Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plasmid injection and application of electric pulses alter endogenous mRNA and protein expression in B16.F10 mouse melanomas

Abstract

The application of electric pulses to tissues causes cell membrane destabilization, allowing exogenous molecules to enter the cells. This delivery technique can be used for plasmid gene therapy. Reporter gene expression after plasmid delivery with eight representative published protocols was compared in B16.F10 mouse melanoma tumors. This expression varied significantly based on the pulse parameters utilized for delivery. To observe the possible influence of plasmid injection and/or pulse application on endogenous gene expression, levels of stress-related mRNAs 4 and 24 h after delivery were determined by PCR array. Increases in mRNA levels for several inflammatory chemokines and cytokines were observed in response to plasmid injection, electric pulses alone or the combination. This upregulation was confirmed by individual real-time reverse transcription TaqMan PCR assays. Proteins were extracted at the same time points from identically treated tumors and inflammatory protein levels were assayed by enzyme-linked immunosorbent assay and by a custom multiplex bead array. Increases in inflammatory protein levels generally paralleled mRNA levels. Some differences were observed, which may have been due to differing expression kinetics. The observed upregulated expression of these cytokines and chemokines may aid or inhibit the therapeutic effectiveness of immune-based cancer gene therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Heller LC, Heller R . In vivo electroporation for gene therapy. Hum Gene Ther 2006; 17: 890–897.

    Article  CAS  Google Scholar 

  2. Lucas ML, Heller L, Coppola D, Heller R . IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther 2002; 5: 668–675.

    Article  CAS  Google Scholar 

  3. Li S, Zhang X, Xia X . Regression of tumor growth and induction of long-term antitumor memory by interleukin 12 electro-gene therapy. J Natl Cancer Inst 2002; 94: 762–768.

    Article  CAS  Google Scholar 

  4. Lucas ML, Heller R . IL-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol 2003; 22: 755–763.

    Article  CAS  Google Scholar 

  5. Goto T, Nishi T, Kobayashi O, Tamura T, Dev SB, Takeshima H et al. Combination electro-gene therapy using herpes virus thymidine kinase and interleukin-12 expression plasmids is highly efficient against murine carcinomas in vivo. Mol Ther 2004; 10: 929–937.

    Article  CAS  Google Scholar 

  6. Pavlin D, Cemazar M, Kamensek U, Tozon N, Pogacnik A, Sersa G . Local and systemic antitumor effect of intratumoral and peritumoral IL-12 electrogene therapy on murine sarcoma. Cancer Biol Ther 2009; 8: 2114–2122.

    Article  CAS  Google Scholar 

  7. Li S, Zhang X, Xia X, Zhou L, Breau R, Suen J et al. Intramuscular electroporation delivery of IFN-alpha gene therapy for inhibition of tumor growth located at a distant site. Gene Ther 2001; 8: 400–407.

    Article  CAS  Google Scholar 

  8. Heller LC, Ingram SF, Lucas ML, Gilbert RA, Heller R . Effect of electrically mediated intratumor and intramuscular delivery of a plasmid encoding IFN alpha on visible B16 mouse melanomas. Technol Cancer Res Treat 2002; 1: 205–209.

    Article  CAS  Google Scholar 

  9. Ugen KE, Kutzler MA, Marrero B, Westover J, Coppola D, Weiner DB et al. Regression of subcutaneous B16 melanoma tumors after intratumoral delivery of an IL-15-expressing plasmid followed by in vivo electroporation. Cancer Gene Ther 2006; 13: 969–974.

    Article  CAS  Google Scholar 

  10. Hanari N, Matsubara H, Hoshino I, Akutsu Y, Nishimori T, Murakami K et al. Combinatory gene therapy with electrotransfer of midkine promoter-HSV-TK and interleukin-21. Anticancer Res 2007; 27 (4B): 2305–2310.

