Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy as a potential tool for treating neuroblastoma—a focused review

Abstract

Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG . Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13: 714–726.

    CAS  PubMed  Google Scholar 

  2. Naldini L . Gene therapy returns to centre stage. Nature 2015; 526: 351–360.

    CAS  PubMed  Google Scholar 

  3. Verma IM, Somia N . Gene therapy—promises, problems and prospects. Nature 1997; 389: 239–242.

    CAS  PubMed  Google Scholar 

  4. Amer MH . Gene therapy for cancer: present status and future perspective. Mol Cell Ther 2014; 2: 27.

    PubMed  PubMed Central  Google Scholar 

  5. Louis CU, Shohet JM . Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med 2015; 66: 49–63.

    CAS  PubMed  Google Scholar 

  6. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 1999; 86: 364–372.

    CAS  PubMed  Google Scholar 

  7. Fredlund E, Ringner M, Maris JM, Pahlman S . High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proc Natl Acad Sci USA 2008; 105: 14094–14099.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kress TR, Sabo A, Amati B . MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 2015; 15: 593–607.

    Article  CAS  PubMed  Google Scholar 

  9. Solly SK, Trajcevski S, Frisen C, Holzer GW, Nelson E, Clerc B et al. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther 2003; 10: 30–39.

    CAS  PubMed  Google Scholar 

  10. Wold WS, Toth K . Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 2013; 13: 421–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cross D, Burmester JK . Gene therapy for cancer treatment: past, present and future. Clin Med Res 2006; 4: 218–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    CAS  PubMed  Google Scholar 

  13. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    CAS  PubMed  Google Scholar 

  14. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    CAS  PubMed  Google Scholar 

  15. Liechtenstein T, Perez-Janices N, Escors D . Lentiviral vectors for cancer immunotherapy and clinical applications. Cancers (Basel) 2013; 5: 815–837.

    CAS  Google Scholar 

  16. Li W, Green WR . Immunotherapy of murine retrovirus-induced acquired immunodeficiency by CD4 T regulatory cell depletion and PD-1 blockade. J Virol 2011; 85: 13342–13353.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Listopad JJ, Kammertoens T, Anders K, Silkenstedt B, Willimsky G, Schmidt K et al. Fas expression by tumor stroma is required for cancer eradication. Proc Natl Acad Sci USA 2013; 110: 2276–2281.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grupp SA, Prak EL, Boyer J, McDonald KR, Shusterman S, Thompson E et al. Adoptive transfer of autologous T cells improves T-cell repertoire diversity and long-term B-cell function in pediatric patients with neuroblastoma. Clin Cancer Res 2012; 18: 6732–6741.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho HS, Song JY, Park CY, Lyu CJ, Kim BS, Kim KY . Retroviral-mediated IL-2 gene transfer into murine neuroblastoma. Yonsei Med J 2000; 41: 76–81.

    CAS  PubMed  Google Scholar 

  20. Boyman O, Sprent J . The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012; 12: 180–190.

    CAS  PubMed  Google Scholar 

  21. Toes RE, Ossendorp F, Offringa R, Melief CJ . CD4 T cells and their role in antitumor immune responses. J Exp Med 1999; 189: 753–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zarour HM, Ferrone S . Cancer immunotherapy: Progress and challenges in the clinical setting. Eur J Immunol 2011; 41: 1510–1515.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamamoto S, Suzuki S, Hoshino A, Akimoto M, Shimada T . Herpes simplex virus thymidine kinase/ganciclovir-mediated killing of tumor cell induces tumor-specific cytotoxic T cells in mice. Cancer Gene Ther 1997; 4: 91–96.

    PubMed  Google Scholar 

  24. Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM . Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 2005; 24: 1231–1243.

    CAS  PubMed  Google Scholar 

  25. Steffens S, Sandquist A, Frank S, Fischer U, Lex C, Rainov NG et al. A neuroblastoma-selective suicide gene therapy approach using the tyrosine hydroxylase promoter. Pediatr Res 2004; 56: 268–277.

