Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thiocoraline activates the Notch pathway in carcinoids and reduces tumor progression in vivo

Subjects

Abstract

Carcinoids are slow-growing neuroendocrine tumors (NETs) that are characterized by hormone overproduction; surgery is currently the only option for treatment. Activation of the Notch pathway has previously been shown to have a role in tumor suppression in NETs. The marine-derived thiodepsipeptide thiocoraline was investigated in vitro in two carcinoid cell lines (BON and H727). Carcinoid cells treated with nanomolar concentrations of thiocoraline resulted in a decrease in cell proliferation and an alteration of malignant phenotype evidenced by decrease of NET markers, achaete-scute complex like-1, chromogranin A and neurospecific enolase. Western blotting analysis demonstrated the activation of Notch1 on the protein level in BON cells. Additionally, thiocoraline activated downstream Notch targets HES1, HES5 and HEY2. Thiocoraline effectively suppressed carcinoid cell growth by promoting cell cycle arrest in BON and H727 cells. An in vivo study demonstrated that thiocoraline, formulated with polymeric micelles, slowed carcinoid tumor progression. Thus the therapeutic potential of thiocoraline, which induced activation of the Notch pathway, in carcinoid tumors was demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pinchot SN, Holen K, Sippel RS, Chen H . Carcinoid tumors. Oncologist 2008; 13: 1255–1269.

    Article  CAS  Google Scholar 

  2. Sippel RS, Chen H . Carcinoid tumors. Surg Oncol Clin N Am 2006; 15: 463–478.

    Article  Google Scholar 

  3. Kulke MH, Mayer RJ . Carcinoid tumors. N Engl J Med 1999; 340: 858–868.

    Article  CAS  Google Scholar 

  4. Schnirer II, Yao JC, Ajani JA . Carcoinoid—a comprehensive review. Acta Oncol 2003; 42: 672–692.

    Article  Google Scholar 

  5. Taal BG, Visser. O . Epidemiology of neuroendocrine tumours. Neuroendocrinology 2004; 80 (Suppl 1): 3–7.

    Article  CAS  Google Scholar 

  6. Modlin IM, Lye KD, Kidd M . A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003; 97: 934–959.

    Article  Google Scholar 

  7. Kunnimalaiyaan M, Chen H . Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist 2007; 12: 535–542.

    Article  CAS  Google Scholar 

  8. Allenspach EJ, Maillard I, Aster JC, Pear WS . Notch signaling in cancer. Cancer Biol Ther 2002; 1: 466–476.

    Article  Google Scholar 

  9. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling: Cell fate control and signal integration in development. Science 1999; 284: 770–776.

    Article  CAS  Google Scholar 

  10. Bray SJ . Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Bio 2006; 7: 678–689.

    Article  CAS  Google Scholar 

  11. Pérez Baz J, Cañedo LM, Fernández-Puentes JL, Silva Elipe MV . Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico-chemical properties and structure elucidation. J Antibiot 1997; 50: 738–741.

    Article  Google Scholar 

  12. Romero F, Espliego F, Pérez Baz J, García de Quesada T, Grávalos D, De la Calle F et al. Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation, and biological activities. J Antibiot 1997; 50: 734–737.

    Article  CAS  Google Scholar 

  13. Erba E, Bergamashi D, Ronzoni S, Faretta M, Taverna S, Bonfanti M et al. Mode of action of thiocoraline, a natural marine compound with anti-tumour activity. Brit J Cancer 1999; 80: 971–980.

    Article  CAS  Google Scholar 

  14. Negri A, Marco E, García-Hernández V, Domingo A, Llamas-Saiz AL, Porto-Sandá S et al. Antitumor activity, X-ray crystal structure, and DNA binding properties of thiocoraline A, a natural bisintercalating thiodepsipeptide. J Med Chem 2007; 50: 3322–3333.

