Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Pathway-selective suppression of chemokine receptor signaling in B cells by LPS through downregulation of PLC-β2

Abstract

Lymphocyte activation leads to changes in chemokine receptor expression. There are limited data, however, on how lymphocyte activators can alter chemokine signaling by affecting downstream pathways. We hypothesized that B cell-activating agents might alter chemokine responses by affecting downstream signal transducers, and that such effects might differ depending on the activator. We found that activating mouse B cells using either anti-IgM or lipopolysaccharide (LPS) increased the surface expression of CCR6 and CCR7 with large increases in chemotaxis to their cognate ligands. By contrast, while anti-IgM also led to enhanced calcium responses, LPS-treated cells showed only small changes in calcium signaling as compared with cells that were freshly isolated. Of particular interest, we found that LPS caused a reduction in the level of B-cell phospholipase C (PLC)-β2 mRNA and protein. Data obtained using PLC-β2−/− mice showed that the β2 isoform mediates close to one-half the chemokine-induced calcium signal in resting and anti-IgM-activated B cells, and we found that calcium signals in the LPS-treated cells were boosted by increasing the level of PLC-β2 using transfection, consistent with a functional effect of downregulating PLC-β2. Together, our results show activator-specific effects on responses through B-cell chemokine receptors that are mediated by quantitative changes in a downstream signal-transducing protein, revealing an activity for LPS as a downregulator of PLC-β2, and a novel mechanism for controlling chemokine-induced signals in lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635–638.

    Article  CAS  Google Scholar 

  2. Hargreaves DC, Hyman PL, Lu TT, Ngo VN, Bidgol A, Suzuki G et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med 2001; 194: 45–56.

    Article  CAS  Google Scholar 

  3. Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 2004; 5: 943–952.

    Article  CAS  Google Scholar 

  4. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M . A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996; 87: 1037–1047.

    Article  CAS  Google Scholar 

  5. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 2002; 416: 94–99.

    Article  Google Scholar 

  6. Cook DN, Prosser DM, Forster R, Zhang J, Kuklin NA, Abbondanzo SJ et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 2000; 12: 495–503.

    Article  CAS  Google Scholar 

  7. Kunkel EJ, Kim CH, Lazarus NH, Vierra MA, Soler D, Bowman EP et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest 2003; 111: 1001–1010.

    Article  CAS  Google Scholar 

  8. Hieshima K, Kawasaki Y, Hanamoto H, Nakayama T, Nagakubo D, Kanamaru A et al. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J Immunol 2004; 173: 3668–3675.

    Article  CAS  Google Scholar 

  9. Wilson E, Butcher EC . CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med 2004; 200: 805–809.

    Article  CAS  Google Scholar 

  10. Park MK, Amichay D, Love P, Wick E, Liao F, Grinberg A et al. The CXC chemokine murine monokine induced by IFN-gamma (CXC chemokine ligand 9) is made by APCs, targets lymphocytes including activated B cells, and supports antibody responses to a bacterial pathogen in vivo. J Immunol 2002; 169: 1433–1443.

    Article  CAS  Google Scholar 

  11. Hauser AE, Debes GF, Arce S, Cassese G, Hamann A, Radbruch A et al. Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response. J Immunol 2002; 169: 1277–1282.

    Article  CAS  Google Scholar 

  12. Honczarenko M, Douglas RS, Mathias C, Lee B, Ratajczak MZ, Silberstein LE . SDF-1 responsiveness does not correlate with CXCR4 expression levels of developing human bone marrow B cells. Blood 1999; 94: 2990–2998.

    CAS  PubMed  Google Scholar 

  13. Brandes M, Legler DF, Spoerri B, Schaerli P, Moser B . Activation-dependent modulation of B lymphocyte migration to chemokines. Int Immunol 2000; 12: 1285–1292.

    Article  CAS  Google Scholar 

  14. Liao F, Shirakawa AK, Foley JF, Rabin RL, Farber JM . Human B cells become highly responsive to macrophage-inflammatory protein-3 alpha/CC chemokine ligand-20 after cellular activation without changes in CCR6 expression or ligand binding. J Immunol 2002; 168: 4871–4880.

    Article  CAS  Google Scholar 

  15. Casamayor-Palleja M, Mondiere P, Verschelde C, Bella C, Defrance T . BCR ligation reprograms B cells for migration to the T zone and B-cell follicle sequentially. Blood 2002; 99: 1913–1921.

    Article  CAS  Google Scholar 

  16. Badr G, Borhis G, Treton D, Richard Y . IFN{alpha} enhances human B-cell chemotaxis by modulating ligand-induced chemokine receptor signaling and internalization. Int Immunol 2005; 17: 459–467.

