Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Isolation and characterization of progenitor mesenchymal cells in human pituitary tumors

Subjects

Abstract

The Cancer Stem Cells (CSCs) theory suggests that genetic alterations in stem cells are the direct cause for cancer. The evidence for a CSC population that results in pituitary tumors is poor. Some studies report the isolation of CSCs, but a deep characterization of the stemness of these cells is lacking. Here, we report the isolation and detailed characterization of progenitor mesenchymal cells (PMCs) from both growth hormone-secreting (GH+) and non-secreting (NS) pituitary adenomas, determining the immunophenotype, the expression of genes related to stemness or to pituitary hormone cell types, and the differentiative potential towards osteo-, chondro- and adipogenic lineages. Finally, the expression of CD133, known as a marker for CSCs in other tumors, was analyzed. Isolated cells, both from GH+ and NS tumors, satisfy all the criteria for the identification of PMCs and express known stem cell markers (OCT4, SOX2, KLF4, NANOG), but do not express markers of pituitary hormone cell types (PITX2, PROP1, PIT1). Finally, PMCs express CD133. We demonstrated that pituitary tumors contain a stem cell population that can generate cell types characteristic of mesenchymal stem cells, and express CD133, which is associated with CSCs in other tumors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE . The prevalence of pituitary adenomas: a systematic review. Cancer 2004; 101: 613–619.

    Article  Google Scholar 

  2. Melmed S . Pathogenesis of pituitary tumors. Nat Rev Endocrinol 2011; 7: 257–266.

    Article  CAS  Google Scholar 

  3. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  Google Scholar 

  4. Wang JC . Good cells gone bad: the cellular origins of cancer. Trends Mol Med 2010; 16: 145–151.

    Article  CAS  Google Scholar 

  5. Wang ML, Chiou SH, Wu CW . Targeting cancer stem cells: emerging role of Nanog transcription factor. Onco Targets Ther 2013; 6: 1207–1220.

    PubMed  PubMed Central  Google Scholar 

  6. Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M et al. Isolation of tumour stem-like cells from benign tumours. Br J Cancer 2009; 101: 303–311.

    Article  CAS  Google Scholar 

  7. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

    Article  CAS  Google Scholar 

  8. Irollo E, Pirozzi G . CD133: to be or not to be, is this the real question? Am J Transl Res 2013; 5: 563–581.

    PubMed  PubMed Central  Google Scholar 

  9. Orciani M, Gorbi S, Benedetti M, Di Benedetto G, Mattioli-Belmonte M, Regoli F et al. Oxidative stress defense in human-skin-derived mesenchymal stem cells versus human keratinocytes: Different mechanisms of protection and cell selection. Free Radic Biol Med 2010; 49: 830–838.

    Article  CAS  Google Scholar 

  10. Orciani M, Campanati A, Salvolini E, Lucarini G, Di Benedetto G, Offidani A et al. The mesenchymal stem cell profile in psoriasis. Br J Dermatol 2011; 165: 585–592.

    Article  CAS  Google Scholar 

  11. Orciani M, Di Primio R . Skin-derived mesenchymal stem cells: isolation, culture, and characterization. Methods Mol Biol 2013; 989: 275–283.

    Article  CAS  Google Scholar 

  12. Salvolini E, Lucarini G, Zizzi A, Orciani M, Di Benedetto G, Di Primio R . Human skin-derived mesenchymal stem cells as a source of VEGF and nitric oxide. Arch Dermatol Res 2010; 302: 367–374.

    Article  CAS  Google Scholar 

  13. Halfon S, Abramov N, Grinblat B, Ginis I . Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev 2011; 20: 53–66.

    Article  CAS  Google Scholar 

  14. Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK et al. Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res 2011; 346: 53–64.

    Article  Google Scholar 

  15. Orciani M, Emanuelli M, Martino C, Pugnaloni A, Tranquilli AL, Di Primio R . Potential role of culture mediums for successful isolation and neuronal differentiation of amniotic fluid stem cells. Int J Immunopathol Pharmacol 2008; 21: 595–602.

    Article  CAS  Google Scholar 

  16. Orciani M, Morabito C, Emanuelli M, Guarnieri S, Sartini D, Giannubilo SR et al. Neurogenic potential of mesenchymal-like stem cells from human amniotic fluid: the influence of extracellular growth factors. J Biol Regul Homeost Agents 2011; 25: 115–130.

    CAS  PubMed  Google Scholar 

  17. Salvolini E, Orciani M, Lucarini G, Vignini A, Tranquilli AL, Di Primio R . VEGF and nitric oxide synthase immunoexpression in Down's syndrome amniotic fluid stem cells. Eur J Clin Invest 2011; 41: 23–29.

