Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An HDAC inhibitor enhances cancer therapeutic efficiency of RNA polymerase III promoter-driven IDO shRNA

Abstract

Histone deacetylase (HDAC) inhibitors are used in treating certain human malignancies. Our laboratories demonstrated their capability in enhancing antitumor effect of DNA vaccine driven by an RNA polymerase II (RNA pol II) promoter. However, it is unknown whether HDAC inhibitors enhance the therapeutic short hairpin RNA (shRNA) expressed by an RNA polymerase III (RNA pol III) promoter. We investigated whether HDAC inhibitors augmented antitumor effect of indoleamine 2,3 dioxygenase (IDO) shRNA. HDAC inhibitor OSU-HDAC42 and suberoylanilide hydroxamic acid enhanced RNA pol III-driven U6 and H1 promoter activity in three different cell types in vitro: 293, NIH3T3 and dendritic cell line DC2.4. Subcutaneous injection of OSU-HDAC42 enhanced U6 and H1 promoter activity on abdominal skin of mice in vivo. Combination of IDO shRNA and OSU-HDAC42 increased antitumor effect of IDO shRNA in MBT-2 murine bladder tumor model. IDO shRNA induced tumor-infiltrating CD8+ and CD4+ T cells, whereas OSU-HDAC42 treatment induced tumor-infiltrating CD4+ T cells. Combination of OSU-HDAC42 and IDO shRNA further induced tumor-infiltrating natural killer cells and enhanced interferon-γ in lymphocytes, but suppressed interleukin (IL)-4 expression of lymphocytes. In addition, OSU-HDAC42 treatment did not alter mRNA expression of IL-12 and tumor necrosis factor-α. In conclusion, HDAC inhibitor OSU-HDAC42 may serve as adjuvant of the therapeutic shRNA expressed by an RNA pol III promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  Google Scholar 

  2. Haberland M, Montgomery RL, Olson EN . The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009; 10: 32–42.

    Article  CAS  Google Scholar 

  3. Frikeche J, Peric Z, Brissot E, Gregoire M, Gaugler B, Mohty M . Impact of HDAC inhibitors on dendritic cell functions. Exp Hematol 2012; 40: 783–791.

    Article  CAS  Google Scholar 

  4. Kutzler MA, Weiner DB . DNA vaccines: ready for prime time? Nat Rev Genet 2008; 9: 776–788.

    Article  CAS  Google Scholar 

  5. Garmory HS, Brown KA, Titball RW . DNA vaccines: improving expression of antigens. Genet Vaccines Ther 2003; 1: 2.

    Article  Google Scholar 

  6. Boshart M, Weber F, Jahn G, Dorschhasler K, Fleckenstein B, Schaffner WA . Very strong enhancer is located upstream of an immediate early gene of human cytomegalo-virus. Cell 1985; 41: 521–530.

    Article  CAS  Google Scholar 

  7. Murphy JC, Fischle W, Verdin E, Sinclair JH . Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 2002; 21: 1112–1120.

    Article  CAS  Google Scholar 

  8. Vanniasinkam T, Ertl H, Tang QY . Trichostatin-A enhances adaptive immune responses to DNA vaccination. J Clin Virol 2006; 36: 292–297.

    Article  CAS  Google Scholar 

  9. Lai MD, Chen CS, Yang CR, Yuan SY, Tsai JJ, Tu CF et al. An HDAC inhibitor enhances the antitumor activity of a CMV promoter-driven DNA vaccine. Cancer Gene Ther 2010; 17: 203–211.

    Article  CAS  Google Scholar 

  10. Huang B, Mao CP, Peng SW, Hung CF, Wu TC . RNA interference-mediated in vivo silencing of fas ligand as a strategy for the enhancement of DNA vaccine potency. Hum Gene Ther 2008; 19: 763–773.

    Article  CAS  Google Scholar 

  11. Wang ST, Chang CC, Yen MC, Tu CF, Chu CL, Peng YT et al. RNA interference-mediated silencing of Foxo3 in antigen-presenting cells as a strategy for the enhancement of DNA vaccine potency. Gene Ther 2011; 18: 372–383.

    Article  Google Scholar 

  12. Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 2007; 117: 2570–2582.

    Article  CAS  Google Scholar 

  13. Yen MC, Lin CC, Chen YL, Huang SS, Yang HJ, Chang CP et al. A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase siRNA. Clin Cancer Res 2009; 15: 641–649.

    Article  CAS  Google Scholar 

  14. Huang TT, Yen MC, Lin CC, Weng TY, Chen YL, Lin CM et al. Skin delivery of short hairpin RNA of indoleamine 2,3 dioxygenase induces antitumor immunity against orthotopic and metastatic liver cancer. Cancer Sci 2011; 102: 2214–2220.

