Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polyinosinic acid decreases sequestration and improves systemic therapy of measles virus

Abstract

Off-target binding or vector sequestration can significantly limit the efficiency of systemic virotherapy. We report here that systemically administered oncolytic measles virus (MV) was rapidly sequestered by the mononuclear phagocytic system (MPS) of the liver and spleen in measles receptor CD46-positive and CD46-negative mice. Since scavenger receptors on Kupffer cells are responsible for the elimination of blood-borne pathogens, we investigated here if MV uptake was mediated by scavenger receptors on Kupffer cells. Pretreatment of cells with poly(I), a scavenger receptor ligand, reduced MV expression by 99% in murine (J774A.1) macrophages and by 50% in human (THP-1) macrophages. Pre-dosing of mice with poly(I) reduced MPS sequestration of MV and increased circulating levels of MV by 4 to 15-folds at 2 min post virus administration. Circulating virus was still detectable 30 min post infusion in mice pre-dosed with poly(I) whereas no detectable MV was found at 5–10 min post infusion if mice did not receive poly(I). MPS blockade by poly(I) enhanced virus delivery to human ovarian SKOV3ip.1 and myeloma KAS6/1 xenografts in mice. Higher gene expression and improved control of tumor growth was noted early post therapy. Based on these results, incorporation of MPS blockade into MV treatment regimens is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chiocca EA . The host response to cancer virotherapy. Curr Opin Mol Ther 2008; 10: 38–45.

    PubMed  Google Scholar 

  2. Liu TC, Galanis E, Kirn D . Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract 2007; 4: 101–117.

    Article  CAS  Google Scholar 

  3. Melcher A, Parato K, Rooney CM, Bell JC . Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 2011; 19: 1008–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 2008; 9: 533–542.

    Article  CAS  PubMed  Google Scholar 

  5. Senzer NN, Kaufman HL, Amatruda T, Nemunaitis M, Reid T, Daniels G et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 2009; 27: 5763–5771.

    Article  CAS  PubMed  Google Scholar 

  6. Russell SJ, Peng KW . Measles virus for cancer therapy. Curr Top Microbiol Immunol 2009; 330: 213–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu C, Russell SJ, Peng KW . Systemic therapy of disseminated myeloma in passively immunized mice using measles virus-infected cell carriers. Mol Ther 2010; 18: 1155–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hemminki O, Bauerschmitz G, Hemmi S, Lavilla-Alonso S, Diaconu I, Guse K et al. Oncolytic adenovirus based on serotype 3. Cancer Gene Ther 2011; 18: 288–296.

    Article  CAS  PubMed  Google Scholar 

  9. Doronin K, Shashkova EV, May SM, Hofherr SE, Barry MA . Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. Hum Gene Ther 2009; 20: 975–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 2009; 15: 7246–7255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Power AT, Wang J, Falls TJ, Paterson JM, Parato KA, Lichty BD et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther 2007; 15: 123–130.

    Article  CAS  PubMed  Google Scholar 

  12. Miest TS, Yaiw KC, Frenzke M, Lampe J, Hudacek AW, Springfeld C et al. Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol Ther: J Am Soc Gene Ther 2011; 19: 1813–1820.

    Article  CAS  Google Scholar 

  13. Alemany R, Suzuki K, Curiel DT . Blood clearance rates of adenovirus type 5 in mice. Journal Gen Virol 2000; 81 (Pt 11): 2605–2609.

    Article  CAS  Google Scholar 

  14. Brunner KT, Hurez D, Mc CR, Benacerraf B . Blood clearance of P32-labeled vesicular stomatitis and Newcastle disease viruses by the reticuloendothelial system in mice. J Immunol 1960; 85: 99–105.

    CAS  PubMed  Google Scholar 

  15. Xu Z, Tian J, Smith JS, Byrnes AP . Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol 2008; 82: 11705–11713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ikeda K, Ichikawa T, Wakimoto H, Silver JS, Deisboeck TS, Finkelstein D et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999; 5: 881–887.

    Article  CAS  PubMed  Google Scholar 

  17. Shashkova EV, Doronin K, Senac JS, Barry MA . Macrophage depletion combined with anticoagulant therapy increases therapeutic window of systemic treatment with oncolytic adenovirus. Cancer Res 2008; 68: 5896–5904.

    Article  CAS  PubMed  Google Scholar 

  18. Haisma HJ, Kamps JA, Kamps GK, Plantinga JA, Rots MG, Bellu AR . Polyinosinic acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J Gen Virol 2008; 89 (Pt 5): 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  19. Meijer C, Wiezer MJ, Diehl AM, Schouten HJ, Schouten HJ, Meijer S et al. Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy. Liver 2000; 20: 66–77.

