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Zinc fingers and homeoboxes family in human diseases
Y Liu, D Ma and C Ji

The zinc-fingers and homeoboxes (ZHX) family is a group of nuclear homodimeric transcriptional repressors that interact with
a subunit of nuclear factor-Y (NF-YA) and contain two C2H2-type zinc fingers and five homeobox DNA-binding domains. The
members of ZHX family form homodimers or heterodimers with other members or a subunit of NF-YA to repress transcription. ZHX
family members function in hematopoietic cell development and differentiation, and neural progenitor maintenance. Dysfunction
of ZHX family members correlates with the development and progression of various diseases, including hepatocellular carcinoma
(HCC), hematological diseases, neurological diseases and glomerular diseases. Furthermore, low expression of ZHX is associated
with poor prognosis in malignancies. This review provides an update on the role of ZHX family in development and its function in
cancer, with special emphasis on HCC and hematological malignant diseases.
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THE ZHX FAMILY
The zinc-fingers and homeoboxes (ZHX) family includes ZHX1,
ZHX2, and ZHX3.1–3 All ZHX family members contain two
Cys-Xaa2-Cys-Xaa12-His-Xaa4-His-type zinc-finger motifs and four
or five HOX-like homeodomains (HDs), and function as transcrip-
tional repressors (Figure 1a).3,4 The type and component of
homeodomains in the ZHX family are restricted to vertebrate
lineage. The human ZHX1 and ZHX2 are on chromosome 8,
whereas ZHX3 is on chromosome 20.
ZHX1 was firstly identified in a bone marrow stromal cell

complementary DNA (cDNA) library by yeast two-hybrid library
screen in 1999.1,5 The 873 amino acid ZHX1 protein contains two
N-terminal zinc fingers, five central and C-terminal homeodo-
mains, a C-terminal acidic region, and two putative nuclear
localization signals (NLSs). The expression of ZHX1 is high in brain
and low in liver and kidney, whereas nearly undetectable in heart
and muscle.1,5,6 The human and mouse ZHX1 proteins share 91%
amino acid identity.
Human ZHX2 was cloned from a size-fractionated brain cDNA

library in 1998.7 It contains two C2H2-type zinc-finger motifs and
five HDs, with a unique proline-rich region (P domain) between
HD1 and HD2 (Figure 1a).3 ZHX2 expression was detected in all
kinds of tissues with highest levels in ovary, followed by lung,
heart, kidney, brain and liver. Intermediate expression was
detected in pancreas, spleen, testis and skeletal muscle.7 Mouse
and rat ZHX2 were cloned in 2003 by database analysis, respec-
tively.2 The mouse and human ZHX2 proteins share 87% amino
acid identity. Besides, some ZHX2 variants have been identified.
G779A polymorphism of ZHX2 has been identified (Figure 1b).8

However, further function studies are required for this polymorphism.
A polymorphism of ZHX2 in intron 2 has also been identified.
Individuals with this polymorphism have been demonstrated with
the strong response to smallpox vaccine in a genome-wide
association study.9

A partial human ZHX3 cDNA, KIAA0395, was identified in
1997.10 Three full-length human ZHX3 cDNA were subsequently

identified in a testis cDNA library. ZHX3 protein was eventually
cloned by screening rat liver and granulose cell cDNA libraries
using yeast two-hybrid analysis with ZHX1 as bait in 2003.4 ZHX3
encodes a 956 amino acid protein with two zinc-finger domains,
five homeodomains, a glu-rich region (E domain), and two NLS
(Figure 1a). ZHX3 and ZHX1 share 34.4% amino acid identity.

