Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel approach to cancer treatment using structural hybrids of the p53 gene family

Abstract

The p53 tumor suppressor belongs to a gene family that includes two other structurally and functionally related members: p73 and p63. The regulation of p53 activity differs significantly from that of p73 and p63. To enhance the tumor suppressive activity of p53, we constructed six recombinant adenoviruses that encode hybrid proteins with three functional domains derived from either p53 or TAp63γ. The potency of these hybrid molecules in suppressing tumorigenesis was evaluated using in vitro and in vivo models. Of the hybrid molecules tested, one hybrid named p63–53O was the most potent activator of apoptosis in human cancer cells. The p63–53O hybrid is composed of the transcriptional activation domain and DNA-binding domain of TAp63γ and the oligomerization domain of p53. The p63–53O hybrid efficiently transactivated p53AIP1. Moreover, silencing of p53AIP1 partially abolished the apoptotic response to p63–53O in human cancer cells. The p53–p63 hybrid molecule is a novel potent anti-proliferative agent for the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  Google Scholar 

  2. Ho J, Benchimol S . Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 2003; 10: 404–408.

    Article  CAS  Google Scholar 

  3. Goh AM, Coffill CR, Lane DP . The role of mutant p53 in human cancer. J Pathol 2011; 223: 116–126.

    Article  CAS  Google Scholar 

  4. Brosh R, Rotter V . When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009; 9: 701–713.

    Article  CAS  Google Scholar 

  5. Machado-Silva A, Perrier S . Bourdon JC. p53 family members in cancer diagnosis and treatment. Semin Cancer Biol 2010; 20: 57–62.

    Article  CAS  Google Scholar 

  6. Strano S, Dell'Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G . Mutant p53: an oncogenic transcription factor. Oncogene 2007; 26: 2212–2219.

    Article  CAS  Google Scholar 

  7. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91: 649–659.

    Article  CAS  Google Scholar 

  8. Lane DP, Cheok CF, Lain S . p53-based cancer therapy. Cold Spring Harb Perspect Biol 2010; 2: a001222.

    PubMed  PubMed Central  Google Scholar 

  9. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B . Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362: 857–860.

    Article  CAS  Google Scholar 

  10. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75: 495–505.

    Article  CAS  Google Scholar 

  11. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. Embo J 1998; 17: 5001–5014.

    Article  CAS  Google Scholar 

  12. Calabro V, Mansueto G, Parisi T, Vivo M, Calogero RA, La Mantia G . The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem 2002; 277: 2674–2681.

    Article  CAS  Google Scholar 

  13. Lohrum MA, Vousden KH . Regulation and activation of p53 and its family members. Cell Death Differ 1999; 6: 1162–1168.

    Article  CAS  Google Scholar 

  14. Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, Vousden KH et al. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 2005; 24: 836–848.

    Article  CAS  Google Scholar 

  15. Ying H, Chang DL, Zheng H, McKeon F, Xiao ZX . DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol Cell Biol 2005; 25: 6154–6164.

    Article  CAS  Google Scholar 

  16. Bode AM, Dong Z . Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004; 4: 793–805.

    Article  CAS  Google Scholar 

  17. Kruse JP, Gu W . Modes of p53 regulation. Cell 2009; 137: 609–622.

    Article  CAS  Google Scholar 

  18. Dotsch V, Bernassola F, Coutandin D, Candi E, Melino G . p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol 2010; 2: a004887.

    Article  CAS  Google Scholar 

  19. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809–819.

    Article  CAS  Google Scholar 

  20. Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 1998; 4: 839–843.

    Article  CAS  Google Scholar 

  21. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2: 305–316.

    Article  CAS  Google Scholar 

  22. Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G . The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 2011; 12: 259–265.

    Article  CAS  Google Scholar 

  23. Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 2005; 7: 363–373.

    Article  CAS  Google Scholar 

  24. Sasaki Y, Negishi H, Idogawa M, Yokota I, Koyama R, Kusano M et al. p53 negatively regulates the hepatoma growth factor HDGF. Cancer Res 2011; 71: 7038–7047.

    Article  CAS  Google Scholar 

  25. Sasaki Y, Negishi H, Koyama R, Anbo N, Ohori K, Idogawa M et al. p53 family members regulate the expression of the apolipoprotein D gene. J Biol Chem 2009; 284: 872–883.