    Article  CAS  Google Scholar 

  17. Kehrl JH . Chemoattractant receptor signaling and the control of lymphocyte migration. Immunol Res 2006; 34: 211–227.

    Article  CAS  Google Scholar 

  18. Stephens L, Milne L, Hawkins P . Moving towards a better understanding of chemotaxis. Curr Biol 2008; 18: R485–494.

    Article  CAS  Google Scholar 

  19. Bach TL, Chen QM, Kerr WT, Wang Y, Lian L, Choi JK et al. Phospholipase cbeta is critical for T cell chemotaxis. J Immunol 2007; 179: 2223–2227.

    Article  CAS  Google Scholar 

  20. Rhee SG . Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 2001; 70: 281–312.

    Article  CAS  Google Scholar 

  21. Park D, Jhon DY, Kriz R, Knopf J, Rhee SG . Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2. J Biol Chem 1992; 267: 16048–16055.

    CAS  PubMed  Google Scholar 

  22. Jiang H, Kuang Y, Wu Y, Xie W, Simon MI, Wu D . Roles of phospholipase C beta2 in chemoattractant-elicited responses. Proc Natl Acad Sci USA 1997; 94: 7971–7975.

    Article  CAS  Google Scholar 

  23. Lawson MA, Maxfield FR . Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 1995; 377: 75–79.

    Article  CAS  Google Scholar 

  24. Katagiri K, Ohnishi N, Kabashima K, Iyoda T, Takeda N, Shinkai Y et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol 2004; 5: 1045–1051.

    Article  CAS  Google Scholar 

  25. McLeod SJ, Li AH, Lee RL, Burgess AE, Gold MR . The Rap GTPases regulate B cell migration toward the chemokine stromal cell-derived factor-1 (CXCL12): potential role for Rap2 in promoting B cell migration. J Immunol 2002; 169: 1365–1371.

    Article  CAS  Google Scholar 

  26. Bergmeier W, Goerge T, Wang HW, Crittenden JR, Baldwin AC, Cifuni SM et al. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J Clin Invest 2007; 117: 1699–1707.

    Article  CAS  Google Scholar 

  27. Liao F, Rabin RL, Yannelli JR, Koniaris LG, Vanguri P, Farber JM . Human Mig chemokine: biochemical and functional characterization. J Exp Med 1995; 182: 1301–1314.

    Article  CAS  Google Scholar 

  28. Amichay D, Gazzinelli RT, Karupiah G, Moench TR, Sher A, Farber JM . Genes for chemokines MuMig and Crg-2 are induced in protozoan and viral infections in response to IFN-gamma with patterns of tissue expression that suggest nonredundant roles in vivo. J Immunol 1996; 157: 4511–4520.

    CAS  PubMed  Google Scholar 

  29. Heesen M, Berman MA, Benson JD, Gerard C, Dorf ME . Cloning of the mouse fusin gene, homologue to a human HIV-1 co-factor. J Immunol 1996; 157: 5455–5460.

    CAS  PubMed  Google Scholar 

  30. Ali H, Fisher I, Haribabu B, Richardson RM, Snyderman R . Role of phospholipase Cbeta3 phosphorylation in the desensitization of cellular responses to platelet-activating factor. J Biol Chem 1997; 272: 11706–11709.

    Article  CAS  Google Scholar 

  31. Liu M, Simon MI . Regulation by cAMP-dependent protein kinease of a G-protein-mediated phospholipase C. Nature 1996; 382: 83–87.

    Article  CAS  Google Scholar 

  32. Park DJ, Min HK, Rhee SG . Inhibition of CD3-linked phospholipase C by phorbol ester and by cAMP is associated with decreased phosphotyrosine and increased phosphoserine contents of PLC-gamma 1. J Biol Chem 1992; 267: 1496–1501.

    CAS  PubMed  Google Scholar 

  33. Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D . Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 2000; 287: 1046–1049.

    Article  CAS  Google Scholar 

  34. Pettit EJ, Fay FS . Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 1998; 78: 949–967.

    Article  CAS  Google Scholar 

  35. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H . Calcium flickers steer cell migration. Nature 2009; 457: 901–905.

    Article  CAS  Google Scholar 

  36. Reedquist KA, Bos JL . Costimulation through CD28 suppresses T cell receptor-dependent activation of the Ras-like small GTPase Rap1 in human T lymphocytes. J Biol Chem 1998; 273: 4944–4949.

    Article  CAS  Google Scholar 

  37. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al. Cell migration: integrating signals from front to back. Science 2003; 302: 1704–1709.

