Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Salmeterol attenuates the inflammatory response in asthma and decreases the pro-inflammatory cytokine secretion of dendritic cells

Abstract

Salmeterol is a long-acting β2-agonist that activates adenylate cyclase, causing long-lasting bronchodilation and has been used for many years to control asthma. However, little information is available about the immunoregulatory effects of salmeterol. We found that salmeterol decreases the production of pro-inflammatory cytokines in a model of allergen-challenged mice that expressed tumor-necrosis factor-alpha, interleukin-1 and interleukin-6. Dendritic cells (DCs) are antigen-presenting cells and act as sentinels in the airway. We found that salmeterol (10−5 mol/l) reduced the inflammation caused by lipopolysaccharide (0.1 µg/ml) in activated murine bone marrow-derived DCs. Moreover, western blots demonstrated that this protective effect was mediated partially by inhibiting signaling through the nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) pathways and dramatically decreased levels of p-ERK. We suggest that salmeterol regulates the inflammation of allergen-induced asthma by modulating DCs. In conclusion, we provide evidence that DCs are the target immune cells responsible for the action of salmeterol against asthma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kuipers H, Lambrecht BN . The interplay of dendritic cells, Th2 cells and regulatory T cells in asthma. Curr Opin Immunol 2004; 16: 702–708.

    Article  CAS  Google Scholar 

  2. Nguyen LP, Lin R, Parra S, Omoluabi O, Hanania NA, Tuvim MJ et al. Beta2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci USA 2009; 106: 2435–2440.

    Article  CAS  Google Scholar 

  3. Johnson M . Pharmacology of long-acting beta-agonists. Ann Allergy Asthma Immunol 1995; 75: 177–179.

    CAS  PubMed  Google Scholar 

  4. Johnson M . Effects of beta2-agonists on resident and infiltrating inflammatory cells. J Allergy Clin Immunol 2002; 110( 6 Suppl): S282–S290.

    Article  CAS  Google Scholar 

  5. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  Google Scholar 

  6. Lambrecht BN, Salomon B, Klatzmann D, Pauwels RA . Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 2000; 106: 551–559.

    Article  CAS  Google Scholar 

  7. Lambrecht BN, Pauwels RA, Fazekas de St Groth B . Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model. J Immunol 2000; 164: 2937–2946.

    Article  CAS  Google Scholar 

  8. Kuipers H, Heirman C, Hijdra D, Muskens F, Willart M, van Meirvenne S et al. Dendritic cells retrovirally overexpressing IL-12 induce strong Th1 responses to inhaled antigen in the lung but fail to revert established Th2 sensitization. J Leukoc Biol 2004; 76: 1028–1038.

    Article  CAS  Google Scholar 

  9. Schipf A, Heilmann A, Boue L, Mossmann H, Brocker T, Röcken M . Th2 cells shape the differentiation of developing T cell responses during interactions with dendritic cells in vivo. Eur J Immunol 2003; 33: 1697–1706.

    Article  CAS  Google Scholar 

  10. Barkhordari E, Rezaei N, Ansaripour B, Larki P, Alighardashi M, Ahmadi-Ashtiani HR et al. Proinflammatory cytokine gene polymorphisms in irritable bowel syndrome. J Clin Immunol 2010; 30: 74–79.

    Article  CAS  Google Scholar 

  11. Subratty AH, Hooloman NK . Role of circulating inflammatory cytokines in patients during an acute attack of bronchial asthma. Indian J Chest Dis Allied Sci 1998; 40: 17–21.

    CAS  PubMed  Google Scholar 

  12. Seiffert K, Hosoi J, Torii H, Ozawa H, Ding W, Campton K et al. Catecholamines inhibit the antigen-presenting capability of epidermal Langerhans cells. J Immunol 2002; 168: 6128–6135.

    Article  CAS  Google Scholar 

  13. Machida I, Matsuse Y, Kondo T, Kawano S, Saeki S, Tomari Y et al. Cysteinyl leukotrienes regulate dendritic cell functions in a murine model of asthma. J Immunol 2004; 172: 1833–1838.

    Article  CAS  Google Scholar 

  14. Zhang M, Tang H, Guo Z, An H, Zhu X, Song W et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 2004; 5: 1124–1133.

    Article  CAS  Google Scholar 

  15. Wang D, Guo MX, Hu HM, Zhao ZZ, Qiu HL, Shao HJ et al. Human T-cell leukemia virus type 1 oncoprotein tax represses ZNF268 expression through the cAMP-responsive element-binding protein/activating transcription factor pathway. J Biol Chem 2008; 283: 16299–16308.

    Article  CAS  Google Scholar 

  16. Wang D, Lou J, Ouyang C, Chen W, Liu Y, Liu X et al. Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci USA 2010; 107: 13806–13811.