    CAS  PubMed  Google Scholar 

  26. Rinn JL, Chang HY . Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81: 145–166.

    CAS  PubMed  Google Scholar 

  27. Jiang R, Xue S, Jin Z . Stable knockdown of MYCN by lentivirus-based RNAi inhibits human neuroblastoma cells growth in vitro and in vivo. Biochem Biophys Res Commun 2011; 410: 364–370.

    CAS  PubMed  Google Scholar 

  28. Bell P, Moscioni AD, McCarter RJ, Wu D, Gao G, Hoang A et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol Ther 2006; 14: 34–44.

    CAS  PubMed  Google Scholar 

  29. Schlehofer JR . The tumor suppressive properties of adeno-associated viruses. Mutat Res 1994; 305: 303–313.

    CAS  PubMed  Google Scholar 

  30. Sen D . Improving clinical efficacy of adeno associated vectors by rational capsid bioengineering. J Biomed Sci 2014; 21: 103.

    PubMed  PubMed Central  Google Scholar 

  31. Daya S, Berns KI . Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21: 583–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sen D, Balakrishnan B, Gabriel N, Agrawal P, Roshini V, Samuel R et al. Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy. Sci Rep 2013; 3: 1832.

    PubMed  Google Scholar 

  33. Hendriksen EM, Span PN, Schuuring J, Peters JP, Sweep FC, van der Kogel AJ et al. Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Microvasc Res 2009; 77: 96–103.

    CAS  PubMed  Google Scholar 

  34. Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D . Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 2005; 15: 297–310.

    CAS  PubMed  Google Scholar 

  35. Hueng DY, Lin GJ, Huang SH, Liu LW, Ju DT, Chen YW et al. Inhibition of Nodal suppresses angiogenesis and growth of human gliomas. J Neurooncol 2011; 104: 21–31.

    PubMed  Google Scholar 

  36. Dev IK, Dornsife RE, Hopper TM, Onori JA, Miller CG, Harrington LE et al. Antitumour efficacy of VEGFR2 tyrosine kinase inhibitor correlates with expression of VEGF and its receptor VEGFR2 in tumour models. Br J Cancer 2004; 91: 1391–1398.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Streck CJ, Zhou J, Ng CY, Zhang Y, Nathwani AC, Davidoff AM . Longterm recombinant adeno-associated, virus-mediated, liver-generated expression of an angiogenesis inhibitor improves survival in mice with disseminated neuroblastoma. J Am Coll Surg 2004; 199: 78–86.

    PubMed  Google Scholar 

  38. Albini A, Marchisone C, Del Grosso F, Benelli R, Masiello L, Tacchetti C et al. Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: a gene therapy approach. Am J Pathol 2000; 156: 1381–1393.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor KL, Leaman DW, Grane R, Mechti N, Borden EC, Lindner DJ . Identification of interferon-beta-stimulated genes that inhibit angiogenesis in vitro. J Interferon Cytokine Res 2008; 28: 733–740.

    CAS  PubMed  Google Scholar 

  40. Streck CJ, Dickson PV, Ng CY, Zhou J, Gray JT, Nathwani AC et al. Adeno-associated virus vector-mediated systemic delivery of IFN-beta combined with low-dose cyclophosphamide affects tumor regression in murine neuroblastoma models. Clin Cancer Res 2005; 11: 6020–6029.

    CAS  PubMed  Google Scholar 

  41. Zeng Y, Jiang J, Huebener N, Wenkel J, Gaedicke G, Xiang R et al. Fractalkine gene therapy for neuroblastoma is more effective in combination with targeted IL-2. Cancer Lett 2005; 228: 187–193.

    CAS  PubMed  Google Scholar 

  42. Wong HH, Lemoine NR, Wang Y . Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses 2010; 2: 78–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bowman L, Grossmann M, Rill D, Brown M, Zhong WY, Alexander B et al. IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma. Blood 1998; 92: 1941–1949.