ZHXS SIGNALING
ZHX family molecules are involved in the development and
differentiation in different types of cells, and always act as
transcriptional repressors by binding with the promoter regions to
regulate the transcription of target genes in human tissues.
Current studies demonstrated that a direct interaction between
ZHX1 and ZHX2 could not only form heterodimer, but also form
homodimers in vivo and in vitro to repress transcription.2,3,11 All
interactions required an extensive region around HD1. ZHX
proteins also interact with nuclear factor-Y (NF-Y) subunits to
have transcriptional suppression roles. NF-Y family contains three
subunits NF-YA, NF-YB and NF-YC. NF-YA subunit includes
two activation domains, a serine/threonine-rich region and a
glutamine-rich region. ZHX proteins interact with different activa-
tion domains of NF-YA. Another transcriptional co-repressor of
ZHX1, BS69, has also been identified.12 ZHX1 interacts with the
glutamine-rich region, whereas ZHX2 and ZHX3 interact with the
serine/threoonine-rich region.3,13 Meanwhile, the NLS of ZHX
proteins are different. The NLS of ZHX1 is located in the amino
acid sequence between residues 734 and 768,14 which contains an
arginine-rich basic region. The NLS of ZHX2 is sited at a proline-
rich basic region, corresponding to the amino acid sequence
between residues 317 and 446 (ref. 3; Figure 1a). In contrast, ZHX3
contains two NLSs that are located in the N-terminal zinc-finger 1
and HD2 region.4 The repressor domain of ZHX1 is the C-terminal
acidic region, which corresponds to the amino acid sequence
between residues 831 and 873.14 Both ZHX2 and ZHX3 contain a
transcriptional repressor domain in the HD1, corresponding to the
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amino acid sequence between residues 263 and 446, and
between residues 303 and 502, respectively.3,4 The dimerization
with ZHX1, ZHX2 or ZHX3 is requested for full repressor
activities.4,14

The upstream regulators and downstream targets of ZHX2 have
been demonstrated. As shown in Figure 2a, FoxC1 and ephrin-B1/B2
are identified as upstream regulators of ZHX2. Specifically, FoxC1
represses the expression of ZHX2, whereas ephrin-B1/B2 activates
the ZHX2 signaling pathways.15,16 In the downstream signaling of
ZHX2, ZHX2 represses the expression of AFP, Cyclin A and Cyclin E.
In vitro, cellular studies also demonstrated that ZHX2 induces the
activity of lipoprotein lipase (Lpl).17 However, most of the studies
about ZHX2 signaling are very preliminary. Further studies are
required to demonstrate more details about ZHX2 signaling.
It has been shown that ZHX family can regulate alpha-

fetoprotein (AFP) expression in liver development. The expression
of ZHX2 protein is absent in the fetal liver but upregulated in the
normal adult liver. However, the expression of ZHX2 in hepato-
cellular carcinoma (HCC) exhibits an opposite tendency, which is
dramatically repressed.18,19 This tendency is different with the
expression of AFP protein in liver development and diseases.20

Studies in mice also demonstrated that ZHX2 is a negative
transcriptional regulator of AFP in liver.18,21 The molecular
mechanism that ZHX2 repressed AFP expression has also been
demonstrated. Specifically, AFP regulator 1 is an important
regulatory factor of AFP and targets to AFP promoter to repress
the transcription of AFP. Furthermore, Perincheri et al.18 used the
positional cloning approach to demonstrate that AFP regulator 1
protein binds with ZHX2 protein to forma complex. They also
found that AFP expression in BALB/cJ mouse liver was caused by
the ZHX2 mutation. Shen et al.22 found ZHX2 interacted with

hepatocyte NF-1 binding sites to repress AFP transcription in HCC
cell lines. Furthermore, a clinical study demonstrated that ZHX2
expression is negatively related with AFP expression in HCC
samples.23 Other genes, such as Gpc3 and H19 were also demon-
strated to regulate AFP expression controlled by ZHX2.18,24 These
results were further confirmed by partial hepatectomy in mouse.
The level of ZHX2 was repressed at 24 and 48 h after partial
hepatectomy, whereas the levels of AFP and GPC3 increased
significantly. Similar to AFP and GPC3, the ZHX2 expression
recovered to normal level after 48 h.25

ZHX FAMILY MEMBERS IN HUMAN DISEASES
Increasing evidence confirms important roles of ZHX family in the
development of human diseases. Several studies indicated that the
low expression of ZHX was bound up with the process of tumori-
genesis and development. As a tumor suppressor gene, ZHX2 is of
great significance in the diagnosis of tumor diseases (Figure 2b).