    Article  CAS  Google Scholar 

  26. Heckman KL, Pease LR . Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2007; 2: 924–932.

    Article  CAS  Google Scholar 

  27. Ogasawara Y, McCormack FX, Mason RJ, Voelker DR . Chimeras of surfactant proteins A and D identify the carbohydrate recognition domains as essential for phospholipid interaction. J Biol Chem 1994; 269: 29785–29792.

    CAS  PubMed  Google Scholar 

  28. Sasaki Y, Negishi H, Idogawa M, Suzuki H, Mita H, Toyota M et al. Histone deacetylase inhibitor FK228 enhances adenovirus-mediated p53 family gene therapy in cancer models. Mol Cancer Ther 2008; 7: 779–787.

    Article  CAS  Google Scholar 

  29. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  Google Scholar 

  30. Sasaki Y, Ishida S, Morimoto I, Yamashita T, Kojima T, Kihara C et al. The p53 family member genes are involved in the Notch signal pathway. J Biol Chem 2002; 277: 719–724.

    Article  CAS  Google Scholar 

  31. Nemunaitis J, Swisher SG, Timmons T, Connors D, Mack M, Doerksen L et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 2000; 18: 609–622.

    Article  CAS  Google Scholar 

  32. Roth JA, Nguyen D, Lawrence DD, Kemp BL, Carrasco CH, Ferson DZ et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996; 2: 985–991.

    Article  CAS  Google Scholar 

  33. Swisher SG, Roth JA, Nemunaitis J, Lawrence DD, Kemp BL, Carrasco CH et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 1999; 91: 763–771.

    Article  CAS  Google Scholar 

  34. Sasaki Y, Morimoto I, Ishida S, Yamashita T, Imai K, Tokino T . Adenovirus-mediated transfer of the p53 family genes, p73 and p51/p63 induces cell cycle arrest and apoptosis in colorectal cancer cell lines: potential application to gene therapy of colorectal cancer. Gene Ther 2001; 8: 1401–1408.

    Article  CAS  Google Scholar 

  35. Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 2000; 102: 849–862.

    Article  CAS  Google Scholar 

  36. Fujiwara T, Grimm EA, Mukhopadhyay T, Zhang WW, Owen-Schaub LB, Roth JA . Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res 1994; 54: 2287–2291.

    CAS  Google Scholar 

  37. Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG . Chemosensitivity linked to p73 function. Cancer Cell 2003; 3: 403–410.

    Article  CAS  Google Scholar 

  38. Muller M, Schleithoff ES, Stremmel W, Melino G, Krammer PH, Schilling T . One, two, three–p53, p63, p73 and chemosensitivity. Drug Resist Updat 2006; 9: 288–306.

    Article  Google Scholar 

  39. Lunghi P, Costanzo A, Mazzera L, Rizzoli V, Levrero M, Bonati A . The p53 family protein p73 provides new insights into cancer chemosensitivity and targeting. Clin Cancer Res 2009; 15: 6495–6502.

    Article  CAS  Google Scholar 

  40. Vousden KH, Lu X . Live or let die: the cell's response to p53. Nat Rev Cancer 2002; 2: 594–604.

    Article  CAS  Google Scholar 

  41. Vinyals A, Peinado MA, Gonzalez-Garrigues M, Monzo M, Bonfil RD, Fabra A . Failure of wild-type p53 gene therapy in human cancer cells expressing a mutant p53 protein. Gene Ther 1999; 6: 22–33.

    Article  CAS  Google Scholar 

  42. Thanos CD, Bowie JU . p53 family members p63 and p73 are SAM domain-containing proteins. Protein Sci 1999; 8: 1708–1710.

    Article  CAS  Google Scholar 

  43. Ghioni P, Bolognese F, Duijf PH, Van Bokhoven H, Mantovani R, Guerrini L . Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol Cell Biol 2002; 22: 8659–8668.

    Article  CAS  Google Scholar 

  44. Serber Z, Lai HC, Yang A, Ou HD, Sigal MS, Kelly AE et al. A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol Cell Biol 2002; 22: 8601–8611.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants-in-aid for cancer research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Setsuko Ishida for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Tokino.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, Y., Oshima, Y., Koyama, R. et al. A novel approach to cancer treatment using structural hybrids of the p53 gene family. Cancer Gene Ther 19, 749–756 (2012). https://doi.org/10.1038/cgt.2012.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.51

Keywords

Search

Quick links