    Article  CAS  Google Scholar 

  15. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  Google Scholar 

  16. Paul CP, Good PD, Winer I, Engelke DR . Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002; 20: 505–508.

    Article  CAS  Google Scholar 

  17. Ura K, Kurumizaka H, Dimitrov S, Almouzni G, Wolffe AP . Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J 1997; 16: 2096–2107.

    Article  CAS  Google Scholar 

  18. Kenneth NS, Ramsbottom BA, Gomez-Roman N, Marshall L, Cole PA, White RJ . TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc Natl Acad Sci USA 2007; 104: 14917–14922.

    Article  CAS  Google Scholar 

  19. Sutcliffe JE, Brown TR, Allison SJ, Scott PH, White RJ . Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol Cell Biol 2000; 20: 9192–9202.

    Article  CAS  Google Scholar 

  20. Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS . Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 2005; 280: 38879–38887.

    Article  CAS  Google Scholar 

  21. Kulp SK, Chen CS, Wang DS, Chen CY . Antitumor effects of a novel phenylbutyrate-based histone deacetylase inhibitor, (S)-HDAC-42, in prostate cancer. Clin Cancer Res 2006; 12: 5199–5206.

    Article  CAS  Google Scholar 

  22. Sargeant AM, Rengel RC, Kulp SK, Klein RD, Clinton SK, Wang YC et al. OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res 2008; 68: 3999–4009.

    Article  CAS  Google Scholar 

  23. Lu YS, Kashida Y, Kulp SK, Wang YC, Wang D, Hung JH et al. Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma. Hepatology 2007; 46: 1119–1130.

    Article  CAS  Google Scholar 

  24. Lin CC, Chou CW, Shiau AL, Tu CF, Ko TM, Chen YL et al. Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther 2004; 10: 290–301.

    Article  CAS  Google Scholar 

  25. Huang KJ, Yang YC, Lin YS, Huang JH, Liu HS, Yeh TM et al. The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J Immunol 2006; 176: 2825–2832.

    Article  CAS  Google Scholar 

  26. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R . FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007; 12: 1247–1252.

    Article  CAS  Google Scholar 

  27. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN . Predominant role for directly transfected dendritic cells in antigen presentation to CD8(+) T cells after gene gun immunization. J Exp Med 1998; 188: 1075–1082.

    Article  CAS  Google Scholar 

  28. Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . Histone deacetylases and cancer: Causes and therapies. Nat Rev Cancer 2001; 1: 194–202.

    Article  CAS  Google Scholar 

  29. Ill CR, Chiou HC . Gene therapy progress and prospects: recent progress in transgene and RNAi expression cassettes. Gene Ther 2005; 12: 795–802.

    Article  CAS  Google Scholar 

  30. Marks PA . The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Investig Drugs 2010; 19: 1049–1066.

    Article  CAS  Google Scholar 

  31. Nencioni A, Beck J, Werth D, Grunebach F, Patrone F, Ballestrero A et al. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin Cancer Res 2007; 13: 3933–3941.

    Article  CAS  Google Scholar 

  32. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci USA 2002; 99: 2995–3000.

    Article  CAS  Google Scholar 

  33. Choo QY, Ho PC, Lin HS . Histone deacetylase inhibitors: new hope for rheumatoid arthritis? Curr Pharm Des 2008; 14: 803–820.

    Article  CAS  Google Scholar 

  34. Reddy P, Maeda Y, Hotary K, Liu C, Reznikov LL, Dinarello CA et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc Natl Acad Sci USA 2004; 101: 3921–3926.

    Article  CAS  Google Scholar 

  35. Sun YP, Chin YE, Weisiger E, Malter C, Tawara I, Toubai T et al. Cutting edge: negative regulation of dendritic cells through acetylation of the nonhistone protein STAT-3. J Immunol 2009; 182: 5899–5903.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the grant to MD Lai, NSC-100-2325-B-006-008, 101-2325-B-006-007 and 101-2320-B-006-028-MY3 from the National Science Council, Taiwan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-D Lai.

Ethics declarations

Competing interests

Dr Chen conducts a clinical trial on OSU-HDAC42 currently. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, MC., Weng, TY., Chen, YL. et al. An HDAC inhibitor enhances cancer therapeutic efficiency of RNA polymerase III promoter-driven IDO shRNA. Cancer Gene Ther 20, 351–357 (2013). https://doi.org/10.1038/cgt.2013.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.27

Keywords

This article is cited by

Search

Quick links