Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Experimental virotherapy of chemoresistant pancreatic carcinoma using infectivity-enhanced fiber-mosaic oncolytic adenovirus

Abstract

Pancreatic cancer is a significant clinical problem and novel therapeutic approaches are desperately needed. Recent advances in conditionally replicative adenovirus-based (CRAd) oncolytic virus design allow the application of CRAd vectors as a therapeutic strategy to efficiently target and eradicate chemoresistant pancreatic cancer cells, thereby improving the efficacy of pancreatic cancer treatment. The goal of this study was to construct and validate the efficacy of an infectivity-enhanced, liver-untargeted, tumor-specific CRAd vector. A panel of CRAds has been derived that embodies the C-X-C chemokine receptor type 4 promoter for conditional replication, two-fiber complex mosaicism for targeting expansion and hexon hypervariable region 7 (HVR7) modification for liver untargeting. We evaluated CRAds for cancer virotherapy using a human pancreatic tumor xenograft model. Employment of the fiber mosaic approach improved CRAd replication in pancreatic tumor xenografts. Substitution of the HVR7 of the Ad5 hexon for Ad serotype 3 hexon resulted in decreased liver tropism of systemically administrated CRAd. Obtained data demonstrated that employment of complex mosaicism increased efficacy of the combination of oncolytic virotherapy with chemotherapy in a human pancreatic tumor xenograft model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    Article  PubMed  Google Scholar 

  2. Neesse A, Krug S, Gress TM, Tuveson DA, Michl P . Emerging concepts in pancreatic cancer medicine: targeting the tumor stroma. Onco Targets Ther 2013; 7: 33–43.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lowery MA, O'Reilly EM . Genomics and pharmacogenomics of pancreatic adenocarcinoma. Pharmacogenomics J 2012; 12: 1–9.

    Article  CAS  PubMed  Google Scholar 

  4. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE . Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 2007; 14: 3629–3637.

    Article  PubMed  Google Scholar 

  5. Gourgou-Bourgade S, Bascoul-Mollevi C, Desseigne F, Ychou M, Bouche O, Guimbaud R et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial. J Clin Oncol 2013; 31: 23–29.

    Article  CAS  PubMed  Google Scholar 

  6. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369: 1691–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamamoto M, Curiel DT . Cancer gene therapy. Technol Cancer Res Treat 2005; 4: 315–330.

    Article  CAS  PubMed  Google Scholar 

  8. Eager RM, Nemunaitis J . Clinical development directions in oncolytic viral therapy. Cancer Gene Ther 2011; 18: 305–317.

    Article  CAS  PubMed  Google Scholar 

  9. Tan BT, Park CY, Ailles LE, Weissman IL . The cancer stem cell hypothesis: a work in progress. Lab Invest 2006; 86: 1203–1207.

    Article  CAS  PubMed  Google Scholar 

  10. Dalerba P, Cho RW, Clarke MF . Cancer stem cells: models and concepts. Annu Rev Med 2007; 58: 267–284.

    Article  CAS  PubMed  Google Scholar 

  11. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  12. Abel EV, Simeone DM . Biology and clinical applications of pancreatic cancer stem cells. Gastroenterology 2013; 144: 1241–1248.

    Article  PubMed  Google Scholar 

  13. Zhu ZB, Makhija SK, Lu B, Wang M, Kaliberova L, Liu B et al. Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter. Gene Ther 2004; 11: 645–648.

    Article  CAS  PubMed  Google Scholar 

  14. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT . Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 1996; 70: 6839–6846.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaliberov SA, Kaliberova LN, Hong LuZ, Preuss MA, Barnes JA, Stockard CR et al. Retargeting of gene expression using endothelium specific hexon modified adenoviral vector. Virology 2013; 447: 312–325.

