Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells

Abstract

Performance enhancement of the immune system can now be generated through ex vivo gene modification of T cells in order to redirect native specificity to target tumor antigens. This approach combines the specificity of antibody therapy, the expanded response of cellular therapy and the memory activity of vaccine therapy. Recent clinical trials of chimeric antigen receptor (CAR) T cells directed toward CD19 as a stand-alone therapy have shown sustained complete responses in patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia. As these drug products are individually derived from a patient’s own cells, a different manufacturing approach is required for this kind of personalized therapy compared with conventional drugs. Key steps in the CAR T-cell manufacturing process include the selection and activation of isolated T cells, transduction of T cells to express CARs, ex vivo expansion of modified T cells and cryopreservation in infusible media. In this review, the steps involved in isolating, genetically modifying and scaling-out the CAR T cells for use in a clinical setting are described in the context of in-process and release testing and regulatory standards.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH . Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol 2014; 32: 189–225.

    Article  CAS  Google Scholar 

  2. Ahmed N, Heslop HE, Mackall CL . T-cell-based therapies for malignancy and infection in childhood. Pediatr Clin North Am 2010; 57: 83–96.

    Article  Google Scholar 

  3. Restifo NP, Dudley ME, Rosenberg SA . Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12: 269–281.

    Article  CAS  Google Scholar 

  4. Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG . Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 2012; 61: 953–962.

    Article  CAS  Google Scholar 

  5. Gross G, Waks T, Eshhar Z . Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86: 10024–10028.

    Article  CAS  Google Scholar 

  6. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12: 6106–6115.

    Article  CAS  Google Scholar 

  7. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006; 24: e20–e22.

    Article  Google Scholar 

  8. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008; 112: 2261–2271.

    Article  CAS  Google Scholar 

  9. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011; 121: 1822–1826.

    Article  CAS  Google Scholar 

  10. Stuart RW, Racke MK . Targeting T cell costimulation in autoimmune disease. Expert Opin Ther Targets 2002; 6: 275–289.

    Article  CAS  Google Scholar 

  11. Finney HM, Lawson AD, Bebbington CR, Weir AN . Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 1998; 161: 2791–2797.

    CAS  PubMed  Google Scholar 

  12. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M . Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 2002; 20: 70–75.

    Article  CAS  Google Scholar 

  13. Sadelain M, Riviere I, Brentjens R . Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 2003; 3: 35–45.

    Article  CAS  Google Scholar 

  14. Sadelain M, Brentjens R, Riviere I . The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3: 388–398.

    Article  CAS  Google Scholar 

  15. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  Google Scholar 

  16. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.

    Article  CAS  Google Scholar 

  17. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

    Article  CAS  Google Scholar 

  18. Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004; 18: 676–684.

    Article  CAS  Google Scholar 

  19. Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009; 32: 169–180.

    Article  CAS  Google Scholar 

  20. Davila ML, Brentjens R . Chimeric antigen receptor therapy for chronic lymphocytic leukemia: what are the challenges? Hematol Oncol Clin North Am 2013; 27: 341–353.

    Article  Google Scholar 

  21. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119: 2709–2720.

    Article  CAS  Google Scholar 

  22. Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS One 2013; 8: e64138.

    Article  CAS  Google Scholar 

  23. Singh H, Huls H, Kebriaei P, Cooper LJ . A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev 2014; 257: 181–190.

    Article  CAS  Google Scholar 

  24. Smith JW . Apheresis techniques and cellular immunomodulation. Ther Apher 1997; 1: 203–206.

    Article  CAS  Google Scholar 

  25. Yuan S, Ziman A, Smeltzer B, Lu Q, Goldfinger D . Moderate and severe adverse events associated with apheresis donations: incidences and risk factors. Transfusion 2010; 50: 478–486.

    Article  Google Scholar 

  26. Tanaka J, Mielcarek M, Torok-Storb B . Impaired induction of the CD28-responsive complex in granulocyte colony-stimulating factor mobilized CD4 T cells. Blood 1998; 91: 347–352.