    CAS  PubMed  Google Scholar 

  11. Chou PC, Chuang TF, Jan TR, Gion HC, Huang YC, Lei HJ et al. Effects of immunotherapy of IL-6 and IL-15 plasmids on transmissible venereal tumor in beagles. Vet Immunol Immunopathol 2009; 130: 25–34.

    Article  CAS  Google Scholar 

  12. Collins CG, Tangney M, Larkin JO, Casey G, Whelan MC, Cashman J et al. Local gene therapy of solid tumors with GM-CSF and B7-1 eradicates both treated and distal tumors. Cancer Gene Ther 2006; 13: 1061–1071.

    Article  CAS  Google Scholar 

  13. Liu J, Xia X, Torrero M, Barrett R, Shillitoe EJ, Li S . The mechanism of exogenous B7.1-enhanced IL-12-mediated complete regression of tumors by a single electroporation delivery. Int J Cancer 2006; 119: 2113–2118.

    Article  CAS  Google Scholar 

  14. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26: 5896–5903.

    Article  CAS  Google Scholar 

  15. Richards J, Gonzalez R, Schwarzenberger P, Whitman E, Stardal K, Westhoff C et al. Phase I trial of IL-2 plasmid DNA with electroporation in metastatic melanoma. J Clin Oncol 25[18S; 8578: 2007.

    Google Scholar 

  16. McMahon JM, Wells KE, Bamfo JE, Cartwright MA, Wells DJ . Inflammatory responses following direct injection of plasmid DNA into skeletal muscle. Gene Ther 1998; 5: 1283–1290.

    Article  CAS  Google Scholar 

  17. Lee RC, River LP, Pan FS, Ji L, Wollmann RL . Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci USA 1992; 89: 4524–4528.

    Article  CAS  Google Scholar 

  18. Lefesvre P, Attema J, van Bekkum D . A comparison of efficacy and toxicity between electroporation and adenoviral gene transfer. BMC Mol Biol 2002; 3: 12.

    Article  Google Scholar 

  19. Rabussay DP, Nanda GS, Goldfarb PM . Enhancing the effectiveness of drug-based cancer therapy by electroporation (electropermeabilization). Technol Cancer Res Treat 2002; 1: 71–82.

    Article  CAS  Google Scholar 

  20. Ahlen G, Soderholm J, Tjelle T, Kjeken R, Frelin L, Hoglund U et al. In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells. J Immunol 2007; 179: 4741–4753.

    Article  CAS  Google Scholar 

  21. Peng B, Zhao Y, Xu L, Xu Y . Electric pulses applied prior to intramuscular DNA vaccination greatly improve the vaccine immunogenicity. Vaccine 2007; 25: 2064–2073.

    Article  CAS  Google Scholar 

  22. Hojman P, Gissel H, Andre F, Cournil-Henrionnet C, Eriksen J, Gehl J et al. Physiological effects of high and low voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther 2008; 19: 1249–1260.

    Article  CAS  Google Scholar 

  23. Babiuk S, Baca-Estrada ME, Foldvari M, Middleton DM, Rabussay D, Widera G et al. Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J Biotechnol 2004; 110: 1–10.

    Article  CAS  Google Scholar 

  24. Hartikka J, Sukhu L, Buchner C, Hazard D, Bozoukova V, Margalith M et al. Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol Ther 2001; 4: 407–415.

    Article  CAS  Google Scholar 

  25. Tevz G, Pavlin D, Kamensek U, Kranjc S, Mesojednik S, Coer A et al. Gene electrotransfer into murine skeletal muscle: a systematic analysis of parameters for long-term gene expression. Technol Cancer Res Treat 2008; 7: 91–101.

    Article  CAS  Google Scholar 

  26. Dujardin N, Staes E, Kalia Y, Clarys P, Guy R, Preat V . In vivo assessment of skin electroporation using square wave pulses. J Contr Release 2002; 79: 219–227.