    Article  CAS  PubMed  Google Scholar 

  20. Baker AH, McVey JH, Waddington SN, Di Paolo NC, Shayakhmetov DM . The influence of blood on in vivo adenovirus bio-distribution and transduction. Mol Ther: J Am Soc Gene Ther 2007; 15: 1410–1416.

    Article  CAS  Google Scholar 

  21. Kueberuwa G, Cawood R, Seymour LW . Blood compatibility of enveloped viruses. Curr Opin Mol Ther 2010; 12: 412–420.

    CAS  PubMed  Google Scholar 

  22. Nakashima H, Kaur B, Chiocca EA . Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev 2010; 21: 119–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tseng JC, Granot T, DiGiacomo V, Levin B, Meruelo D . Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther 2010; 17: 244–255.

    Article  CAS  PubMed  Google Scholar 

  24. Lech PJ, Russell SJ . Use of attenuated paramyxoviruses for cancer therapy. Expert Rev Vaccines 2010; 9: 1275–1302.

    Article  CAS  PubMed  Google Scholar 

  25. Dingli D, Bergert ER, Bajzer Z, O’Connor MK, Russell SJ, Morris JC . Dynamic iodide trapping by tumor cells expressing the thyroidal sodium iodide symporter. Biochem Biophys Res Commun 2004; 325: 157–166.

    Article  CAS  PubMed  Google Scholar 

  26. Dingli D, Peng KW, Harvey ME, Greipp PR, O’Connor MK, Cattaneo R et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103: 1641–1646.

    Article  CAS  PubMed  Google Scholar 

  27. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 2010; 70: 875–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng KW, Facteau S, Wegman T, O’Kane D, Russell SJ . Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 2002; 8: 527–531.

    Article  CAS  PubMed  Google Scholar 

  29. Peng KW, TenEyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ . Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 2002; 62: 4656–4662.

    CAS  PubMed  Google Scholar 

  30. Phuong LK, Allen C, Peng KW, Giannini C, Greiner S, TenEyck CJ et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003; 63: 2462–2469.

    CAS  PubMed  Google Scholar 

  31. Lamb RA, Paterson RG, Jardetzky TS . Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology 2006; 344: 30–37.

    Article  CAS  PubMed  Google Scholar 

  32. Blechacz B, Splinter PL, Greiner S, Myers R, Peng KW, Federspiel MJ et al. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology (Baltimore, Md) 2006; 44: 1465–1477.

    Article  CAS  Google Scholar 

  33. Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 2001; 97: 3746–3754.

    Article  CAS  PubMed  Google Scholar 

  34. Hoffmann D, Bangen JM, Bayer W, Wildner O . Synergy between expression of fusogenic membrane proteins, chemotherapy and facultative virotherapy in colorectal cancer. Gene Ther 2006; 13: 1534–1544.

    Article  CAS  PubMed  Google Scholar 

  35. McDonald CJ, Erlichman C, Ingle JN, Rosales GA, Allen C, Greiner SM et al. A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res Treat 2006; 99: 177–184.

    Article  CAS  PubMed  Google Scholar 

  36. Msaouel P, Iankov ID, Allen C, Morris JC, von Messling V, Cattaneo R et al. Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate 2009; 69: 82–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng KW, Ahmann GJ, Pham L, Greipp PR, Cattaneo R, Russell SJ . Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 2001; 98: 2002–2007.

    Article  CAS  PubMed  Google Scholar 

  38. Anderson BD, Nakamura T, Russell SJ, Peng KW . High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res 2004; 64: 4919–4926.

    Article  CAS  PubMed  Google Scholar 

  39. Ong HT, Hasegawa K, Dietz AB, Russell SJ, Peng KW . Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther 2007; 14: 324–333.

    Article  CAS  PubMed  Google Scholar 

  40. Ong HT, Timm MM, Greipp PR, Witzig TE, Dispenzieri A, Russell SJ et al. Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Exp Hematol 2006; 34: 713–720.

    Article  CAS  PubMed  Google Scholar 

  41. Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S . Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 2005; 182: 1–15.

    Article  CAS  PubMed  Google Scholar 

  42. Peiser L, Gordon S . The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes Infect 2001; 3: 149–159.

    Article  CAS  PubMed  Google Scholar 

  43. Thelen T, Hao Y, Medeiros AI, Curtis JL, Serezani CH, Kobzik L et al. The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. J Immunol 2010; 185: 4328–4335.

    Article  CAS  PubMed  Google Scholar 

  44. Terpstra V, van Berkel TJ . Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 2000; 95: 2157–2163.

    CAS  PubMed  Google Scholar 

  45. Pearson AM, Rich A, Krieger M . Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J Biol Chem 1993; 268: 3546–3554.

