Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice

Abstract

Despite optimal surgery and chemotherapy, the prognosis of ovarian cancer patients remains poor and new treatments are urgently needed. Solid tumors require the formation of new vessels for growth and metastasis. In the present study, we have used soluble vascular endothelial growth factor (sVEGF) receptors sVEGFR-1 and -3, soluble receptors Tie1 and Tie2 and their combinations in an ovarian cancer xenograft model. Human ovarian cancer cells were injected intraperitoneally into nude mice (n=42) and magnetic resonance imaging (MRI) was used for confirming tumors before gene delivery. Treatment with combined AdsVEGFR-1, AdsVEGFR-3 and AdsTie2 significantly decreased the size of the intraperitoneal tumors compared with the controls (AdLacZ; P=0.038) with significantly less microvessels and vascular area. Unexpectedly, treatment with combined AdsTie1 and AdsTie2 led to a dramatic shortening of the survival which was not observed in the groups receiving either of the soluble receptors alone (P=0.031). The only difference to other treatments was liver toxicity observed after the combined Tie receptor treatment. In conclusion, combined inhibition of VEGFR-1, VEGFR-3 and Tie2 pathways was safe and provided efficient therapy for ovarian cancer in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cannistra SA . Cancer of the ovary. N Engl J Med 2004; 35: 2519–2529.

    Article  Google Scholar 

  2. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E et al. Cancer statistics, 2004. CA Cancer J Clin 2004; 54: 8–29.

    Article  Google Scholar 

  3. Folkman J . What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4–6.

    Article  CAS  Google Scholar 

  4. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  Google Scholar 

  5. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J . Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–248.

    Article  CAS  Google Scholar 

  6. Adams RH, Alitalo K . Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 2007; 8: 464–478.

    Article  CAS  Google Scholar 

  7. Ferrara N, Gerber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676.

    Article  CAS  Google Scholar 

  8. Shibuya M . Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 2006; 39: 469–478.

    CAS  PubMed  Google Scholar 

  9. Kendall RL, Wang G, Thomas KA . Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996; 226: 324–328.

    Article  CAS  Google Scholar 

  10. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350: 672–683.

    Article  CAS  Google Scholar 

  11. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L . VEGF receptor signaling—in control of vascular function. Nat Rev Mol Cell Biol 2006; 7: 359–371.

    Article  CAS  Google Scholar 

  12. Alitalo K, Tammela T, Petrova TV . Lymphangiogenesis in development and human disease. Nature 2005; 438: 946–953.

    Article  CAS  Google Scholar 

  13. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290–298.

    Article  CAS  Google Scholar 

  14. Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 1998; 95: 548–553.

    Article  CAS  Google Scholar 

  15. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 2008; 454: 656–660.

    Article  CAS  Google Scholar 

  16. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161–1169.

    Article  CAS  Google Scholar 

  17. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60.

    Article  CAS  Google Scholar 

  18. Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H et al. Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 1999; 96: 1904–1909.

    Article  CAS  Google Scholar 

  19. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171–1180.

    Article  CAS  Google Scholar 

  20. Holopainen T, Huang H, Chen C, Kim KE, Zhang L, Zhou F et al. Angiopoietin-1 overexpression modulates vascular endothelium to facilitate tumor cell dissemination and metastasis establishment. Cancer Res 2009; 69: 4656–4664.

    Article  CAS  Google Scholar 

  21. Holash J, Wiegand SJ, Yancopoulos GD . New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 1999; 18: 5356–5362.

    Article  CAS  Google Scholar 

  22. Tammela T, Saaristo A, Lohela M, Morisada T, Tornberg J, Norrmen C et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 2005; 105: 4642–4648.

    Article  CAS  Google Scholar 

  23. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 2002; 3: 411–423.

    Article  CAS  Google Scholar 

  24. Saharinen P, Kerkela K, Ekman N, Marron M, Brindle N, Lee GM et al. Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol 2005; 169: 239–243.

    Article  CAS  Google Scholar 

  25. Sallinen H, Anttila M, Narvainen J, Koponen J, Hamalainen K, Kholova I et al. Antiangiogenic gene therapy with soluble VEGFR-1, -2, and -3 reduces the growth of solid human ovarian carcinoma in mice. Mol Ther 2009; 17: 278–284.

    Article  CAS  Google Scholar 

  26. Sallinen H, Anttila M, Narvainen J, Orden MR, Ropponen K, Kosma VM et al. A highly reproducible xenograft model for human ovarian carcinoma and application of MRI and ultrasound in longitudinal follow-up. Gynecol Oncol 2006; 103: 315–320.

    Article  Google Scholar 

  27. Bhardwaj S, Roy H, Karpanen T, He Y, Jauhiainen S, Hedman M et al. Periadventitial angiopoietin-1 gene transfer induces angiogenesis in rabbit carotid arteries. Gene Ther 2005; 12: 388–394.