HEPATOCELLULAR CARCINOMA
Several independent groups have demonstrated that overexpres-
sion of ZHX2 inhibited the growth of HCC cells in vivo and
in vitro.18,21 Furthermore, high level of ZHX2 expression was
correlated with low expression of Cyclin A and Cyclin E in HCC
samples, suggesting that ZHX2 induces cell cycle arrest at G1
phase.21 Mechanistic studies indicated that ZHX2 protein directly
bound with the promoter regions of Cyclin A and Cyclin E to
repress their transcriptions.21

Repression of ZHX2 in HCC has also been identified. Lv et al.26

reported that hypermethylation of the ZHX2 promoter was higher
in HCC than in adjacent non-tumor issues using methylation-
sensitive restriction fingerprinting. They also found that the
expression of ZHX2 was silenced in liver of HCC patients. These
results suggest that ZHX2 is a tumor suppressor. Wang et al.27

have confirmed the similar results independently. However,
Hu et al.28 demonstrated that the expression of ZHX2 was
upregulated in HCC samples comparing with the adjacent non-
tumor issues, especially in poorly differentiated and metastasis
samples. It’s a controversial problem that needs to be explored.
The clinical significance of ZHX2 expression in HCC has been

demonstrated. The overexpression of ZHX2 was detected in
well-differentiated liver tissues than in poor-differentiated
tissues.21 Furthermore, nuclear ZHX2 expression was also corre-
lated with the overall survival times of patients and was correlated
with the inhibition of hepatocyte proliferation and tumor
microvascularization.21

Figure 1. Diagram of zinc fingers and homeoboxes (ZHX) family.
(a) Protein structures of ZHX family. (b) Gene structure of the
polymorphisms of ZHX2.

Figure 2. ZHX2 in different kinds of human disease. (a) ZHX2 signaling. (b) ZHX2-related diseases.
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HEMATOLOGICAL DISEASES
ZHX2 gene coincides on the quantitative trait loci that have been
reported to influence the absolute fetal hemoglobin levels.29

de Andrade et al.30 demonstrated that the expressed transcripts of
ZHX2 in reticulocytes from a normal and a hereditary persistence
of fetal hemoglobin-2 patients were different. Some of the
detectable transcripts were involved in globin gene regulation.30

Downregulation of ZHX2 was detected in two hereditary
persistence of fetal hemoglobin-2 patients and in a carrier of
the Sicilian δβ-thalassemia trait. These results suggest that ZHX2
represses the expression of globin, particularly γ-globin.30 The
clinical manifestations of β-thalassemia are extremely variable in
severity. It has been reported that there is no apparent relation-
ship among G779A polymorphism of ZHX2 gene and severity of
thalassemia and the level of HbF8. It has also been found that
ZHX2 protein was involved in red blood cell differentiation and its
expression was influenced by erythropoietin.31

Recent study also confirmed that ZHX2 was aberrantly
expressed in multiple myeloma (MM).32 The critical role of ZHX2
in MM was initially identified in studies of gene-expression
profiles. Shaughnessy et al.33 found that low expression of ZHX2
was associated with a risk of progression in a selected series of 221
transplanted patients with MM. In addition, lower expression of
ZHX2 protein was detected in high-risk proliferative MM than in
low-risk proliferative MM,34 and the expression level of ZHX2
protein was closely related with the invasion ability of MM.35 Some
properties of ZHX2 are taken into an important prognostic marker
for MM. The increased ZHX2 mRNA level was associated with
beneficial prognostic index like β2-microglobulin o5.5 mg l− 1,
albumin 435 g l− 1 or a better cytogenetics.34 Furthermore, high
expression level of ZHX2 correlated with prolonged duration of
response and overall survival of patients.34 In addition, the
patients with low ZHX2 levels had a higher rate of resistance to
chemotherapy.34

Expression analysis in hematopoietic cell lines and primary cells
indicated that B-cell-specific homeobox gene ZHX2 is a tumor
suppressor gene in Hodgkin lymphoma. t(4;8)(q27;q24) is a novel
chromosomal rearrangement in Hodgkin lymphoma.36 Target
genes at 4q27 or 8q24 were shortlisted. Expression analysis of
candidate target genes revealed that the inhibition of homeobox
gene ZHX2 was located at 8q24.36 ZHX2 is a critical factor in
development and differentiation of early B cells. The expression of
ZHX2 was upregulated during the process from hematopoietic
stem cells to early B stage or from early B to pro-B transitions.37