    Article  CAS  Google Scholar 

  38. Colvin RA, Means TK, Diefenbach TJ, Moita LF, Friday RP, Sever S et al. Synaptotagmin-mediated vesicle fusion regulates cell migration. Nat Immunol 2010; 11: 495–502.

    Article  CAS  Google Scholar 

  39. Cronshaw DG, Kouroumalis A, Parry R, Webb A, Brown Z, Ward SG . Evidence that phospholipase-C-dependent, calcium-independent mechanisms are required for directional migration of T-lymphocytes in response to the CCR4 ligands CCL17 and CCL22. J Leukoc Biol 2006; 79: 1369–1380.

    Article  CAS  Google Scholar 

  40. Crittenden JR, Bergmeier W, Zhang Y, Piffath CL, Liang Y, Wagner DD et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 2004; 10: 982–986.

    Article  CAS  Google Scholar 

  41. Siliceo M, Garcia-Bernal D, Carrasco S, Diaz-Flores E, Coluccio Leskow F, Teixido J et al. Beta2-chimaerin provides a diacylglycerol-dependent mechanism for regulation of adhesion and chemotaxis of T cells. J Cell Sci 2006; 119: 141–152.

    Article  CAS  Google Scholar 

  42. Pasvolsky R, Grabovsky V, Giagulli C, Shulman Z, Shamri R, Feigelson SW et al. RhoA is involved in LFA-1 extension triggered by CXCL12 but not in a novel outside-in LFA-1 activation facilitated by CXCL9. J Immunol 2008; 180: 2815–2823.

    Article  CAS  Google Scholar 

  43. Bertagnolo V, Marchisio M, Pierpaoli S, Colamussi ML, Brugnoli F, Visani G et al. Selective up-regulation of phospholipase C-beta2 during granulocytic differentiation of normal and leukemic hematopoietic progenitors. J Leukoc Biol 2002; 71: 957–965.

    CAS  PubMed  Google Scholar 

  44. Schnabel P, Mies F, Nohr T, Geisler M, Bohm M . Differential regulation of phospholipase C-beta isozymes in cardiomyocyte hypertrophy. Biochem Biophys Res Commun 2000; 275: 1–6.

    Article  CAS  Google Scholar 

  45. Asemu G, Tappia PS, Dhalla NS . Identification of the changes in phospholipase C isozymes in ischemic-reperfused rat heart. Arch Biochem Biophys 2003; 411: 174–182.

    Article  CAS  Google Scholar 

  46. Dwivedi Y, Pandey GN . Repeated administration of dexamethasone increases phosphoinositide-specific phospholipase C activity and mRNA and protein expression of the phospholipase C beta 1 isozyme in rat brain. J Neurochem 1999; 73: 780–790.

    Article  CAS  Google Scholar 

  47. Cueille C, Frayon S, de Vernejoul MC, Garel JM . Dexamethasone decreases phospholipase C beta1 isozyme expression in human vascular smooth muscle cells. J Steroid Biochem Mol Biol 2003; 86: 173–178.

    Article  CAS  Google Scholar 

  48. Grinberg S, Hasko G, Wu D, Leibovich SJ . Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. Am J Pathol 2009; 175: 2439–2453.

    Article  CAS  Google Scholar 

  49. Lee SB, Rao AK, Lee KH, Yang X, Bae YS, Rhee SG . Decreased expression of phospholipase C-beta 2 isozyme in human platelets with impaired function. Blood 1996; 88: 1684–1691.

    CAS  PubMed  Google Scholar 

  50. Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M, Hartley SB et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol 2005; 3: e150.

    Google Scholar 

  51. Lu TT, Cyster JG . Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 2002; 297: 409–412.

    Article  CAS  Google Scholar 

  52. Sambrano GR, Chandy G, Choi S, Decamp D, Hsueh R, Lin KM et al. Unravelling the signal-transduction network in B lymphocytes. Nature 2002; 420: 708–710.

    Article  CAS  Google Scholar 

  53. Feske S . Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 2007; 7: 690–702.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Martin Dorf, Harvard Medical School, for providing the cDNA for mouse CXCR4; Kaimei Song, for sharing reagents; Paul Goldsmith, for help in making antibodies; and Sue Goo Rhee for advice and for supplying pMT2-PLC-β2. The Intramural Research Program of NIAID, NIH, supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M Farber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirakawa, AK., Liao, F., Zhang, H. et al. Pathway-selective suppression of chemokine receptor signaling in B cells by LPS through downregulation of PLC-β2. Cell Mol Immunol 7, 428–439 (2010). https://doi.org/10.1038/cmi.2010.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.46

Keywords

This article is cited by

Search

Quick links