Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sonoporation-mediated anti-angiogenic gene transfer into muscle effectively regresses distant orthotopic tumors

Abstract

Ultrasound (US) is an effective tool for local delivery of genes into target tumors or organs. In combination with microbubbles, US can temporarily change the permeability of cell membranes by cavitation and facilitate entry of plasmid DNA into cells. Here, we demonstrate that repeated US-mediated delivery of anti-angiogenic genes, endostatin or calreticulin, into muscle significantly inhibits the growth of orthotopic tumors in the liver, brain or lung. US-mediated anti-angiogenic gene therapy also seems to function as an adjuvant therapy that significantly enhances the antitumor effects of the chemotherapeutic drug doxorubicin and adenovirus-mediated cytokine gene therapy. Significantly higher levels of tumor apoptosis or tumor-infiltrating lymphocytes were observed after combined therapy consisting of either anti-angiogenic therapy and chemotherapy, or anti-angiogenic therapy and immunotherapy. Taken together, our experiments demonstrate that intramuscular delivery of anti-angiogenic genes by US exposure can effectively treat distant orthotopic tumors, and thus has great therapeutic potential in terms of clinical treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Li YS, Davidson E, Reid CN, McHale AP . Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: potential applications for gene therapy of cancer. Cancer Lett 2009; 273: 62–69.

    Article  CAS  Google Scholar 

  2. Newman CM, Bettinger T . Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 2007; 14: 465–475.

    Article  CAS  Google Scholar 

  3. Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K . Induction of cell-membrane porosity by ultrasound. Lancet 1999; 353: 1409.

    Article  CAS  Google Scholar 

  4. Miller MW, Miller DL, Brayman AA . A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 1996; 22: 1131–1154.

    Article  CAS  Google Scholar 

  5. Barnett SB, ter Haar GR, Ziskin MC, Nyborg WL, Maeda K, Bang J . Current status of research on biophysical effects of ultrasound. Ultrasound Med Biol 1994; 20: 205–218.

    Article  CAS  Google Scholar 

  6. Shen ZP, Brayman AA, Chen L, Miao CH . Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther 2008; 15: 1147–1155.

    Article  CAS  Google Scholar 

  7. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM . Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 2000; 7: 2023–2027.

    Article  CAS  Google Scholar 

  8. Li T, Tachibana K, Kuroki M . Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice—initial results. Radiology 2003; 229: 423–428.

    Article  Google Scholar 

  9. Bekeredjian R, Grayburn PA, Shohet RV . Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 2005; 45: 329–335.

    Article  CAS  Google Scholar 

  10. Miller DL, Quddus J . Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound Med Biol 2000; 26: 661–667.

    Article  CAS  Google Scholar 

  11. Hayashi S, Mizuno M, Yoshida J, Nakao A . Effect of sonoporation on cationic liposome-mediated IFNbeta gene therapy for metastatic hepatic tumors of murine colon cancer. Cancer Gene Ther 2009; 16: 638–643.

    Article  CAS  Google Scholar 

  12. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV . Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003; 108: 1022–1026.

    Article  Google Scholar 

  13. Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 2002; 105: 1233–1239.

    Article  CAS  Google Scholar 

  14. Koike H, Tomita N, Azuma H, Taniyama Y, Yamasaki K, Kunugiza Y et al. An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J Gene Med 2005; 7: 108–116.

    Article  CAS  Google Scholar 

  15. Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P et al. Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Ther 2005; 16: 893–905.

    Article  CAS  Google Scholar 

  16. Lu QL, Liang HD, Partridge T, Blomley MJ . Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 2003; 10: 396–405.

    Article  CAS  Google Scholar 

  17. Wang X, Liang HD, Dong B, Lu QL, Blomley MJ . Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of mice: comparison between commercially available microbubble contrast agents. Radiology 2005; 237: 224–229.

    Article  Google Scholar 

  18. Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 2002; 9: 372–380.

    Article  CAS  Google Scholar 

  19. Hauff P, Seemann S, Reszka R, Schultze-Mosgau M, Reinhardt M, Buzasi T et al. Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. Radiology 2005; 236: 572–578.

    Article  Google Scholar 

  20. Manome Y, Nakamura M, Ohno T, Furuhata H . Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum Gene Ther 2000; 11: 1521–1528.

    Article  CAS  Google Scholar 

  21. Yamashita Y, Shimada M, Tachibana K, Harimoto N, Tsujita E, Shirabe K et al. In vivo gene transfer into muscle via electro-sonoporation. Hum Gene Ther 2002; 13: 2079–2084.

    Article  CAS  Google Scholar 

  22. Ribatti D, Vacca A, Dammacco F . The role of the vascular phase in solid tumor growth: a historical review. Neoplasia 1999; 1: 293–302.

