Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The tumor suppressor function of LECT2 in human hepatocellular carcinoma makes it a potential therapeutic target

Abstract

Vascular invasion is one of the clinicopathologic features that are associated with early recurrence of human hepatocellular carcinoma (HCC). In this study, we have employed high-density Affymetrix oligonucleotide GeneChips (Affymetrix, Santa Clara, CA) to compare the expression profiles of HCC with and without vascular invasion. Data mining of the gene expression database established revealed that leukocyte cell-derived chemotaxin-2 (LECT2) transcripts were downregulated in HCC patients with vascular invasion. Expression of LECT2 in human HCC biopsies was significantly reduced (P<0.0001, fold change=−7.2) when compared with non-tumorous adjacent liver tissues. The reduction of LECT2 expression was significantly correlated with the early recurrent and poor prognosis of the patient (P=0.024). To validate the ability of LECT2 to repress the growth of HCC, an adenoviral vector encoding the secreted human LECT2 (AdLECT2) was introduced into the human HCC cell lines Hep3B and PLC/PRF/5, which do not express endogenous LECT2. Over-expression of LECT2 resulted in the significant inhibition of in vitro migration and invasion of the AdLECT2-transfected HCC cells. Additionally, over-expression of AdLECT2 in subcutaneous Hep3B tumor xenografts in athymic nude mice resulted in significant inhibition of tumor growth (P<0.05). In summary, our data not only demonstrated that LECT2 is a candidate prognostic marker of human HCC, but also that therapeutic strategies targeting LECT2 expression is a promising therapy for human HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hui KM . Human hepatocellular carcinoma: expression profiles-based molecular interpretations and clinical applications. Cancer Lett 2009; 286: 96–102.

    Article  CAS  Google Scholar 

  2. Llovet JM, Bru C, Bruix J . Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 1999; 19: 329–338.

    Article  CAS  Google Scholar 

  3. Mann CD, Neal CP, Garcea G, Manson MM, Dennison AR, Berry DP . Prognostic molecular markers in hepatocellular carcinoma: a systematic review. Eur J Cancer 2007; 43: 979–992.

    Article  CAS  Google Scholar 

  4. Lau WY, Lai EC . Hepatocellular carcinoma: current management and recent advances. Hepatobiliary Pancreat Dis Int 2008; 7: 237–257.

    PubMed  Google Scholar 

  5. Llovet JM, Burroughs A, Bruix J . Hepatocellular carcinoma. Lancet 2003; 362: 1907–1917.

    Article  Google Scholar 

  6. Schiffman SC, Woodall CE, Kooby DA, Martin RC, Staley CA, Egnatashvili V et al. Factors associated with recurrence and survival following hepatectomy for large hepatocellular carcinoma: a multicenter analysis. J Surg Oncol 2010; 101: 105–110.

    PubMed  Google Scholar 

  7. Thuerigen O, Schneeweiss A, Toedt G, Warnat P, Hahn M, Kramer H et al. Gene expression signature predicting pathologic complete response with gemcitabine, epirubicin, and docetaxel in primary breast cancer. J Clin Oncol 2006; 24: 1839–1845.

    Article  CAS  Google Scholar 

  8. Tsai TJ, Chau GY, Lui WY, Tsay SH, King KL, Loong CC et al. Clinical significance of microscopic tumor venous invasion in patients with resectable hepatocellular carcinoma. Surgery 2000; 127: 603–608.

    Article  CAS  Google Scholar 

  9. Wang SM, Ooi LL, Hui KM . Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma. Clin Cancer Res 2007; 13: 6275–6283.

    Article  CAS  Google Scholar 

  10. Zhou YM, Yang JM, Li B, Yin ZF, Xu F, Wang B et al. Risk factors for early recurrence of small hepatocellular carcinoma after curative resection. Hepatobiliary Pancreat Dis Int 2010; 9: 33–37.

    PubMed  Google Scholar 

  11. Kameoka Y, Yamagoe S, Hatano Y, Kasama T, Suzuki K . Val58Ile polymorphism of the neutrophil chemoattractant LECT2 and rheumatoid arthritis in the Japanese population. Arthritis Rheum 2000; 43: 1419–1420.