The repression of ZHX2 is caused by the upregulation of FoxC1.38

Aberrantly expressed FoxC1 leads to activation of IPO7 and
repression of the transcription factors MSX1, and subsequently
repressed the activation region of ZHX2 gene.15 IPO7 also
contributes to ZHX2 repression by increasing nuclear levels of
co-repressor histone H1C.38

OTHERS
ZHX2 functions in lipoprotein metabolism in vivo. Gargalovic
et al.17 demonstrated that mutation of ZHX2 regulates the
lipoprotein alterations, especially the expression of Lpl in the
mouse models. Lpl is a critical enzyme in the metabolism of
triglyceride-rich lipoproteins.39 Some ZHX2 variants activate the
expression of Lpl.17 However, it remains unclear how ZHX2 protein
regulates Lpl expression. There is no evidence to indicate that
ZHX2 binds with Lpl promoter directly. It’s possible that ZHX2
forms heterodimers with other family members, such as ZHX3, to
indirectly interact with the promoter regions of Lpl.40 Moreover, a
mass of ZHX3 mutations were found in both hypertriglyceridemia
patients and healthy people.41 Thus, the role of different ZHX
proteins in lipoprotein metabolism should be further investigated.

ZHX2 protein was specifically detected in the ventricular and
subventricular zone of the cortex during various stages of cortical
neurogenesis. Blocking ZHX2 signaling in cortical neural progeni-
tor cells by the expression of ZHX2-VP16 causes neuronal
differentiation, whereas overexpression of ZHX2 in the cortex
interrupts the normal differentiation of cortical neural progenitor
cells.42 Overexpression of ZHX2 was identified in neural progenitor
cell and correlated with the expression of nestin protein.42 ZHX2 is
also a candidate NF for the intracellular fragment of ephrin-B, a
critical factor in regulating cortical neural progenitors.16,43,44

Introduction of an ephrin-B1 intracellular domain can activate
ZHX2 activity.42 Theephrin-B1 binding domain of ZHX2 is at the
N-terminal portion (263–294) of the ephrin-B1 cytoplasmic
domain, a region adjacent to the transmembrane domain and
conserved between ephrin-B1 and ephrin-B2.42 In addition, ZHX2
variants have also been identified in two corticobasal degenera-
tion patients. These results further indicate that ZHX2 participates
in the genesis and development of human neurological disease.45

Recent studies suggest that ZHX3 is a marker of osteogenic
differentiation in mesenchymal stem cell. Suehiro et al.46 found
that ZHX3 has an important role in the early stages of osteogenic
differentiation. ZHX3 mRNA expression was upregulated after
incubation with mesenchymal stem cell in the osteogenic
induction medium, which was 3- to 5-fold higher compaerd with
that in undifferentiated mesenchymal stem cell,46 but not
upregulated during chondrogenic or adipogenic differentiation
of mesenchymal stem cell.
The role of ZHX proteins in glomerular diseases was indicated in

animal models40,47 and human kidney biopsies.40 ZHX proteins are
mostly located in non-nuclear regions in normal podocyte in
heterodimer way and a minority of them are located in normal
nuclear regions. Furthermore, ZHX3 protein was transiently
downregulated before the onset of proteinuria. The recovery of
ZHX3 expression was associated with migration of ZHX3 protein
into the nucleus and the development of proteinuria in minimal
change disease.40 ZHX3 regulates the expression of podocyte
gene directly or indirectly via other ZHX proteins.40 Sustainable
downregulation of ZHX3 protein causes the reduction of WT1,
Lmx1b and Pax2 genes. All these genes are crucial in focal
glomerulopathy sclerosis.40,48

FUTURE DIRECTIONS
Current studies indicate that ZHX family members are crucial in
the development and progression of human diseases. However,
studies of ZHX family members are still premature and further
studies are required. First of all, to further identify the role of ZHX
family members in the development of diseases, genetically
engineered mouse models should be generated. Transgenic,
knockout and knockin ZHX mouse models are still not available.
Second, it is still unclear about the signaling pathway of ZHX
family. The downstream targets and upstream regulators of ZHX
proteins are required to be further investigated. Finally, it’s also
unclear whether ZHX family members are therapeutic targets in
HCC and other kinds of diseases. Some preclinical experiments are
required to be performed to identify the potential ZHX-targeted
therapies.
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