    Article  CAS  Google Scholar 

  23. Carmeliet P . Angiogenesis in life, disease and medicine. Nature 2005; 438: 932–936.

    Article  CAS  Google Scholar 

  24. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  CAS  Google Scholar 

  25. Duvshani-Eshet M, Benny O, Morgenstern A, Machluf M . Therapeutic ultrasound facilitates antiangiogenic gene delivery and inhibits prostate tumor growth. Mol Cancer Ther 2007; 6: 2371–2382.

    Article  CAS  Google Scholar 

  26. Tsai KC, Liao ZK, Yang SJ, Lin WL, Shieh MJ, Hwang LH et al. Differences in gene expression between sonoporation in tumor and in muscle. J Gene Med 2009; 11: 933–940.

    Article  CAS  Google Scholar 

  27. Tai KF, Chen PJ, Chen DS, Hwang LH . Concurrent delivery of GM-CSF and endostatin genes by a single adenoviral vector provides a synergistic effect on the treatment of orthotopic liver tumors. J Gene Med 2003; 5: 386–398.

    Article  CAS  Google Scholar 

  28. Lee YL, Ye YL, Yu CI, Wu YL, Lai YL, Ku PH et al. Construction of single-chain interleukin-12 DNA plasmid to treat airway hyperresponsiveness in an animal model of asthma. Hum Gene Ther 2001; 12: 2065–2079.

    Article  CAS  Google Scholar 

  29. Chang CJ, Chen YH, Huang KW, Cheng HW, Chan SF, Tai KF et al. Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology 2007; 45: 746–754.

    Article  CAS  Google Scholar 

  30. Huang KW, Huang YC, Tai KF, Chen BH, Lee PH, Hwang LH . Dual therapeutic effects of interferon-alpha gene therapy in a rat hepatocellular carcinoma model with liver cirrhosis. Mol Ther 2008; 16: 1681–1687.

    Article  CAS  Google Scholar 

  31. Tseng SH, Chen Y, Chang CJ, Tai KF, Lin SM, Hwang LH . Induction of T-cell apoptosis in rats by genetically engineered glioma cells expressing granulocyte-macrophage colony-stimulating factor and B7.1. Clin Cancer Res 2005; 11: 1639–1649.

    Article  CAS  Google Scholar 

  32. Chen HW, Lee JY, Huang JY, Wang CC, Chen WJ, Su SF et al. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res 2008; 68: 7428–7438.

    Article  CAS  Google Scholar 

  33. Kulke MH, Bergsland EK, Ryan DP, Enzinger PC, Lynch TJ, Zhu AX et al. Phase II study of recombinant human endostatin in patients with advanced neuroendocrine tumors. J Clin Oncol 2006; 24: 3555–3561.

    Article  CAS  Google Scholar 

  34. Celik I, Surucu O, Dietz C, Heymach JV, Force J, Hoschele I et al. Therapeutic efficacy of endostatin exhibits a biphasic dose–response curve. Cancer Res 2005; 65: 11044–11050.

    Article  CAS  Google Scholar 

  35. Cho HM, Rosenblatt JD, Kang YS, Iruela-Arispe ML, Morrison SL, Penichet ML et al. Enhanced inhibition of murine tumor and human breast tumor xenografts using targeted delivery of an antibody–endostatin fusion protein. Mol Cancer Ther 2005; 4: 956–967.

    Article  CAS  Google Scholar 

  36. Hansma AH, Broxterman HJ, van der Horst I, Yuana Y, Boven E, Giaccone G et al. Recombinant human endostatin administered as a 28-day continuous intravenous infusion, followed by daily subcutaneous injections: a phase I and pharmacokinetic study in patients with advanced cancer. Ann Oncol 2005; 16: 1695–1701.

    Article  CAS  Google Scholar 

  37. Thomas JP, Arzoomanian RZ, Alberti D, Marnocha R, Lee F, Friedl A et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2003; 21: 223–231.

    Article  CAS  Google Scholar 

  38. Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58–62.

    Article  CAS  Google Scholar 

  39. Huber PE, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R et al. Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 2005; 65: 3643–3655.

    Article  CAS  Google Scholar 

  40. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK . Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64: 3731–3736.

    Article  CAS  Google Scholar 

  41. Ma J, Waxman DJ . Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther 2008; 7: 3670–3684.

    Article  CAS  Google Scholar 

  42. Huang KW, Wu HL, Lin HL, Liang PC, Chen PJ, Chen SH et al. Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma model. Proc Natl Acad Sci USA 2010; 107: 14769–14774.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant NSC 99-2320-B-002-005-MY3 to W-SC from the National Science Council of the Republic of China, and in part by a grant from the Ministry of Education, Aim for the Top University Plan to L-HH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W-S Chen or L-H Hwang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, ZK., Tsai, KC., Wang, HT. et al. Sonoporation-mediated anti-angiogenic gene transfer into muscle effectively regresses distant orthotopic tumors. Cancer Gene Ther 19, 171–180 (2012). https://doi.org/10.1038/cgt.2011.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.73

Keywords

This article is cited by

Search

Quick links