    CAS  PubMed  Google Scholar 

  27. Sloand EM, Kim S, Maciejewski JP, Van Rhee F, Chaudhuri A, Barrett J et al. Pharmacologic doses of granulocyte colony-stimulating factor affect cytokine production by lymphocytes in vitro and in vivo. Blood 2000; 95: 2269–2274.

    CAS  PubMed  Google Scholar 

  28. Beloki L, Ramirez N, Olavarria E, Samuel ER, Lowdell MW . Manufacturing of highly functional and specific T cells for adoptive immunotherapy against virus from granulocyte colony-stimulating factor-mobilized donors. Cytotherapy; 2014; 16: 1390–1408.

    Article  CAS  Google Scholar 

  29. Lundqvist A, Smith AL, Takahashi Y, Wong S, Bahceci E, Cook L et al. Differences in the phenotype, cytokine gene expression profiles, and in vivo alloreactivity of T cells mobilized with plerixafor compared with G-CSF. J Immunol 2013; 191: 6241–6249.

    Article  CAS  Google Scholar 

  30. Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D et al. Stem cell mobilization. Hematology Am Soc Hematol Educ Program 2003; 2003: 419–437.

    Article  Google Scholar 

  31. Lee G, Arepally GM . Anticoagulation techniques in apheresis: from heparin to citrate and beyond. J Clin Apher 2012; 27: 117–125.

    Article  Google Scholar 

  32. Hoffman R, Benz E, Silberstein L, Heslop H, Weitz J, Anastasi J . Hematology: Basic Principles and Practice, 6th edn. Elsevier Saunders: Philadelphia, PA, USA, 2013.

    Google Scholar 

  33. Powell DJ Jr, Brennan AL, Zheng Z, Huynh H, Cotte J, Levine BL . Efficient clinical-scale enrichment of lymphocytes for use in adoptive immunotherapy using a modified counterflow centrifugal elutriation program. Cytotherapy 2009; 11: 923–935.

    Article  CAS  Google Scholar 

  34. June CH . Principles of adoptive T cell cancer therapy. J Clin Invest 2007; 117: 1204–1212.

    Article  CAS  Google Scholar 

  35. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD . Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992; 257: 238–241.

    Article  CAS  Google Scholar 

  36. Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A et al. Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS One 2010; 5: e13940.

    Article  Google Scholar 

  37. Levine BL . T lymphocyte engineering ex vivo for cancer and infectious disease. Expert Opin Biol Ther 2008; 8: 475–489.

    Article  CAS  Google Scholar 

  38. Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T, Thompson CB et al. Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 1997; 159: 5921–5930.

    CAS  PubMed  Google Scholar 

  39. Hami LS, Green C, Leshinsky N, Markham E, Miller K, Craig S . GMP production and testing of Xcellerated T Cells for the treatment of patients with CLL. Cytotherapy 2004; 6: 554–562.

    Article  CAS  Google Scholar 

  40. Casati A, Varghaei-Nahvi A, Feldman SA, Assenmacher M, Rosenberg SA, Dudley ME et al. Clinical-scale selection and viral transduction of human naive and central memory CD8+ T cells for adoptive cell therapy of cancer patients. Cancer Immunol Immunother 2013; 62: 1563–1573.

    Article  CAS  Google Scholar 

  41. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  Google Scholar 

  42. Sakuma T, Barry MA, Ikeda Y . Lentiviral vectors: basic to translational. Biochem J 2012; 443: 603–618.

    Article  CAS  Google Scholar 

  43. Huls MH, Figliola MJ, Dawson MJ, Olivares S, Kebriaei P, Shpall EJ et al. Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp 2013; 72: e50070.

    Google Scholar 

  44. Kay MA . State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 2011; 12: 316–328.

    Article  CAS  Google Scholar 

  45. Ellis J . Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 2005; 16: 1241–1246.

    Article  CAS  Google Scholar 

  46. Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M . Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 2013; 36: 1–22.

    CAS  PubMed  Google Scholar 

  47. Durand S, Cimarelli A . The inside out of lentiviral vectors. Viruses 2011; 3: 132–159.

    Article  CAS  Google Scholar 

  48. Wang GP, Levine BL, Binder GK, Berry CC, Malani N, McGarrity G et al. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol Ther 2009; 17: 844–850.