    Article  CAS  Google Scholar 

  27. Heller L, Coppola D . Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther 2002; 9: 1321–1325.

    Article  CAS  Google Scholar 

  28. Shibata MA, Horiguchi T, Morimoto J, Otsuki Y . Massive apoptotic cell death in chemically induced rat urinary bladder carcinomas following in situ HSVtk electrogene transfer. J Gene Med 2003; 5: 219–231.

    Article  CAS  Google Scholar 

  29. Krieg AM . CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20: 709–760.

    Article  CAS  Google Scholar 

  30. Yew NS, Zhao H, Wu IH, Song A, Tousignant JD, Przybylska M et al. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol Ther 2000; 1: 255–262.

    Article  CAS  Google Scholar 

  31. Heller L, Jaroszeski MJ, Coppola D, Pottinger C, Gilbert R, Heller R . Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo. Gene Ther 2000; 7: 826–829.

    Article  CAS  Google Scholar 

  32. Cichon T, Jamrozy L, Glogowska J, Missol-Kolka E, Szala S . Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: inhibition of primary tumor growth and metastatic spread. Cancer Gene Ther 2002; 9: 771–777.

    Article  CAS  Google Scholar 

  33. Hargrove JL, Schmidt FH . The role of mRNA and protein stability in gene expression. FASEB J 1989; 3: 2360–2370.

    Article  CAS  Google Scholar 

  34. Merrick WC . Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev 1992; 56: 291–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hojman P, Zibert JR, Gissel H, Eriksen J, Gehl J . Gene expression profiles in skeletal muscle after gene electrotransfer. BMC Mol Biol 2007; 8: 56.

    Article  Google Scholar 

  36. Zhou R, Norton JE, Zhang N, Dean DA . Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation. Gene Ther 2007; 14: 775–780.

    Article  CAS  Google Scholar 

  37. Mlakar V, Todorovic V, Cemazar M, Glavac D, Sersa G . Electric pulses used in electrochemotherapy and electrogene therapy do not significantly change the expression profile of genes involved in the development of cancer in malignant melanoma cells. BMC Cancer 2009; 9: 299.

    Article  Google Scholar 

  38. Gribaudo G, Ravaglia S, Caliendo A, Cavallo R, Gariglio M, Martinotti MG et al. Interferons inhibit onset of murine cytomegalovirus immediate-early gene transcription. Virology 1993; 197: 303–311.

    Article  CAS  Google Scholar 

  39. Prosch S, Staak K, Stein J, Liebenthal C, Stamminger T, Volk HD et al. Stimulation of the human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNFalpha is mediated via induction of NF-kappaB. Virology 1995; 208: 197–206.

    Article  CAS  Google Scholar 

  40. Harms JS, Splitter GA . Interferon-gamma inhibits transgene expression driven by SV40 or CMV promoters but augments expression driven by the mammalian MHC I promoter. Hum Gene Ther 1995; 6: 1291–1297.

    Article  CAS  Google Scholar 

  41. Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS . Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8: 2019–2029.

    Article  CAS  Google Scholar 

  42. Kline JN, Hunninghake GM, He B, Monick MM, Hunninghake GW . Synergistic activation of the human cytomegalovirus major immediate early promoter by prostaglandin E2 and cytokines. Exp Lung Res 1998; 24: 3–14.

    Article  CAS  Google Scholar 

  43. Ritter T, Brandt C, Prosch S, Vergopoulos A, Vogt K, Kolls J et al. Stimulatory and inhibitory action of cytokines on the regulation of hCMV-IE promoter activity in human endothelial cells. Cytokine 2000; 12: 1163–1170.

    Article  CAS  Google Scholar 

  44. Kako K, Nishikawa M, Yoshida H, Takakura Y . Effects of inflammatory response on in vivo transgene expression by plasmid DNA in mice. J Pharm Sci 2008; 97: 3074–3083.

    Article  CAS  Google Scholar 

  45. de Wolf HK, Johansson N, Thong AT, Snel CJ, Mastrobattista E, Hennink WE et al. Plasmid CpG depletion improves degree and duration of tumor gene expression after intravenous administration of polyplexes. Pharm Res 2008; 25: 1654–1662.