    Article  CAS  Google Scholar 

  15. Wyche TP, Hou Y, Braun D, Cohen HC, Xiong MP, Bugni TS . First natural analogs of the cytotoxic thiodepsipeptide thiocoraline A from a marine Verrucosispora sp. J Org Chem 2011; 76: 6542–6547.

    Article  CAS  Google Scholar 

  16. Tesfazghi S, Eide J, Dammalapati A, Korlesky C, Wyche TP, Bugni TS et al. Thiocoraline alters neuroendocrine phenotype and activates the Notch pathway in MTC-TT cell line. Cancer Med 2013; 2: 734–743.

    Article  CAS  Google Scholar 

  17. Parkekh D, Ishizuka J, Townsend CM Jr, Haber B, Beauchamp RD, Karp G et al. Characterization of a human pancreatic carcinoid in vitro: morphology, amine and peptide storage, and secretion. Pancreas 1994; 9: 83–90.

    Article  Google Scholar 

  18. Zarebczan B, Pinchot SN, Kunnimalaiyaan M, Chen H . Hesperetin, a potential therapy for carcinoid cancer. Am J Surg 2011; 201: 329–332.

    Article  CAS  Google Scholar 

  19. Kunnimalaiyaan M, Yan S, Wong F, Zhang Y, Chen H . Hairy enhancer of split-1 (HES-1), a Notch1 effector, inhibits the growth of carcinoid tumor cells. Surgery 2005; 138: 1137–1142.

    Article  Google Scholar 

  20. Valentino JD, Li J, Zaytseva YY, Mustain WC, Elliot VA, Kim JT et al. Cotargeting the PI3K and RAS pathways for the treatment of neuroendocrine tumors. Clin Cancer Res 2014; 20: 1212–1222.

    Article  CAS  Google Scholar 

  21. Van Gompel JJ, Kunnimalaiyaan M, Holen K, Chen H . ZM336372, a Raf-1 activator, suppresses growth and neuroendocrine hormone levels in carcinoid tumor cells. Mol Cancer Ther 2005; 4: 910–917.

    Article  CAS  Google Scholar 

  22. Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, Chen H . Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J Biol Chem 2006; 281: 39819–39830.

    Article  CAS  Google Scholar 

  23. Jaskula-Sztul R, Pisarnturakit P, Landowski M, Chen H, Kunnimalaiyaan M . Expression of the active Notch1 decreases MTC tumor growth in vivo. J Surg Res 2011; 171: 23–27.

    Article  CAS  Google Scholar 

  24. Vaccaro A, Chen H, Kunnimalaiyaan M . In-vivo activation of Raf-1 inhibits tumor growth and development in a xenograft model of human medullary thyroid cancer. Anticancer Drugs 2006; 17: 849–853.

    Article  CAS  Google Scholar 

  25. Shin HC, Alani AW, Cho H, Bae Y, Kolesar JM, Kwon GS . A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharm 2011; 8: 1257–1265.

    Article  CAS  Google Scholar 

  26. Chen H, Udelsman R, Zeiger M, Ball D . Human achaete-scute homolog-1 is highly expressed in a subset of neuroendocrine tumors. Oncol Rep 1997; 4: 775–778.

    CAS  PubMed  Google Scholar 

  27. Oberg K, Janson ET, Eriksson B . Tumor markers in neuroendocrine tumours. Ital J Gastroenterol Hepatol 1999; 31 (Suppl 1): S160–S162.

    PubMed  Google Scholar 

  28. Mohammed TA, Holen KD, Jaskula-Sztul R, Mulkerin D, Lubner SJ, Schelman WR et al. A pilot Phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist 2011; 16: 835–843.

    Article  CAS  Google Scholar 

  29. Faircloth G, Jimeno J, D’lncalci M . Biological activity of thiocoraline, a novel marine depsipeptide. Eur J Cancer 1997; 33: S175.

