Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PTENP1 acts as a ceRNA to regulate PTEN by sponging miR-19b and explores the biological role of PTENP1 in breast cancer

Abstract

This study aimed to investigate role of long noncoding RNA PTENP1 regulating PTEN expression via miR-19b to affect breast cancer (BC) progression. We measured expressions of PTENP1, miR-19b and PTEN in 65 matched BC cancerous and noncancerous tissues by quantitative real-time fluorescence PCR (qRT-PCR) and investigated the biological effects of PTENP1 in BC MDA-MB-231 cells by several in vitro experiments including CCK8, wound healing, transwell and Annexin V-FITC/PI analysis. Besides, the competing endogenous RNA (ceRNA) activity of PTENP1 on miR-19b was detected by luciferase reporter assay, and the expressions of related genes and proteins were determined by western blot assay and qRT-PCR. Increased PTENP1 and PTEN and decreased miR-19b were observed in BC tissues and cell lines. Further, PTENP1 and PTEN are direct targets of miR-19b, and overexpressed PTENP1 in MDA-MB-231 cells could supress cell proliferation, migration and invasion and promote cell apoptosis. Moreover, PTENP1 could upregulate PTEN via its ceRNA interaction on miR-19b, as well as induced the upregulation of p53 and downregulation of p-AKT. Enhanced PTENP1 could inhibit BC cell growth, metastasis and tumourigenicity by inhibiting miR-19b and facilitating PTEN in BC, thereby may represent a novel target for diagnosis and treatment of BC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lukong KE . Understanding breast cancer—The long and winding road. BBA Clin 2017; 7: 64–77.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Akarolo-Anthony SN, Ogundiran TO, Adebamowo CA . Emerging breast cancer epidemic: evidence from Africa. Breast Cancer Res 2010; 12: S8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Ren D, Guo L, Wang L, Wu S, Lin C et al. Thymosin beta 10 is a key regulator of tumorigenesis and metastasis and a novel serum marker in breast cancer. Breast Cancer Res 2017; 19: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stopeck AT, Brown-Glaberman U, Wong HY, Park BH, Barnato SE, Gradishar WJ et al. The role of targeted therapy and biomarkers in breast cancer treatment. Clin Exp Metastasis 2012; 29: 807–819.

    Article  CAS  PubMed  Google Scholar 

  5. Kung JT, Colognori D, Lee JT . Long noncoding RNAs: past, present, and future. Genetics 2013; 193: 651–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen WK, Yu XH, Yang W, Wang C, He WS, Yan YG et al. lncRNAs: novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif 2017; 50.

  7. Huang T, Liu HW, Chen JQ, Wang SH, Hao LQ, Liu M et al. The long noncoding RNA PVT1 functions as a competing endogenous RNA by sponging miR-186 in gastric cancer. Biomed Pharmacother 2017; 88: 302–308.

    Article  CAS  PubMed  Google Scholar 

  8. Gibb EA, Vucic EA, Enfield KS, Stewart GL, Lonergan KM, Kennett JY et al. Human cancer long non-coding RNA transcriptomes. PloS One 2011; 6: e25915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun H, Wang G, Peng Y, Zeng Y, Zhu QN, Li TL et al. H19 lncRNA mediates 17beta-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncol Rep 2015; 33: 3045–3052.

    Article  CAS  PubMed  Google Scholar 

  10. Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y et al. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis 2014; 5: e1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M et al. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 2014; 5: e1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pickard MR, Williams GT . Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res Treat 2014; 145: 359–370.

    Article  CAS  PubMed  Google Scholar 

  13. Guo X, Deng L, Deng K, Wang H, Shan T, Zhou H et al. Pseudogene PTENP1 suppresses gastric cancer progression by modulating PTEN. Anticancer Agents Med Chem 2016; 16: 456–464.

    Article  CAS  PubMed  Google Scholar 

  14. Song MS, Salmena L, Pandolfi PP . The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13: 283–296.

    Article  CAS  PubMed  Google Scholar 

  15. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147: 344–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Zhang N, Wang Z, Ai DM, Cao ZY, Pan HP . Pseudogene PTENP1 functions as a competing endogenous RNA (ceRNA) to regulate PTEN expression by sponging miR-499-5p. Biochemistry 2016; 81: 739–747.

    CAS  PubMed  Google Scholar 

  17. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao L, Ren W, Zhang L, Li S, Kong X, Zhang H et al. PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma. Mol Carcinog 2016; 56: 1322–1334.