    Article  CAS  Google Scholar 

  28. Pajusola K, Aprelikova O, Armstrong E, Morris S, Alitalo K . Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts. Oncogene 1993; 8: 2931–2937.

    CAS  PubMed  Google Scholar 

  29. Takayama K, Ueno H, Nakanishi Y, Sakamoto T, Inoue K, Shimizu K et al. Suppression of tumor angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ. Cancer Res 2000; 60: 2169–2177.

    CAS  PubMed  Google Scholar 

  30. Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001; 7: 199–205.

    Article  CAS  Google Scholar 

  31. Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001; 20: 1223–1231.

    Article  CAS  Google Scholar 

  32. Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 1998; 95: 8829–8834.

    Article  CAS  Google Scholar 

  33. Hedman M, Hartikainen J, Syvanne M, Stjernvall J, Hedman A, Kivela A et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 2003; 107: 2677–2683.

    Article  CAS  Google Scholar 

  34. Puumalainen AM, Vapalahti M, Agrawal RS, Kossila M, Laukkanen J, Lehtolainen P et al. Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Hum Gene Ther 1998; 9: 1769–1774.

    Article  CAS  Google Scholar 

  35. Yla-Herttuala S, Rosenfeld ME, Parthasarathy S, Glass CK, Sigal E, Witztum JL et al. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA 1990; 87: 6959–6963.

    Article  CAS  Google Scholar 

  36. Yamamoto S, Konishi I, Mandai M, Kuroda H, Komatsu T, Nanbu K et al. Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer 1997; 76: 1221–1227.

    Article  CAS  Google Scholar 

  37. Hata K, Nakayama K, Fujiwaki R, Katabuchi H, Okamura H, Miyazaki K . Expression of the angopoietin-1, angopoietin-2, Tie2, and vascular endothelial growth factor gene in epithelial ovarian cancer. Gynecol Oncol 2004; 93: 215–222.

    Article  CAS  Google Scholar 

  38. Jendreyko N, Popkov M, Rader C, Barbas III CF . Phenotypic knockout of VEGF-R2 and Tie-2 with an intradiabody reduces tumor growth and angiogenesis in vivo. Proc Natl Acad Sci USA 2005; 102: 8293–8298.

    Article  CAS  Google Scholar 

  39. Raikwar SP, Temm CJ, Raikwar NS, Kao C, Molitoris BA, Gardner TA . Adenoviral vectors expressing human endostatin-angiostatin and soluble Tie2: enhanced suppression of tumor growth and antiangiogenic effects in a prostate tumor model. Mol Ther 2005; 12: 1091–1100.

    Article  CAS  Google Scholar 

  40. Siemeister G, Schirner M, Weindel K, Reusch P, Menrad A, Marme D et al. Two independent mechanisms essential for tumor angiogenesis: inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. Cancer Res 1999; 59: 3185–3191.

    CAS  PubMed  Google Scholar 

  41. Zadeh G, Reti R, Koushan K, Baoping Q, Shannon P, Guha A . Regulation of the pathological vasculature of malignant astrocytomas by angiopoietin-1. Neoplasia 2005; 7: 1081–1090.

    Article  CAS  Google Scholar 

  42. Hata K, Udagawa J, Fujiwaki R, Nakayama K, Otani H, Miyazaki K . Expression of angiopoietin-1, angiopoietin-2, and Tie2 genes in normal ovary with corpus luteum and in ovarian cancer. Oncology 2002; 62: 340–348.

    Article  CAS  Google Scholar 

  43. Zhang L, Yang N, Park JW, Katsaros D, Fracchioli S, Cao G et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 2003; 63: 3403–3412.

    CAS  PubMed  Google Scholar 

  44. Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 1994; 8: 1897–1909.

    Article  CAS  Google Scholar 

  45. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70–74.

    Article  CAS  Google Scholar 

  46. Kuhnert F, Tam BY, Sennino B, Gray JT, Yuan J, Jocson A et al. Soluble receptor-mediated selective inhibition of VEGFR and PDGFRbeta signaling during physiologic and tumor angiogenesis. Proc Natl Acad Sci USA 2008; 105: 10185–10190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Seija Sahrio, Ms Sari Järveläinen, Ms Tiina Koponen, Ms Anneli Miettinen and Ms Helena Kemiläinen for skilful technical assistance. This study was supported by the Finnish Academy, EU Lymphangiogenomics network (LSHG-CT-2004-503573), Kuopio University Hospital (EVO grant 5185), the Finnish Medical Foundation, the Foundation of Finnish Cancer Institute, the Cancer Foundation of Northern Savo, the Finnish Cultural Foundation of Northern Savo, the Research Foundation of Orion Corporation and the Emil Aaltonen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ylä-Herttuala.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sallinen, H., Anttila, M., Gröhn, O. et al. Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice. Cancer Gene Ther 18, 100–109 (2011). https://doi.org/10.1038/cgt.2010.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.56

Keywords

This article is cited by

Search

Quick links