    Article  CAS  Google Scholar 

  12. Okumura A, Saito T, Otani I, Kojima K, Yamada Y, Ishida-Okawara A et al. Suppressive role of leukocyte cell-derived chemotaxin 2 in mouse anti-type II collagen antibody-induced arthritis. Arthritis Rheum 2008; 58: 413–421.

    Article  CAS  Google Scholar 

  13. Ovejero C, Cavard C, Perianin A, Hakvoort T, Vermeulen J, Godard C et al. Identification of the leukocyte cell-derived chemotaxin 2 as a direct target gene of beta-catenin in the liver. Hepatology 2004; 40: 167–176.

    Article  CAS  Google Scholar 

  14. Saito T, Okumura A, Watanabe H, Asano M, Ishida-Okawara A, Sakagami J et al. Increase in hepatic NKT cells in leukocyte cell-derived chemotaxin 2-deficient mice contributes to severe concanavalin A-induced hepatitis. J Immunol 2004; 173: 579–585.

    Article  CAS  Google Scholar 

  15. Segawa Y, Itokazu Y, Inoue N, Saito T, Suzuki K . Possible changes in expression of chemotaxin LECT2 mRNA in mouse liver after concanavalin A-induced hepatic injury. Biol Pharm Bull 2001; 24: 425–428.

    Article  CAS  Google Scholar 

  16. Uchida T, Nagai H, Gotoh K, Kanagawa H, Kouyama H, Kawanishi T et al. Expression pattern of a newly recognized protein, LECT2, in hepatocellular carcinoma and its premalignant lesion. Pathol Int 1999; 49: 147–151.

    Article  CAS  Google Scholar 

  17. Yamagoe S, Yamakawa Y, Matsuo Y, Minowada J, Mizuno S, Suzuki K . Purification and primary amino acid sequence of a novel neutrophil chemotactic factor LECT2. Immunol Lett 1996; 52: 9–13.

    Article  CAS  Google Scholar 

  18. Okumura A, Suzuki T, Dohmae N, Okabe T, Hashimoto Y, Nakazato K et al. Identification and assignment of three disulfide bonds in mammalian leukocyte cell-derived chemotaxin 2 by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Biosci Trends 2009; 3: 139–143.

    CAS  PubMed  Google Scholar 

  19. Yamagoe S, Kameoka Y, Hashimoto K, Mizuno S, Suzuki K . Molecular cloning, structural characterization, and chromosomal mapping of the human LECT2 gene. Genomics 1998; 48: 324–329.

    Article  CAS  Google Scholar 

  20. Yamagoe S, Akasaka T, Uchida T, Hachiya T, Okabe T, Yamakawa Y et al. Expression of a neutrophil chemotactic protein LECT2 in human hepatocytes revealed by immunochemical studies using polyclonal and monoclonal antibodies to a recombinant LECT2. Biochem Biophys Res Commun 1997; 237: 116–120.

    Article  CAS  Google Scholar 

  21. Yamagoe S, Mizuno S, Suzuki K . Molecular cloning of human and bovine LECT2 having a neutrophil chemotactic activity and its specific expression in the liver. Biochim Biophys Acta 1998; 1396: 105–113.

    Article  CAS  Google Scholar 

  22. Benson MD, James S, Scott K, Liepnieks JJ, Kluve-Beckerman B . Leukocyte chemotactic factor 2: a novel renal amyloid protein. Kidney Int 2008; 74: 218–222.

    Article  CAS  Google Scholar 

  23. Larsen CP, Walker PD, Weiss DT, Solomon A . Prevalence and morphology of leukocyte chemotactic factor 2-associated amyloid in renal biopsies. Kidney Int 2010; 77: 816–819.

    Article  CAS  Google Scholar 

  24. Linn YC, Wang SM, Hui KM . Comparative gene expression profiling of cytokine-induced killer cells in response to acute myeloid leukemic and acute lymphoblastic leukemic stimulators using oligonucleotide arrays. Exp Hematol 2005; 33: 671–681.