    Article  CAS  Google Scholar 

  17. Xanthou G, Alissafi T, Semitekolou M, Simoes DC, Economidou E, Gaga M et al. Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nat Med 2007; 13: 570–578.

    Article  CAS  Google Scholar 

  18. Semitekolou M, Alissafi T, Aggelakopoulou M, Kourepini E, Kariyawasam HH, Kay AB et al. Activin-A that induces regulatory T cells that suppress T helper cell immune responses and protect from allergic airway disease. J Exp Med 2009; 206: 1769–1785.

    Article  CAS  Google Scholar 

  19. Bates JH, Irvin CG . Measuring lung function in mice: the phenotyping uncertainty principle. J Appl Physiol 2003; 94: 1297–1306.

    Article  Google Scholar 

  20. Shen HH, Ochkur SI, McGarry MP, Crosby JR, Hines EM, Borchers MT et al. A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse. J Immunol 2003; 170: 3296–3305.

    Article  CAS  Google Scholar 

  21. Capka V, Carter SJ . Minimizing matrix effects in the development of a method for the determination of salmeterol in human plasma by LC/MS/MS at low pg/mL concentration levels. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 856: 285–293.

    Article  CAS  Google Scholar 

  22. Callaerts-Vegh Z, Evans KL, Dudekula N, Cuba D, Knoll BJ, Callaerts PF et al. Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci USA 2004; 101: 4948–4953.

    Article  CAS  Google Scholar 

  23. Cates CJ, Lasserson TJ . Regular treatment with formoterol and an inhaled corticosteroid versus regular treatment with salmeterol and an inhaled corticosteroid for chronic asthma: serious adverse events. Cochrane Database Syst Rev 2010; (1): CD007694.

  24. Storms W, Chervinsky P, Ghannam AF, Bird S, Hustad CM, Edelman JM et al. A comparison of the effects of oral montelukast and inhaled salmeterol on response to rescue bronchodilation after challenge. Respir Med 2004; 98: 1051–1062.

    Article  Google Scholar 

  25. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008; 133: 235–249.

    Article  CAS  Google Scholar 

  26. Lutz MB, Kukutsch NA, Menges M, Rossner S, Schuler G . Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol 2000; 30: 1048–1052.

    Article  CAS  Google Scholar 

  27. Saitoh S . Chaperones and transport proteins regulate TLR4 trafficking and activation. Immunobiology 2009; 214: 594–600.

    Article  CAS  Google Scholar 

  28. Masoli M, Weatherall M, Ayling J, Williams M, Beasley R . The 24 h duration of bronchodilator action of the salmeterol/fluticasone combination inhaler. Respir Med 2005; 99: 545–552.

    Article  Google Scholar 

  29. Machida I, Matsuse H, Kondo Y, Kawano T, Saeki S, Tomari T et al. Effects of various anti-asthmatic agents on mite allergen-pulsed murine bone marrow-derived dendritic cells. Clin Exp Allergy 2005; 35: 884–888.

    Article  CAS  Google Scholar 

  30. Berry M, Brightling C, Pavord I, Wardlaw A . TNF-alpha in asthma. Curr Opin Pharmacol 2007; 7: 279–282.

    Article  CAS  Google Scholar 

  31. Doganci A, Saver K, Karwot R, Finotto S . Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin Rev Allergy Immunol 2005; 28: 257–270.

    Article  CAS  Google Scholar 

  32. Johnson VJ, Yucesoy B, Luster MI . Prevention of IL-1 signaling attenuates airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J Allergy Clin Immunol 2005; 116: 851–858.

    Article  CAS  Google Scholar 

  33. Lakhani SA, Bogue CW . Toll-like receptor signaling in sepsis. Curr Opin Pediatr 2003; 15: 278–282.

    Article  Google Scholar 

  34. Zaru R, Ronkina N, Gaestel M, Arthur JS, Watts C . The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nat Immunol 2007; 8: 1227–1235.

    Article  CAS  Google Scholar 

  35. Pomerantz JL, Baltimore D . Two pathways to NF-kappaB. Mol Cell 2002; 10: 693–695.

    Article  CAS  Google Scholar 

  36. Fang Y, Lahiri J, Picard L . G protein-coupled receptor microarrays for drug discovery. Drug Discov Today 2003; 8: 755–761.

    Article  CAS  Google Scholar 

  37. Kolch W . Ras/Raf signalling and emerging pharmacotherapeutic targets. Expert Opin Pharmacother 2002; 3: 709–718.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Commission of Shanghai research project topics (2006073) and the National Key Basic Research Program of China (2007CB512403).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Chen, R., Cai, Z. et al. Salmeterol attenuates the inflammatory response in asthma and decreases the pro-inflammatory cytokine secretion of dendritic cells. Cell Mol Immunol 9, 267–275 (2012). https://doi.org/10.1038/cmi.2011.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.56

Keywords

This article is cited by

Search

Quick links