Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic adenovirus armed with human papillomavirus E2 gene in combination with radiation demonstrates synergistic enhancements of antitumor efficacy

Abstract

High-risk human papillomavirus (hr-HPV) E6 and E7 oncogenes are associated with resistance to radiotherapy in cervical cancer. Efforts have been taken to employ HPV E2, a crucial negative transcriptional modulator of HPV E6 and E7 oncogenes, and also an apoptosis-inducing agent, for therapeutic intervention. Despite being conceptually attractive, the potency and feasibility of current hr-HPV E2-based therapies remain limited. Here, we designed a novel recombinant adenovirus, named M5, with a 27-bp deletion in E1A conserved region-2 by which to realize tumor-specific replication, and a total HPV type 16 (HPV16) E2 gene complementary DNA inserted into the E3 coding region. In this design, M5 exploited the adenovirus E3 promoters to express HPV16 E2 gene in a viral replication-dependent manner and preferentially silenced the hr-HPV E6 and E7 oncogenes in HPV-positive cervical cancer cells. In vitro and in vivo assays confirmed that M5 exhibited potent antitumoral efficacy. Moreover, the effects of combined treatment with M5 and radiation treatment resulted in synergistically enhanced potency (P<0.01). The increase in killing efficacy of M5 was also found in HPV-negative cervical cancer cells, for which the pro-apoptotic activity of HPV16 E2 was thus responsible. Our results indicated that the use of M5 that locally delivers HPV16 E2 to cancers has broad therapeutic windows and that the combination therapy with radiation for cervical cancer will be the more effective way of improving survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Waqqoner SE . Cervical cancer. Lancet 2003; 361: 2217–2225.

    Article  Google Scholar 

  2. Petignat P, Roy M . Diagnosis and management of cervical cancer. BMJ 2007; 335: 765–768.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stewart AJ, Viswanathan AN . Current controversies in high-dose-rate versus low-dose- rate brachytherapy for cervical cancer. Cancer 2006; 107: 908–915.

    Article  PubMed  Google Scholar 

  4. Bhosle SM, Huilgol NG, Mishra KP . Programmed cell death as a prognostic indicator for radiation therapy in cervical carcinoma patients: a pilot study. J Cancer Res Ther 2005; 1: 41–45.

    Article  CAS  PubMed  Google Scholar 

  5. Heikaus S, Kempf T, Mahotka C, Gabbert HE, Ramp U . Caspase-8 and its inhibitors in RCCs in vivo: the prominent role of ARC. Apoptosis 2008; 13: 938–949.

    Article  CAS  PubMed  Google Scholar 

  6. Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV . The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55: 244–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Werness BA, Levine AJ, Howley PM . Association of human papillomavirus types 16 and 18 E6 proteins with P53. Science 1990; 248: 76–79.

    Article  CAS  PubMed  Google Scholar 

  8. Dyson N, Howley PM, Munger K, Harlow E . The human papillomavirus 16-E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934–937.

    Article  CAS  PubMed  Google Scholar 

  9. Santin AD, Hermonat PL, Ravaggi A, Chiriva-Internati M, Pecorelli S, Parham GP . Radiation-enhanced expression of E6/E7 transforming oncogenes of human papillomavirus-16 in human cervical carcinoma. Cancer 1998; 83: 2346–2352.

    Article  CAS  PubMed  Google Scholar 

  10. Antson AA, Burns JE, Moroz OV, Scott DJ, Sanders CM, Bronstein IB et al. Structure of the intact transactivation domain of the human papillomavirus E2 protein. Nature 2000; 403: 805–809.

    Article  CAS  PubMed  Google Scholar 

  11. Webster K, Parish J, Pandya M, Stern PL, Clarke AR, Gaston K . The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem 2000; 275: 87–94.

    Article  CAS  PubMed  Google Scholar 

  12. Demeret C, Garcia-Carranca A, Thierry F . Transcription independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene 2003; 22: 168–175.

    Article  CAS  PubMed  Google Scholar 

  13. Blachon S, Demeret C . The regulatory E2 proteins of human genital papilloma-viruses are pro-apoptotic. Biochimie 2003; 85: 813–819.

    Article  CAS  PubMed  Google Scholar 

  14. Heise C, Kirn D . Replication-selective adenoviruses as oncolytic agents. J Clin Invest 2000; 105: 847–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu D-C, Working P, Ando D . Selectively replicating oncolytic adenoviruses as cancer therapeutics. Curr Opin Mol Therap 2002; 4: 435–443.

    CAS  Google Scholar 

  16. Bischoff J, Kirn D, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  17. Hay J, Shapiro N, Sauthoff H, Heitner S, Phupakdi W, Rom W . Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: the importance of the adenoviral E1b-55 kD gene. Hum Gene Ther 1999; 10: 579–590.

    Article  CAS  PubMed  Google Scholar 

  18. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    CAS  PubMed  Google Scholar 

  19. Kirn D, Heise C, Williams M, Propst M, Hermiston T . Adenovirus E1A CR2 mutants as selectively-replicating agents for cancer. Presented at Cancer Gene Therapy Meeting (R Sobol and K Scanlon, organizers). San Diego, CA, 1998.

