

    PubMed  Google Scholar 

  85. Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 2009; 361: 1727–1735.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Unger WW, van Kooyk Y . ‘Dressed for success’ C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells. Curr Opin Immunol 2011; 23: 131–137.

    CAS  PubMed  Google Scholar 

  87. Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815–824.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Demangel C, Zhou J, Choo AB, Shoebridge G, Halliday GM, Britton WJ . Single chain antibody fragments for the selective targeting of antigens to dendritic cells. Mol Immunol 2005; 42: 979–985.

    CAS  PubMed  Google Scholar 

  89. Trumpfheller C, Finke JS, Lopez CB, Moran TM, Moltedo B, Soares H et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med 2006; 203: 607–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nchinda G, Kuroiwa J, Oks M, Trumpfheller C, Park CG, Huang Y et al. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J Clin Invest 2008; 118: 1427–1436.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Idoyaga J, Lubkin A, Fiorese C, Lahoud MH, Caminschi I, Huang Y et al. Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci USA 2011; 108: 2384–2389.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mukhopadhaya A, Hanafusa T, Jarchum I, Chen YG, Iwai Y, Serreze DV et al. Selective delivery of beta cell antigen to dendritic cells in vivo leads to deletion and tolerance of autoreactive CD8+ T cells in NOD mice. Proc Natl Acad Sci USA 2008; 105: 6374–6379.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Karumuthil-Melethil S, Perez N, Li R, Vasu C . Induction of innate immune response through TLR2 and dectin 1 prevents type 1 diabetes. J Immunol 2008; 181: 8323–8334.

    CAS  PubMed  Google Scholar 

  94. He LZ, Crocker A, Lee J, Mendoza-Ramirez J, Wang XT, Vitale LA et al. Antigenic targeting of the human mannose receptor induces tumor immunity. J Immunol 2007; 178: 6259–6267.

    CAS  PubMed  Google Scholar 

  95. Ramakrishna V, Treml JF, Vitale L, Connolly JE, O'Neill T, Smith PA et al. Mannose receptor targeting of tumor antigen pmel17 to human dendritic cells directs anti-melanoma T cell responses via multiple HLA molecules. J Immunol 2004; 172: 2845–2452.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (AI050848, GM065899 and GM079451) to XL. LM Kingeter is supported by the Odyssey Postdoctoral Fellowship from MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingeter, L., Lin, X. C-type lectin receptor-induced NF-κB activation in innate immune and inflammatory responses. Cell Mol Immunol 9, 105–112 (2012). https://doi.org/10.1038/cmi.2011.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.58

Keywords

This article is cited by

Search

Quick links