    Article  CAS  Google Scholar 

  25. Tan MG, Ooi LL, Aw SE, Hui KM . Cloning and identification of hepatocellular carcinoma down-regulated mitochondrial carrier protein, a novel liver-specific uncoupling protein. J Biol Chem 2004; 279: 45235–45244.

    Article  CAS  Google Scholar 

  26. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81 (Part 11): 2573–2604.

    Article  CAS  Google Scholar 

  27. Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M . Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 1996; 70: 4805–4810.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Michou AI, Lehrmann H, Saltik M, Cotten M . Mutational analysis of the avian adenovirus CELO, which provides a basis for gene delivery vectors. J Virol 1999; 73: 1399–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cotten M, Baker A, Birnstiel ML, Zatloukal K, Wagner E . Adenovirus polylysine DNA conjugates. In: Dracopoli NC, Haines JL, Korf BR, Moir DT, Morton CC, Seidman CE et al. (eds). Current Protocols in Human Genetics. Wiley: New York, 1996. pp 12.13.11–12.13.33.

    Google Scholar 

  30. Lemay P, Boudin ML, Milleville M, Boulanger P . Human adenovirus type 2 protein IIIa. I. Purification and characterization. Virology 1980; 101: 131–143.

    Article  CAS  Google Scholar 

  31. Portolani N, Ronconi M, Ghidoni S, Gaverini G, Coniglio A, Tiberio GA et al. Early and long-term prognostic factors after liver resection for HCC. Chir Ital 1999; 51: 335–343.

    CAS  PubMed  Google Scholar 

  32. Nagai H, Hamada T, Uchida T, Yamagoe S, Suzuki K . Systemic expression of a newly recognized protein, LECT2, in the human body. Pathol Int 1998; 48: 882–886.

    Article  CAS  Google Scholar 

  33. Ohtomi M, Nagai H, Ohtake H, Uchida T, Suzuki K . Dynamic change in expression of LECT2 during liver regeneration after partial hepatectomy in mice. Biomed Res 2007; 28: 247–253.

    Article  CAS  Google Scholar 

  34. Sato Y, Watanabe H, Kameyama H, Kobayashi T, Yamamoto S, Takeishi T et al. Serum LECT2 level as a prognostic indicator in acute liver failure. Transplant Proc 2004; 36: 2359–2361.

    Article  CAS  Google Scholar 

  35. Koshimizu Y, Ohtomi M . Regulation of neurite extension by expression of LECT2 and neurotrophins based on findings in LECT2-knockout mice. Brain Res 2010; 1311: 1–11.

    Article  CAS  Google Scholar 

  36. Okabe H, Satoh S, Kato T, Kitahara O, Yanagawa R, Yamaoka Y et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res 2001; 61: 2129–2137.

    CAS  PubMed  Google Scholar 

  37. Phesse TJ, Parry L, Reed KR, Ewan KB, Dale TC, Sansom OJ et al. Deficiency of Mbd2 attenuates Wnt signaling. Mol Cell Biol 2008; 28: 6094–6103.

    Article  CAS  Google Scholar 

  38. Thompson MD, Monga SP . WNT/beta-catenin signaling in liver health and disease. Hepatology 2007; 45: 1298–1305.

    Article  CAS  Google Scholar 

  39. Wodarz A, Nusse R . Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998; 14: 59–88.

    Article  CAS  Google Scholar 

  40. Jeanes A, Gottardi CJ, Yap AS . Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 2008; 27: 6920–6929.

    Article  CAS  Google Scholar 

  41. Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q et al. EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol Cell 2009; 36: 547–559.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Cancer Centre Tissue Repository for providing human tissue specimens for this study. This research was supported in part by grants from the Singapore Biomedical Research Council and the Singapore Millennium Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K M Hui.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, H., Tan, P., Wang, S. et al. The tumor suppressor function of LECT2 in human hepatocellular carcinoma makes it a potential therapeutic target. Cancer Gene Ther 18, 399–406 (2011). https://doi.org/10.1038/cgt.2011.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.5

Keywords

This article is cited by

Search

Quick links