    Google Scholar 

  20. Hawkins LK, Johnson L, Bauzon M, Nye JA, Castro D, Kitzes GA et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7K/gp19K region. Gene Therapy 2001; 8: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  21. Chu RL, Post DE, Khuri FR, Van Meir EG . Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2004; 10: 5299–5312.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou J, Gao Q, Chen G, Huang X, Lu Y, Li K et al. Novel oncolytic adenovirus selectively targets tumor-associated polo-like kinase 1 and tumor cell viability. Clin Cancer Res 2005; 11: 8431–8440.

    Article  CAS  PubMed  Google Scholar 

  23. Ma D, Gerard RD, Li XY, Alizadeh H, Niederkorn JY . Inhibition of metastasis of intraocular melanomas by adenovirus-mediated gene transfer of plasminogen activator inhibitor type1 (PAI-1) in an athymic mouse model. Blood 1997; 90: 2738–2746.

    CAS  PubMed  Google Scholar 

  24. Zhou J, Gurates B, Yang S, Sebastian S, Bulun S . Malignant breast epithelial cells stimulate aromatase expression via promoter II in human adipose fibroblasts: an epithelial–stromal interaction in breast tumors mediated by CCAAT/enhancer binding protein beta. Cancer Res 2001; 61: 2328–2334.

    CAS  PubMed  Google Scholar 

  25. Wang W, Wang S, Song XF, Sima N, Xu X, Luo A et al. The relationship between c-FLIP expression and human papillomavirus E2 gene disruption in cervical carcinogenesis. Gynecol Oncol 2007; 105: 571–577.

    Article  CAS  PubMed  Google Scholar 

  26. Bermúdez-Morales VH, Peralta-Zaragoza O, Guzmán-Olea E, García-Carrancá A, Bahena-Román M, Alcocer-González JM et al. HPV 16 E2 protein induces apoptosis in human and murine HPV 16 transformed epithelial cells and has antitumoral effects in vivo. Tumour Biol 2009; 30: 61–72.

    Article  PubMed  Google Scholar 

  27. Wang W, Fang Y, Sima N, Li Y, Li W, Li L et al. Triggering of death receptor signaling of apoptosis by human papillomavirus 16 E2 protein in cervical cancer cell lines is mediated by interaction with c-FLIP. Apoptosis 2011; 16: 55–66.

    Article  PubMed  Google Scholar 

  28. Tollefson AE, Scaria A, Saha SK, Wold WS . The 11 600-MW protein encoded by region E3 of adenovirus is expressed early but is greatly amplified at late stages of infection. J Virol 1992; 66: 3633–3642.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS . Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sima N, Wang W, Kong D, Deng D, Xu Q, Zhou J et al. RNA interference against HPV16 E7 oncogene leads to viral E6 and E7 suppression in cervical cancer cells and apoptosis via upregulation of Rb and p53. Apoptosis 2008; 13: 273–281.

    Article  CAS  PubMed  Google Scholar 

  31. Chiocca EA . Oncolytic viruses. Nat Rev Cancer 2002; 2: 938–950.

    Article  PubMed  Google Scholar 

  32. Hawkins LK, Lemoine NR, Kirn D . Oncolytic biotherapy: a novel therapeutic platform. Lancet Oncol 2002; 3: 17–26.

    Article  CAS  PubMed  Google Scholar 

  33. Wang W, Sima N, Kong D, Luo A, Gao Q, Liao S et al. Selective targeting of HPV-16 E6/E7 in cervical cancer cells with a potent oncolytic adenovirus and its enhanced effect with radiotherapy in vitro and in vivo. Cancer Lett 2010; 291: 67–75.

    Article  CAS  PubMed  Google Scholar 

  34. Post DE, Shim H, Toussaint-Smith E, Van Meir EG . Cancer scene investigation: how a cold virus became a tumor killer. Fut Oncol 2005; 1: 247–258.

    Article  CAS  Google Scholar 

  35. Bortolanza S, Bunuales M, Alzuguren P, Lamas O, Aldabe R, Prieto J et al. Deletion of the E3-6.7K/gp19K region reduces the persistence of wild-type adenovirus in a permissive tumor model in Syrian hamsters. Cancer Gene Ther 2009; 16: 703–712.

    Article  CAS  PubMed  Google Scholar 

  36. Gros A, Martínez-Quintanilla J, Puig C, Guedan S, Molleví DG, Alemany R et al. Bioselection of a gain of function mutation that enhances adenovirus 5 release and improves its antitumoral potency. Cancer Res 2008; 68: 8928–8937.

    Article  CAS  PubMed  Google Scholar 

  37. Chu RL, Post DE, Khuri FR, Van Meir EG . Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2004; 10: 5299–5312.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81072132, 30973184, 30901586), the PhD Programs Foundation of Ministry of Education of China (No. 200804871095), the Natural Science Foundation of Hubei Province of China (No. 2008CDB213) and The National Science and Technology Support Plan 2008BAI57B01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Wang, K Shen or D Ma.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Xia, X., Wang, S. et al. Oncolytic adenovirus armed with human papillomavirus E2 gene in combination with radiation demonstrates synergistic enhancements of antitumor efficacy. Cancer Gene Ther 18, 825–836 (2011). https://doi.org/10.1038/cgt.2011.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.53

Keywords

This article is cited by

Search

Quick links