    Article  CAS  Google Scholar 

  46. Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA, Varathalingam A et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 2008; 26: 549–551.

    Article  CAS  Google Scholar 

  47. Drabick JJ, Glasspool-Malone J, King A, Malone RW . Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol Ther 2001; 3: 249–255.

    Article  CAS  Google Scholar 

  48. Scheerlinck JPY, Karlis J, Tjelle TE, Presidente PJA, Mathiesen I, Newton SE . In vivo electroporation improves immune responses to DNA vaccination in sheep. Vaccine 2004; 22: 1820–1825.

    Article  CAS  Google Scholar 

  49. LeBlanc R, Vasquez Y, Hannaman D, Kumar N . Markedly enhanced immunogenicity of a Pfs25 DNA-based malaria transmission-blocking vaccine by in vivo electroporation. Vaccine 2008; 26: 185–192.

    Article  CAS  Google Scholar 

  50. Rosati M, Valentin A, Jalah R, Patel V, von Gegerfelt A, Bergamaschi C et al. Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine 2008; 26: 5223–5229.

    Article  CAS  Google Scholar 

  51. Luckay A, Sidhu MK, Kjeken R, Megati S, Chong SY, Roopchand V et al. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 2007; 81: 5257–5269.

    Article  CAS  Google Scholar 

  52. Fearon DT, Locksley RM . The instructive role of innate immunity in the acquired immune response. Science 1996; 272: 50–53.

    Article  CAS  Google Scholar 

  53. Heller L, Pottinger C, Jaroszeski MJ, Gilbert R, Heller R . In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces longterm antitumour immunity. Melanoma Res 2000; 10: 577–583.

    Article  CAS  Google Scholar 

  54. Slack A, Bovenzi V, Bigey P, Ivanov MA, Ramchandani S, Bhattacharya S et al. Antisense MBD2 gene therapy inhibits tumorigenesis. J Gene Med 2002; 4: 381–389.

    Article  CAS  Google Scholar 

  55. Elez R, Piiper A, Kronenberger B, Kock M, Brendel M, Hermann E et al. Tumor regression by combination antisense therapy against Plk1 and Bcl-2. Oncogene 2003; 22: 69–80.

    Article  CAS  Google Scholar 

  56. Mccray AN, Ugen KE, Muthumani K, Kim JJ, Weiner DB, Heller R . Complete regression of established subcutaneous B16 murine melanoma tumors after delivery of an HIV-1 Vpr-expressing plasmid by in vivo electroporation. Mol Ther 2006; 14: 647–655.

    Article  CAS  Google Scholar 

  57. Prud’homme GJ, Glinka Y, Khan AS, Draghia-Akli R . Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther 2006; 6: 243–273.

    Article  Google Scholar 

  58. Deharvengt S, Rejiba S, Wack S, Aprahamian M, Hajri A . Efficient electrogene therapy for pancreatic adenocarcinoma treatment using the bacterial purine nucleoside phosphorylase suicide gene with fludarabine. Int J Oncol 2007; 30: 1397–1406.

    CAS  PubMed  Google Scholar 

  59. Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J . In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 1998; 16: 168–171.

    Article  CAS  Google Scholar 

  60. Lohr F, Lo DY, Zaharoff DA, Hu K, Zhang X, Li Y et al. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res 2001; 61: 3281–3284.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in this study was supported by NIH 1 R21 CA106860 (LH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L C Heller.

Ethics declarations

Competing interests

RH has ownership interest in RMR Technologies and owns stock and stock options of Inovio Biomedical Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, L., Cruz, Y., Ferraro, B. et al. Plasmid injection and application of electric pulses alter endogenous mRNA and protein expression in B16.F10 mouse melanomas. Cancer Gene Ther 17, 864–871 (2010). https://doi.org/10.1038/cgt.2010.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.43

Keywords

This article is cited by

Search

Quick links