    CAS  PubMed  Google Scholar 

  44. Garcia-Castro J, Alemany R, Cascallo M, Martinez-Quintanilla J, Arriero Mdel M, Lassaletta A et al. Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther 2010; 17: 476–483.

    CAS  PubMed  Google Scholar 

  45. Pesonen S, Helin H, Nokisalmi P, Escutenaire S, Ribacka C, Sarkioja M et al. Oncolytic adenovirus treatment of a patient with refractory neuroblastoma. Acta Oncol 2010; 49: 117–119.

    PubMed  Google Scholar 

  46. D'Alessio G . New and cryptic biological messages from RNases. Trends Cell Biol 1993; 3: 106–109.

    CAS  PubMed  Google Scholar 

  47. Van Maerken T, Sarkar D, Speleman F, Dent P, Weiss WA, Fisher PB . Adenovirus-mediated hPNPase(old-35) gene transfer as a therapeutic strategy for neuroblastoma. J Cell Physiol 2009; 219: 707–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Meck MM, Wierdl M, Wagner LM, Burger RA, Guichard SM, Krull EJ et al. A virus-directed enzyme prodrug therapy approach to purging neuroblastoma cells from hematopoietic cells using adenovirus encoding rabbit carboxylesterase and CPT-11. Cancer Res 2001; 61: 5083–5089.

    CAS  PubMed  Google Scholar 

  49. Yu D, Jin C, Leja J, Majdalani N, Nilsson B, Eriksson F et al. Adenovirus with hexon Tat-protein transduction domain modification exhibits increased therapeutic effect in experimental neuroblastoma and neuroendocrine tumors. J Virol 2011; 85: 13114–13123.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao RY, Liang D, Li G, Larrimore CW, Mirkin BL . Anti-cancer effect of HIV-1 viral protein R on doxorubicin resistant neuroblastoma. PLoS One 2010; 5: e11466.

    PubMed  PubMed Central  Google Scholar 

  51. Cook ML, Bastone VB, Stevens JG . Evidence that neurons harbor latent herpes simplex virus. Infect Immun 1974; 9: 946–951.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. McLennan JL, Darby G . Herpes simplex virus latency: the cellular location of virus in dorsal root ganglia and the fate of the infected cell following virus activation. J Gen Virol 1980; 51: 233–243.

    CAS  PubMed  Google Scholar 

  53. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM . Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 2000; 97: 2208–2213.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Parikh NS, Currier MA, Mahller YY, Adams LC, Di Pasquale B, Collins MH et al. Oncolytic herpes simplex virus mutants are more efficacious than wild-type adenovirus Type 5 for the treatment of high-risk neuroblastomas in preclinical models. Pediatr Blood Cancer 2005; 44: 469–478.

    PubMed  Google Scholar 

  55. Sawiris GP, Sydiskis RJ, Bashirelahi N . Hormonal modulation of herpes simplex virus replication in a mouse neuroblastoma cell line. J Clin Lab Anal 1994; 8: 135–139.

    CAS  PubMed  Google Scholar 

  56. Qiu Z, Harms JS, Zhu J, Splitter GA . Bovine herpesvirus tegument protein VP22 enhances thymidine kinase/ganciclovir suicide gene therapy for neuroblastomas compared to herpes simplex virus VP22. J Virol 2004; 78: 4224–4233.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000; 7: 867–874.

    CAS  PubMed  Google Scholar 

  58. Farrell CJ, Zaupa C, Barnard Z, Maley J, Martuza RL, Rabkin SD et al. Combination immunotherapy for tumors via sequential intratumoral injections of oncolytic herpes simplex virus 1 and immature dendritic cells. Clin Cancer Res 2008; 14: 7711–7716.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gillory LA, Megison ML, Stewart JE, Mroczek-Musulman E, Nabers HC, Waters AM et al. Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of neuroblastoma. PLoS One 2013; 8: e77753.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Koyuncu OO, Hogue IB, Enquist LW . Virus infections in the nervous system. Cell Host Microbe 2013; 13: 379–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Toyoda H, Yin J, Mueller S, Wimmer E, Cello J . Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res 2007; 67: 2857–2864.