    Article  PubMed  Google Scholar 

  19. Yu G, Yao W, Gumireddy K, Li A, Wang J, Xiao W et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol Cancer Therapeut 2014; 13: 3086–3097.

    Article  CAS  Google Scholar 

  20. Gandevia B, Tovell A . Declaration of Helsinki. Med J Aust 1964; 2: 320–321.

    CAS  PubMed  Google Scholar 

  21. Xu Y, Li F, Wu T, Xu Y, Yang H, Dong Q et al. LncSubpathway: a novel approach for identifying dysfunctional subpathways associated with risk lncRNAs by integrating lncRNA and mRNA expression profiles and pathway topologies. Oncotarget 2017; 8: 15453–15469.

    PubMed  PubMed Central  Google Scholar 

  22. Lei R, Xue M, Zhang L, Lin Z . Long noncoding RNA MALAT1-regulated microRNA 506 modulates ovarian cancer growth by targeting iASPP. Onco Targets Ther 2017; 10: 35–46.

    Article  CAS  PubMed  Google Scholar 

  23. Shi F, Xiao F, Ding P, Qin H, Huang R . Long noncoding RNA highly up-regulated in liver cancer predicts unfavorable outcome and regulates metastasis by MMPs in triple-negative breast cancer. Arch Med Res 2016; 47: 446–453.

    Article  CAS  PubMed  Google Scholar 

  24. Conte F, Fiscon G, Chiara M, Colombo T, Farina L, Paci P . Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS One 2017; 12: e0171661.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen DQ, Zheng XD, Cao Y, He XD, Nian WQ, Zeng XH et al. Long non-coding RNA LINC00628 suppresses the growth and metastasis and promotes cell apoptosis in breast cancer. Eur Rev Med Pharmacol Sci 2017; 21: 275–283.

    PubMed  Google Scholar 

  26. Zhang HY, Liang F, Zhang JW, Wang F, Wang L, Kang XG . Effects of long noncoding RNA-ROR on tamoxifen resistance of breast cancer cells by regulating microRNA-205. Cancer Chemother Pharmacol 2017; 79: 327–337.

    Article  CAS  PubMed  Google Scholar 

  27. Silva JM, Boczek NJ, Berres MW, Ma X, Smith DI . LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol 2011; 8: 496–505.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Y, Zhang X, Klibanski A . MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 2012; 48: R45–R53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Z, Zhu Z, Watabe K, Zhang X, Bai C, Xu M et al. Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ 2013; 20: 1558–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev 2009; 23: 2839–2849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu M, Yang R, Urrehman U, Ye C, Yan X, Cui S et al. MiR-19b suppresses PTPRG to promote breast tumorigenesis. Oncotarget 2016; 7: 64100–64108.

    PubMed  PubMed Central  Google Scholar 

  32. Xu J, Tang Y, Bei Y, Ding S, Che L, Yao J et al. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget 2016; 7: 10870–10878.

    PubMed  PubMed Central  Google Scholar 

  33. Liang Z, Li Y, Huang K, Wagar N, Shim H . Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res 2011; 28: 3091–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang R, Guo Y, Ma Z, Ma G, Xue Q, Li F et al. Long non-coding RNA PTENP1 functions as a ceRNA to modulate PTEN level by decoying miR-106b and miR-93 in gastric cancer. Oncotarget 2017; 8: 26079–26089.

    PubMed  PubMed Central  Google Scholar 

  35. Zakikhani M, Blouin MJ, Piura E, Pollak MN . Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treatment 2010; 123: 271–279.

    Article  CAS  Google Scholar 

  36. Kamada R, Toguchi Y, Nomura T, Imagawa T, Sakaguchi K . Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers 2016; 106: 598–612.

    Article  CAS  PubMed  Google Scholar 

  37. Kumar M, Lu Z, Takwi AA, Chen W, Callander NS, Ramos KS et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 2011; 30: 843–853.

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z et al. Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res 2014; 28: 1553–1560.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the reviewers for their useful comments in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W-H Luo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, RK., Gao, J., Guo, LH. et al. PTENP1 acts as a ceRNA to regulate PTEN by sponging miR-19b and explores the biological role of PTENP1 in breast cancer. Cancer Gene Ther 24, 309–315 (2017). https://doi.org/10.1038/cgt.2017.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2017.29

This article is cited by

Search

Quick links