Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Depleting regulatory T cells with arginine-rich, cell-penetrating, peptide-conjugated morpholino oligomer targeting FOXP3 inhibits regulatory T-cell function

Abstract

CD4+CD25+regulatory T cells (Treg) impair anti-tumor and anti-viral immunity. As there are higher Treg levels in cancer patients compared with healthy individuals, there is considerable interest in eliminating them or altering their function as part of cancer or viral immunotherapy strategies. The scurfin transcriptional regulator encoded by the member of the forkhead winged helix protein family (FOXP3) is critical for maintaining the functions of Treg. We hypothesized that targeting FOXP3 expression with a novel arginine-rich, cell-penetrating, peptide-conjugated phosphorodiamidate morpholino (PPMO) based antisense would eliminate Treg and enhance the induction of effector T-cell responses. We observed that the PPMO was taken up by activated T cells in vitro and could downregulate FOXP3 expression, which otherwise increases during antigen-specific T-cell activation. Generation of antigen-specific T cells in response to peptide stimulation was enhanced by pre-treatment of peripheral blood mononuclear cells with the FOXP3-targeted PPMO. In summary, modulation of Treg levels using the FOXP3 PPMO antisense-based genomic strategy has the potential to optimize immunotherapy strategies in cancer and viral immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

Treg:

regulatory T cell

PPMO:

peptide-conjugated phosphorodiamidate morpholino oligomer

References

  1. Sakaguchi S, Miyara M, Costantino CM, Hafler DA . FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10: 490–500.

    Article  CAS  PubMed  Google Scholar 

  2. Shevach EM, DiPaolo RA, Andersson J, Zhao DM, Stephens GL, Thornton AM . The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev 2006; 212: 60–73.

    Article  CAS  Google Scholar 

  3. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182: 18–32.

    Article  CAS  Google Scholar 

  4. Piccirillo CA, Shevach EM . Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol 2004; 16: 81–88.

    Article  CAS  Google Scholar 

  5. Terabe M, Berzofsky JA . Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 2004; 16: 157–162.

    Article  CAS  Google Scholar 

  6. Ahmad M, Rees RC, Ali SA . Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 2004; 53: 844–854.

    Article  Google Scholar 

  7. Hunt PW, Landay AL, Sinclair E, Martinson JA, Hatano H, Emu B et al. A low T regulatory cell response may contribute to both viral control and generalized immune activation in HIV controllers. PLoS One 2011; 6: e15924.

    Article  CAS  PubMed  Google Scholar 

  8. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  9. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B . Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003; 9: 606–612.

    Google Scholar 

  10. Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, Dubertret L et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 2004; 173: 1444–1453.

    Article  CAS  PubMed  Google Scholar 

  11. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002; 168: 4272–4276.

    Article  CAS  Google Scholar 

  12. Watanabe MA, Oda JM, Amarante MK, Cesar Voltarelli J . Regulatory T cells and breast cancer: implications for immunopathogenesis. Cancer Metastasis Rev 2010; 29: 569–579.

    Article  CAS  Google Scholar 

  13. Nagai H, Horikawa T, Hara I, Fukunaga A, Oniki S, Oka M et al. In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp Dermatol 2004; 13: 613–620.

    Article  CAS  PubMed  Google Scholar 

  14. Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN . Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 2004; 200: 771–782.

    Article  CAS  PubMed  Google Scholar 

  15. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005; 115: 3623–3633.

    Article  CAS  PubMed  Google Scholar 

  16. Dietze KK, Zelinskyy G, Gibbert K, Schimmer S, Francois S, Myers L et al. Transient depletion of regulatory T cells in transgenic mice reactivates virus-specific CD8+ T cells and reduces chronic retroviral set points. Proc Natl Acad Sci USA 2011; 108: 2420–2425.

    Article  CAS  Google Scholar 

  17. Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 2008; 112: 610–618.

    Article  CAS  PubMed  Google Scholar 

  18. Knutson KL, Dang Y, Lu H, Lukas J, Almand B, Gad E et al. IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 2006; 177: 84–91.

    Article  CAS  Google Scholar 

  19. Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C . IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 2007; 110: 3192–3201.

    Article  CAS  PubMed  Google Scholar 

  20. Mahnke K, Schonfeld K, Fondel S, Ring S, Karakhanova S, Wiedemeyer K et al. Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 2007; 120: 2723–2733.

    Article  CAS  Google Scholar 

  21. Buckner JH, Ziegler SF . Functional analysis of FOXP3. Ann NY Acad Sci 2008; 1143: 151–169.

    Article  CAS  Google Scholar 

  22. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  Google Scholar 

  23. Casares N, Rudilla F, Arribillaga L, Llopiz D, Riezu-Boj JI, Lozano T et al. A peptide inhibitor of FOXP3 impairs regulatory T cell activity and improves vaccine efficacy in mice. J Immunol 2010; 185: 5150–5159.