    CAS  PubMed  Google Scholar 

  46. Finger AN, Bisoffi M, Wetterwald A, Gautschi E, Hohenfeld U, Klima I et al. Scavenger receptor block as strategy for the identification of bone marrow homing phages by panning in vivo random peptide phage displayed libraries. J Immunol Methods 2002; 264: 173–186.

    Article  CAS  PubMed  Google Scholar 

  47. Haisma HJ, Bellu AR . Pharmacological interventions for improving adenovirus usage in gene therapy. Mol Pharm 2011; 8: 50–55.

    Article  CAS  PubMed  Google Scholar 

  48. Hadac EM, Peng KW, Nakamura T, Russell SJ . Reengineering paramyxovirus tropism. Virology 2004; 329: 217–225.

    Article  CAS  PubMed  Google Scholar 

  49. Ong HT, Trejo TR, Pham LD, Oberg AL, Russell SJ, Peng KW . Intravascularly administered RGD-displaying measles viruses bind to and infect neovessel endothelial cells in vivo. Mol Ther 2009; 17: 1012–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mrkic B, Pavlovic J, Rulicke T, Volpe P, Buchholz CJ, Hourcade D et al. Measles virus spread and pathogenesis in genetically modified mice. J Virol 1998; 72: 7420–7427.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Myers RM, Greiner SM, Harvey ME, Griesmann G, Kuffel MJ, Buhrow SA et al. Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther 2007; 82: 700–710.

    Article  CAS  PubMed  Google Scholar 

  52. Kemper C, Leung M, Stephensen CB, Pinkert CA, Liszewski MK, Cattaneo R et al. Membrane cofactor protein (MCP; CD46) expression in transgenic mice. Clin Exp Immunol 2001; 124: 180–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng KW, Frenzke M, Myers R, Soeffker D, Harvey M, Greiner S et al. Biodistribution of oncolytic measles virus after intraperitoneal administration into Ifnar-CD46Ge transgenic mice. Hum Gene Ther 2003; 14: 1565–1577.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang L, Dailey PJ, Gettie A, Blanchard J, Ho DD . The liver is a major organ for clearing simian immunodeficiency virus in rhesus monkeys. J Virol 2002; 76: 5271–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koski A, Rajecki M, Guse K, Kanerva A, Ristimaki A, Pesonen S et al. Systemic adenoviral gene delivery to orthotopic murine breast tumors with ablation of coagulation factors, thrombocytes and Kupffer cells. J Gene Med 2009; 11: 966–977.

    Article  CAS  PubMed  Google Scholar 

  56. Zare F, Magnusson M, Mollers LN, Jin T, Tarkowski A, Bokarewa M . Single-stranded polyinosinic acid oligonucleotides trigger leukocyte production of proteins belonging to fibrinolytic and coagulation cascades. J Leukoc Biol 2008; 84: 741–747.

    Article  CAS  PubMed  Google Scholar 

  57. Nakamura T, Suzuki H, Wada Y, Kodama T, Doi T . Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-kappaB-dependent signaling pathways through macrophage scavenger receptors. Biochem Biophys Res Commun 2006; 343: 286–294.

    Article  CAS  PubMed  Google Scholar 

  58. Van Rooijen N, Sanders A . Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate, propamidine, and ethylenediaminetetraacetic acid. Hepatology (Baltimore, Md) 1996; 23: 1239–1243.

    Article  CAS  Google Scholar 

  59. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011; 29: 330–336.

    Article  CAS  PubMed  Google Scholar 

  60. Irhimeh MR, Fitton JH, Lowenthal RM . Pilot clinical study to evaluate the anticoagulant activity of fucoidan. Blood Coagul Fibrinolysis 2009; 20: 607–610.

    Article  CAS  PubMed  Google Scholar 

  61. Li B, Lu F, Wei X, Zhao R . Fucoidan: structure and bioactivity. Molecules (Basel, Switzerland) 2008; 13: 1671–1695.

    Article  CAS  Google Scholar 

  62. Fisher KD, Seymour LW . HPMA copolymers for masking and retargeting of therapeutic viruses. Adv Drug Deliv Rev 2010; 62: 240–245.

    Article  CAS  PubMed  Google Scholar 

  63. Kreppel F, Kochanek S . Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 2008; 16: 16–29.

    Article  CAS  PubMed  Google Scholar 

  64. Power AT, Bell JC . Taming the Trojan horse: optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. Gene Ther 2008; 15: 772–779.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from the NIH/NCI (CA118488, CA129193, CA100634, CA129966, CA125614), Mayo Foundation and the Mayo Clinic Comprehensive Cancer Center (CA15083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-W Peng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YP., Tong, C., Dispenzieri, A. et al. Polyinosinic acid decreases sequestration and improves systemic therapy of measles virus. Cancer Gene Ther 19, 202–211 (2012). https://doi.org/10.1038/cgt.2011.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.82

Keywords

This article is cited by

Search

Quick links