    Article  Google Scholar 

  30. Boger DL, Ichikawa S . Total syntheses of thiocoraline and BE-22179: Establishment of relative and absolute stereochemistry. J Am Chem Soc 2000; 122: 2956–2957.

    Article  CAS  Google Scholar 

  31. Boger DL, Ichikawa S, Tse WC, Hedrick MP, Jin Q . Total syntheses of thiocoraline and BE-22179 and assessment of their DNA binding and biological properties. J Am Chem Soc 2001; 123: 561–568.

    Article  CAS  Google Scholar 

  32. Tulla-Puche J, Góngora-Benítez M, Bayó-Puxan N, Francesch AM, Cuevas C, Albericio F . Enzyme-labile protecting groups for the synthesis of natural products: solid-phase synthesis of thiocoraline. Angew Chem Int Ed Engl 2013; 52: 5726–5730.

    Article  CAS  Google Scholar 

  33. Lombó F, Velasco A, Castro A, de la Calle F, Braña AF, Sánchez-Puelles JM et al. Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomyces species. Chembiochem 2006; 7: 366–376.

    Article  Google Scholar 

  34. Sheoran A, King A, Velasco A, Pero JM, Garneau-Tsodikova S . Characterization of TioF, a tryptophan 2,3-dioxygenase involved in 3-hydroxyquinaldic acid formation during thiocoraline biosynthesis. Mol Biosyst 2008; 4: 622–628.

    Article  CAS  Google Scholar 

  35. Robbel L, Hoyer KM, Marahiel MA . TioS T-TE – a prototypical thioesterase responsible for cyclodimerization of the quinoline- and quinoxaline-type class of chromodepsipeptides. FEBS J 2009; 276: 1641–1653.

    Article  CAS  Google Scholar 

  36. Biswas T, Zolova OE, Lombó F, de la Calle F, Salas JA, Tsodikov OV et al. A new scaffold of an old protein fold ensures binding to the bisintercalator thiocoraline. J Mol Biol 2010; 397: 495–507.

    Article  CAS  Google Scholar 

  37. Mady AS, Zolova OE, Lombó F, de la Calle F, Salas JA, Tsodikov OV et al. Characterization of TioQ, a type II thioesterase from the thiocoraline biosynthetic cluster. Mol Biosyst 2011; 7: 1999–2011.

    Article  CAS  Google Scholar 

  38. Lynge ME, Laursen MB, Hosta-Rigau L, Jensen BE, Ogaki R, Smith AA et al. Liposomes as drug deposits in multilayered polymer films. ACS Appl Mater Interfaces 2013; 5: 2967–2975.

    Article  CAS  Google Scholar 

  39. Van der Westen R, Hosta-Rigau L, Sutherland DS, Goldie KN, Albericio F, Postma A et al. Myoblast cell interaction with polydopamine coated liposomes. Biointerphases 2012; 7: 1–9.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sarah Tesfazghi and Jacob Eide for technical help in the laboratory. This work was supported by funding from the University of Wisconsin-Madison School of Pharmacy and by grants NIH R01 CA121115 and American Cancer Society, MEN2 Thyroid Cancer Professorship (120319-RPM-11-080-01-TBG) and American Cancer Society, Research Scholar Award (RSGM TBE-121413) to Dr Herbert Chen.

Author Contributions

R Jaskula-Sztul designed the experiments. H Cho designed the thiocoraline formulation. T Wyche, A Dammalapati, H Cho, A Harrison and R Jaskula-Sztul performed the experiments. T Wyche wrote the manuscript with contributions from R Jaskula-Sztul and reviewed by T Bugni, G Kwon and H Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Jaskula-Sztul.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyche, T., Dammalapati, A., Cho, H. et al. Thiocoraline activates the Notch pathway in carcinoids and reduces tumor progression in vivo. Cancer Gene Ther 21, 518–525 (2014). https://doi.org/10.1038/cgt.2014.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.57

This article is cited by

Search

Quick links