    Article  CAS  PubMed  Google Scholar 

  17. Sirena D, Lilienfeld B, Eisenhut M, Kalin S, Boucke K, Beerli RR et al. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol 2004; 78: 4454–4462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Short JJ, Vasu C, Holterman MJ, Curiel DT, Pereboev A . Members of adenovirus species B utilize CD80 and CD86 as cellular attachment receptors. Virus Res 2006; 122: 144–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tuve S, Wang H, Ware C, Liu Y, Gaggar A, Bernt K et al. A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J Virol 2006; 80: 12109–12120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Li ZY, Liu Y, Persson J, Beyer I, Moller T et al. Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 2011; 17: 96–104.

    Article  PubMed  Google Scholar 

  21. Parker AL, Waddington SN, Nicol CG, Shayakhmetov DM, Buckley SM, Denby L et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 2006; 108: 2554–2561.

    Article  CAS  PubMed  Google Scholar 

  22. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A . Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 2005; 79: 7478–7491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zinn KR, Szalai AJ, Stargel A, Krasnykh V, Chaudhuri TR . Bioluminescence imaging reveals a significant role for complement in liver transduction following intravenous delivery of adenovirus. Gene Ther 2004; 11: 1482–1486.

    Article  CAS  PubMed  Google Scholar 

  24. Alba R, Bradshaw AC, Parker AL, Bhella D, Waddington SN, Nicklin SA et al. Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood 2009; 114: 965–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alba R, Bradshaw AC, Coughlan L, Denby L, McDonald RA, Waddington SN et al. Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood 2010; 116: 2656–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Short JJ, Rivera AA, Wu H, Walter MR, Yamamoto M, Mathis JM et al. Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy. Mol Cancer Ther 2010; 9: 2536–2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prados J, Alvarez PJ, Melguizo C, Rodriguez-Serrano F, Carrillo E, Boulaiz H et al. How is gene transfection able to improve current chemotherapy? The role of combined therapy in cancer treatment. Curr Med Chem 2012; 19: 1870–1888.

    Article  CAS  PubMed  Google Scholar 

  28. Xu C, Li H, Su C, Li Z . Viral therapy for pancreatic cancer: tackle the bad guys with poison. Cancer Lett 2013; 333: 1–8.

    Article  CAS  PubMed  Google Scholar 

  29. Takayama K, Reynolds PN, Short JJ, Kawakami Y, Adachi Y, Glasgow JN et al. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism. Virology 2003; 309: 282–293.

    Article  CAS  PubMed  Google Scholar 

  30. Wehler T, Wolfert F, Schimanski CC, Gockel I, Herr W, Biesterfeld S et al. Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease. Oncol Rep 2006; 16: 1159–1164.

    CAS  PubMed  Google Scholar 

  31. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1: 313–323.

    Article  CAS  PubMed  Google Scholar 

  32. Castellanos JA, Merchant NB, Nagathihalli NS . Emerging targets in pancreatic cancer: epithelial-mesenchymal transition and cancer stem cells. Onco Targets Ther 2013; 6: 1261–1267.

    PubMed  PubMed Central  Google Scholar 

  33. Ribacka C, Hemminki A . Virotherapy as an approach against cancer stem cells. Curr Gene Ther 2008; 8: 88–96.

    Article  CAS  PubMed  Google Scholar 

  34. Doronin K, Flatt JW, Di Paolo NC, Khare R, Kalyuzhniy O, Acchione M et al. Coagulation factor X activates innate immunity to human species C adenovirus. Science 2012; 338: 795–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Z, Qiu Q, Tian J, Smith JS, Conenello GM, Morita T et al. Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat Med 2013; 19: 452–457.

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Beyer I, Persson J, Song H, Li Z, Richter M et al. A new human DSG2-transgenic mouse model for studying the tropism and pathology of human adenoviruses. J Virol 2012; 86: 6286–6302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cynthia L. Marich from the Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St Louis for her assistance in preparing the manuscript. This work was supported in part by the National Institutes of Health under award number 5P50 CA101955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Kaliberov.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliberov, S., Kaliberova, L., Buchsbaum, D. et al. Experimental virotherapy of chemoresistant pancreatic carcinoma using infectivity-enhanced fiber-mosaic oncolytic adenovirus. Cancer Gene Ther 21, 264–274 (2014). https://doi.org/10.1038/cgt.2014.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.26

This article is cited by

Search

Quick links