    Article  CAS  Google Scholar 

  24. Summerton J, Weller D . Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 1997; 7: 187–195.

    Article  CAS  Google Scholar 

  25. Arora V, Devi GR, Iversen PL . Neutrally charged phosphorodiamidate morpholino antisense oligomers: uptake, efficacy and pharmacokinetics. Curr Pharm Biotechnol 2004; 5: 431–439.

    Article  CAS  Google Scholar 

  26. Ehlers R, Ustinov V, Chen Z, Zhang X, Rao R, Luscinskas FW et al. Targeting platelet-leukocyte interactions: identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein Ibalpha. J Exp Med 2003; 198: 1077–1088.

    Article  CAS  PubMed  Google Scholar 

  27. Kryczek I, Wei S, Zou L, Zhu G, Mottram P, Xu H et al. Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol 2006; 177: 40–44.

    Article  CAS  Google Scholar 

  28. Vaknin-Dembinsky A, Balashov K, Weiner HL . IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 2006; 176: 7768–7774.

    Article  CAS  Google Scholar 

  29. Marshall NB, Oda SK, London CA, Moulton HM, Iversen PL, Kerkvliet NI et al. Arginine-rich cell-penetrating peptides facilitate delivery of antisense oligomers into murine leukocytes and alter pre-mRNA splicing. J Immunol Methods 2007; 325: 114–126.

    Article  CAS  Google Scholar 

  30. Mourich DV, Jendrzejewski JL, Marshall NB, Hinrichs DJ, Iversen PL, Brand RM . Antisense targeting of cFLIP sensitizes activated T cells to undergo apoptosis and desensitizes responses to contact dermatitis. J Invest Dermatol 2009; 129: 1945–1953.

    Article  CAS  Google Scholar 

  31. Moulton HM, Moulton JD . Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim Biophys Acta 2010; 1798: 2296–2303.

    Article  CAS  Google Scholar 

  32. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE . Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 2007; 37: 129–138.

    Article  CAS  Google Scholar 

  33. Malek TR . The main function of IL-2 is to promote the development of T regulatory cells. J Leukoc Biol 2003; 74: 961–965.

    Article  CAS  PubMed  Google Scholar 

  34. Iversen PL, Arora V, Acker AJ, Mason DH, Devi GR . Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a Phase I safety study in humans. Clin Cancer Res 2003; 9: 2510–2519.

    CAS  Google Scholar 

  35. Devi GR, Beer TM, Corless CL, Arora V, Weller DL, Iversen PL . In vivo bioavailability and pharmacokinetics of a c-MYC antisense phosphorodiamidate morpholino oligomer, AVI-4126, in solid tumors. Clin Cancer Res 2005; 11: 3930–3938.

    Article  CAS  Google Scholar 

  36. Iversen PL, Aird KM, Wu R, Morse MM, Devi GR . Cellular uptake of neutral phosphorodiamidate morpholino oligomers. Curr Pharm Biotechnol 2009; 10: 579–588.

    Article  CAS  Google Scholar 

  37. Devi GR . Delivery of phosphorodiamidate morpholino antisense oligomers in cancer cells. Methods Mol Biol 2009; 542: 351–361.

    Article  CAS  Google Scholar 

  38. Amantana A, Moulton HM, Cate ML, Reddy MT, Whitehead T, Hassinger JN et al. Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. Bioconjug Chem 2007; 18: 1325–1331.

    Article  CAS  Google Scholar 

  39. Greenberg DE, Marshall-Batty KR, Brinster LR, Zarember KA, Shaw PA, Mellbye BL et al. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J Infect Dis 2010; 201: 1822–1830.

    Article  CAS  PubMed  Google Scholar 

  40. Swenson DL, Warfield KL, Warren TK, Lovejoy C, Hassinger JN, Ruthel G et al. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection. Antimicrob Agents Chemother 2009; 53: 2089–2099.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the chemistry group at AVI BioPharma Inc. and Sharon Peplinski at Duke University for assistance with flow cytometric analysis. This work was supported by the by Department of Defense W81XWH-07-1-0392 (GRD). PMOs were provided by AVI BioPharma, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G R Devi.

Ethics declarations

Competing interests

The authors Dr Patrick Iversen and Dan Mourich are employed at AVI BioPharma, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morse, M., Hobeika, A., Serra, D. et al. Depleting regulatory T cells with arginine-rich, cell-penetrating, peptide-conjugated morpholino oligomer targeting FOXP3 inhibits regulatory T-cell function. Cancer Gene Ther 19, 30–37 (2012). https://doi.org/10.1038/cgt.2011.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.63

Keywords

This article is cited by

Search

Quick links