    Article  CAS  Google Scholar 

  18. Lazzarini R, Olivieri F, Ferretti C, Mattioli-Belmonte M, Di Primio R, Orciani M . mRNAs and miRNAs profiling of mesenchymal stem cells derived from amniotic fluid and skin: the double face of the coin. Cell Tissue Res 2014; 355: 121–130.

    Article  CAS  Google Scholar 

  19. Castinetti F, Davis SW, Brue T, Camper SA . Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr Rev 2010; 32: 453–471.

    Article  Google Scholar 

  20. de Moraes DC, Vaisman M, Conceição FL, Ortiga-Carvalho TM . Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol 2012; 215: 239–245.

    Article  Google Scholar 

  21. Ward RD, Raetzman LT, Suh H, Stone BM, Nasonkin IO, Camper SA . Role of PROP1 in pituitary gland growth. Mol Endocrinol 2005; 19: 698–710.

    Article  CAS  Google Scholar 

  22. Zhu X, Gleiberman AS, Rosenfeld MG . Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 2007; 87: 933–963.

    Article  CAS  Google Scholar 

  23. Bao B, Ahmad A, Li Y, Azmi AS, Ali S, Banerjee S, Kong D et al. Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opin Ther Targets 2012; 16: 1041–1054.

    Article  CAS  Google Scholar 

  24. Jamal M, Rath BH, Tsang PS, Camphausen K, Tofilon PJ . The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells. Neoplasia 2012; 14: 150–158.

    Article  CAS  Google Scholar 

  25. Yunoue S, Arita K, Kawano H, Uchida H, Tokimura H, Hirano H . Identification of CD133+ cells in pituitary adenomas. Neuroendocrinology 2011; 94: 302–312.

    Article  CAS  Google Scholar 

  26. Nassiri F, Cusimano M, Zuccato JA, Mohammed S, Rotondo F, Horvath E et al. Pituitary stem cells: candidates and implications. Pituitary 2013; 16: 413–418.

    Article  CAS  Google Scholar 

  27. Lloyd RV, Hardin H, Montemayor-Garcia C, Rotondo F, Syro LV, Horvath E et al. Stem cells and cancer stem-like cells in endocrine tissues. Endocr Pathol 2013; 24: 1–10.

    Article  CAS  Google Scholar 

  28. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106.

    Article  CAS  Google Scholar 

  29. Couly G, Coltey P, Eichmann A, Le Douarin NM . The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech Dev 1995; 53: 97–112.

    Article  CAS  Google Scholar 

  30. Etchevers HC, Vincent C, Le Douarin NM, Couly GF . The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 2001; 128: 1059–1068.

    CAS  PubMed  Google Scholar 

  31. Yamanishi E, Takahashi M, Saga Y, Osumi N . Penetration and differentiation of cephalic neural crest-derived cells in the developing mouse telencephalon. Dev Growth Differ 2012; 54: 785–800.

    Article  CAS  Google Scholar 

  32. Phinney DG . Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem 2012; 113: 2806–2812.

    Article  CAS  Google Scholar 

  33. Le H, Zeng F, Xu L, Liu X, Huang Y . The role of CD133 expression in the carcinogenesis and prognosis of patients with lung cancer. Mol Med Rep 2013; 8: 1511–1518.

    Article  CAS  Google Scholar 

  34. Ren F, Sheng WQ, Du X . CD133: a cancer stem cells marker, is used in colorectal cancers. World J Gastroenterol 2013; 19: 2603–2611.

    Article  CAS  Google Scholar 

  35. Yang K, Chen XZ, Zhang B, Yang C, Chen HN, Chen ZX et al. Is CD133 a biomarker for cancer stem cells of colorectal cancer and brain tumors? A meta-analysis. Int J Biol Markers 2011; 26: 173–180.

    Article  CAS  Google Scholar 

  36. Östman A . Cancer-associated fibroblasts: recent developments and emerging challenges. Semin Cancer Biol 2014; 25: 1–2.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grant FIRB-RBAP10MLK7_003 and FIRB-RBAP1153LS_004 from Ministero dell’Istruzione, dell’Università e della Ricerca, Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Di Primio.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orciani, M., Davis, S., Appolloni, G. et al. Isolation and characterization of progenitor mesenchymal cells in human pituitary tumors. Cancer Gene Ther 22, 9–16 (2015). https://doi.org/10.1038/cgt.2014.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.63

This article is cited by

Search

Quick links