    CAS  PubMed  Google Scholar 

  62. Nomura M, Shimbo T, Miyamoto Y, Fukuzawa M, Kaneda Y . 13-Cis retinoic acid can enhance the antitumor activity of non-replicating Sendai virus particle against neuroblastoma. Cancer Sci 2013; 104: 238–244.

    CAS  PubMed  Google Scholar 

  63. Fernandez M, Porosnicu M, Markovic D, Barber GN . Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol 2002; 76: 895–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang SC, Cai WS, Zhang Y, Jiang KL, Zhang KR, Wang WL . Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human neuroblastoma through a CD46 and nectin 4-independent pathway. Cancer Lett 2012; 325: 227–237.

    CAS  PubMed  Google Scholar 

  65. Reichard KW, Lorence RM, Katubig BB, Peeples ME, Reyes HM . Retinoic acid enhances killing of neuroblastoma cells by Newcastle disease virus. J Pediatr Surg 1993; 28: 1221–1225 discussion 1225-1226.

    CAS  PubMed  Google Scholar 

  66. Tietze N, Pelisek J, Philipp A, Roedl W, Merdan T, Tarcha P et al. Induction of apoptosis in murine neuroblastoma by systemic delivery of transferrin-shielded siRNA polyplexes for downregulation of Ran. Oligonucleotides 2008; 18: 161–174.

    CAS  PubMed  Google Scholar 

  67. Shen M, Gong F, Pang P, Zhu K, Meng X, Wu C et al. An MRI-visible non-viral vector for targeted Bcl-2 siRNA delivery to neuroblastoma. Int J Nanomedicine 2012; 7: 3319–3332.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Klutz K, Russ V, Willhauck MJ, Wunderlich N, Zach C, Gildehaus FJ et al. Targeted radioiodine therapy of neuroblastoma tumors following systemic nonviral delivery of the sodium iodide symporter gene. Clin Cancer Res 2009; 15: 6079–6086.

    CAS  PubMed  Google Scholar 

  69. Brodeur GM . Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3: 203–216.

    CAS  PubMed  Google Scholar 

  70. Ogris M, Wagner E . Targeting tumors with non-viral gene delivery systems. Drug Discov Today 2002; 7: 479–485.

    CAS  PubMed  Google Scholar 

  71. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    CAS  PubMed  Google Scholar 

  72. Kuroda Y, Kitada M, Wakao S, Dezawa M . Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells? Arch Immunol Ther Exp (Warsz) 2011; 59: 369–378.

    Google Scholar 

  73. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    CAS  PubMed  Google Scholar 

  74. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 2009; 27: 2614–2623.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhattacharya SD, Mi Z, Talbot LJ, Guo H, Kuo PC . Human mesenchymal stem cell and epithelial hepatic carcinoma cell lines in admixture: concurrent stimulation of cancer-associated fibroblasts and epithelial-to-mesenchymal transition markers. Surgery 2012; 152: 449–454.

    PubMed  Google Scholar 

  76. Elnakish MT, Hassan F, Dakhlallah D, Marsh CB, Alhaider IA, Khan M . Mesenchymal stem cells for cardiac regeneration: translation to bedside reality. Stem Cells Int 2012; 2012: 646038.

    PubMed  PubMed Central  Google Scholar 

  77. Fazel S, Chen L, Weisel RD, Angoulvant D, Seneviratne C, Fazel A et al. Cell transplantation preserves cardiac function after infarction by infarct stabilization: augmentation by stem cell factor. J Thorac Cardiovasc Surg 2005; 130: 1310.