    Article  CAS  Google Scholar 

  49. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

    Article  CAS  Google Scholar 

  50. US Food and Drug Administration. Guidance for industry: supplemental guidance on testing for replication competent retrovirus in retroviral vector based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. November, 2006, http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/ucm072961.htm#vii accessed 21 December 2014.

  51. Somerville RP, Dudley ME . Bioreactors get personal. Oncoimmunology 2012; 1: 1435–1437.

    Article  Google Scholar 

  52. Hollyman D, McDonald D, Senior I, Thompson J, Deavall H, Turner G et al. The development and validation of the CryoDoc system; a novel method for the cryopreservation of cell therapy products without the use of a clean room. Transfusion 2012; 52 (Suppl S3: 182A).

  53. Maus MV, Thomas AK, Leonard DG, Allman D, Addya K, Schlienger K et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol 2002; 20: 143–148.

    Article  CAS  Google Scholar 

  54. Thomas AK, Maus MV, Shalaby WS, June CH, Riley JL . A cell-based artificial antigen-presenting cell coated with anti-CD3 and CD28 antibodies enables rapid expansion and long-term growth of CD4 T lymphocytes. Clin Immunol 2002; 105: 259–272.

    Article  CAS  Google Scholar 

  55. Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC et al. Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 2007; 15: 981–988.

    Article  CAS  Google Scholar 

  56. Nemunaitis J, Jahan T, Ross H, Sterman D, Richards D, Fox B et al. Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther 2006; 13: 555–562.

    Article  CAS  Google Scholar 

  57. Borrello IM, Levitsky HI, Stock W, Sher D, Qin L, DeAngelo DJ et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood 2009; 114: 1736–1745.

    Article  CAS  Google Scholar 

  58. Rushworth D, Jena B, Olivares S, Maiti S, Briggs N, Somanchi S et al. Universal artificial antigen presenting cells to selectively propagate T cells expressing chimeric antigen receptor independent of specificity. J Immunother 2014; 37: 204–213.

    Article  CAS  Google Scholar 

  59. Numbenjapon T, Serrano LM, Chang WC, Forman SJ, Jensen MC, Cooper LJ . Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8+ T cells. Exp Hematol 2007; 35: 1083–1090.

    Article  CAS  Google Scholar 

  60. Bajgain P, Mucharla R, Anurathapan U, Lapteva N, Leen AM, Heslop HE et al. A novel approach to manufacture CAR-T cells for clinical applications. ASBMT BMT Tandem Meeting; February 13-17, 2013; Salt Lake City, UT (abstract 2276).

  61. Riet T, Holzinger A, Dorrie J, Schaft N, Schuler G, Abken H . Nonviral RNA transfection to transiently modify T cells with chimeric antigen receptors for adoptive therapy. Methods Mol Biol 2013; 969: 187–201.

    Article  CAS  Google Scholar 

  62. Boissel L, Betancur M, Lu W, Wels WS, Marino T, Van Etten RA et al. Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leuk Lymphoma 2012; 53: 958–965.

    Article  CAS  Google Scholar 

  63. Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M et al. Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 2011; 22: 1575–1586.

    Article  CAS  Google Scholar 

  64. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 2010; 70: 9053–9061.

    Article  CAS  Google Scholar 

  65. Barrett DM, Liu X, Jiang S, Jun e CH, Grupp SA, Zhao Y . Regimen-specific effects of RNA-modified chimeric antigen receptor T cells in mice with advanced leukemia. Hum Gene Ther 2013; 24: 717–727.

    Article  CAS  Google Scholar 

  66. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2014; 2: 112–120.

    Article  CAS  Google Scholar 

  67. Levine BL, June CH . Perspective: assembly line immunotherapy. Nature 2013; 498: S17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for medical editorial assistance was provided by Novartis Pharmaceuticals. I thank Matthew Hoelzle, for his assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B L Levine.

Ethics declarations

Competing interests

Dr Levine declares a financial interest due to intellectual property and patents in the field of cell and gene therapy. Conflict of interest is managed in accordance with University of Pennsylvania policy and oversight.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levine, B. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther 22, 79–84 (2015). https://doi.org/10.1038/cgt.2015.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.5

This article is cited by

Search

Quick links