    PubMed  Google Scholar 

  78. Dulamea A . Mesenchymal stem cells in multiple sclerosis—translation to clinical trials. J Med Life 2005; 8: 24–27.

    Google Scholar 

  79. Kim N, Im KI, Lim JY, Jeon EJ, Nam YS, Kim EJ et al. Mesenchymal stem cells for the treatment and prevention of graft-versus-host disease: experiments and practice. Ann Hematol 2013; 92: 1295–1308.

    CAS  PubMed  Google Scholar 

  80. Aboody KS, Najbauer J, Danks MK . Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 2008; 15: 739–752.

    CAS  PubMed  Google Scholar 

  81. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Aboody KS, Najbauer J, Schmidt NO, Yang W, Wu JK, Zhuge Y et al. Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro Oncol 2006; 8: 119–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cascallo M, Alonso MM, Rojas JJ, Perez-Gimenez A, Fueyo J, Alemany R . Systemic toxicity-efficacy profile of ICOVIR-5, a potent and selective oncolytic adenovirus based on the pRB pathway. Mol Ther 2007; 15: 1607–1615.

    CAS  PubMed  Google Scholar 

  84. Alonso MM, Cascallo M, Gomez-Manzano C, Jiang H, Bekele BN, Perez-Gimenez A et al. ICOVIR-5 shows E2F1 addiction and potent antiglioma effect in vivo. Cancer Res 2007; 67: 8255–8263.

    CAS  PubMed  Google Scholar 

  85. Hsieh CH, Shyu WC, Chiang CY, Kuo JW, Shen WC, Liu RS . NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PLoS One 2011; 6: e23945.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Folkerth RD . Descriptive analysis and quantification of angiogenesis in human brain tumors. J Neurooncol 2000; 50: 165–172.

    CAS  PubMed  Google Scholar 

  87. Jensen RL . Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 2009; 92: 317–335.

    CAS  PubMed  Google Scholar 

  88. Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F et al. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 2013; 24: 331–346.

    CAS  PubMed  Google Scholar 

  89. Xie TX, Xia Z, Zhang N, Gong W, Huang S . Constitutive NF-kappaB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncol Rep 2010; 23: 725–732.

    CAS  PubMed  Google Scholar 

  90. Conti A, Ageunnouz M, La Torre D, Cardali S, Angileri FF, Buemi C et al. Expression of the tumor necrosis factor receptor-associated factors 1 and 2 and regulation of the nuclear factor-kappaB antiapoptotic activity in human gliomas. J Neurosurg 2005; 103: 873–881.

    CAS  PubMed  Google Scholar 

  91. Thorsen F, Afione S, Huszthy PC, Tysnes BB, Svendsen A, Bjerkvig R et al. Adeno-associated virus (AAV) serotypes 2, 4 and 5 display similar transduction profiles and penetrate solid tumor tissue in models of human glioma. J Gene Med 2006; 8: 1131–1140.

    CAS  PubMed  Google Scholar 

  92. Gelderblom HR Structure and Classification of Viruses. In: Baron S (ed) Medical Microbiology. The University of Texas Medical Branch at Galveston, Galveston, TX, USA, 1996.

  93. Brown JC, Newcomb WW, Wertz GW . Helical virus structure: the case of the rhabdovirus bullet. Viruses 2010; 2: 995–1001.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cassady KA, Saunders U, Shimamura M . Deltagamma(1)134.5 herpes simplex viruses encoding human cytomegalovirus IRS1 or TRS1 induce interferon regulatory factor 3 phosphorylation and an interferon-stimulated gene response. J Virol 2012; 86: 610–614.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DS is supported by a ‘Fast Track Young Scientist’ grant (YSS/2014/000027) from the Department of Science and Technology (DST), Government of India and an investigator initiated grant from Baxalta, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Sen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Dravid, A., Kumar, A. et al. Gene therapy as a potential tool for treating neuroblastoma—a focused review. Cancer Gene Ther 23, 115–124 (2016). https://doi.org/10.1038/cgt.2016.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.16

This article is cited by

Search

Quick links