Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth

Abstract

In our previous study, we have shown that vector pBV22210 containing a chloramphenicol resistance and a cryptic plasmid pMB1 from Bifidobacterium longum strain could stably replicate and did not significantly affect the biological characteristics of B. longum. In this study, B. longum was transfected by electroporation with pBV22210 encoding the extracellular domain of TRAIL (B. longum-pBV22210-TRAIL) and its carbohydrate fermentation and growth curve were determined, and its location and inhibitory effect on tumor xenografts in mice were also examined. The results further proved that gene transfection did not change the main biochemical characteristics of B. longum. The results also showed that B. longum-pBV22210-TRAIL resulted in selective location in tumors and exhibited a definite antitumor effect on S180 osteosarcoma. In addition, when a low dosage of Adriamycin (5 mg kg−1) or B. longum-pBV22210-endostatin was combined, the antitumor effect was significantly enhanced. The successful inhibition of S180 tumor growth suggested a stable vector in B. longum for transporting anticancer genes combined with low-dose chemotherapeutic drugs or other target genes is a promising approach in cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Aahkenazi A . Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor family. J Biol Chem 1996; 271: 12687–12690.

    Article  CAS  PubMed  Google Scholar 

  2. Wiley SR, Schooley K, Smoolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  3. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997; 277: 818–821.

    Article  CAS  PubMed  Google Scholar 

  4. Wu GS, Burns TF, McDonald III ER, Jiang W, Meng R, Krantz ID et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997; 17: 141–143.

    Article  CAS  PubMed  Google Scholar 

  5. Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L . Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kB pathway. Immunity 1997; 7: 821–830.

    Article  CAS  PubMed  Google Scholar 

  6. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM . An antagonist decoy receptor and a new death domain-containing receptors for TRAIL. Science 1997; 277: 815–818.

    Article  CAS  PubMed  Google Scholar 

  7. Screaton GR, Mongkolsapaya J, Xu XN, Cowper AE, McMichael AJ, Bell JI . TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 1997; 7: 693–696.

    Article  CAS  PubMed  Google Scholar 

  8. Ashkenazi A . Targeting death and decoy receptors of the tumour necrosis factor superfamily. Nat Rev Cancer 2002; 2: 420–430.

    Article  CAS  PubMed  Google Scholar 

  9. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  11. Roth W, Isenmann S, Naumann U, Kügler S, Bähr M, Dichgans J et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun 1999; 265: 479–483.

    Article  CAS  PubMed  Google Scholar 

  12. Gliniak B, Le T . Tumor necrosis factor-related apoptosis-inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 1999; 59: 6153–6158.

    CAS  PubMed  Google Scholar 

  13. Nimmanapalli R, Porosnicu M, Nguyen D, Worthington E, O'Bryan E, Perkins C et al. Cotreatment with STI-571 enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or apo-2L)-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Clin Cancer Res 2001; 7: 350–357.

    CAS  PubMed  Google Scholar 

  14. Naka T, Sugamura K, Hylander BL, Widmer MB, Rustum YM, Repasky EA . Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients' colon tumors grown in SCID mice. Cancer Res 2002; 62: 5800–5806.

    CAS  PubMed  Google Scholar 

  15. Marteau PR, de Vrese M, Cellier CJ, Shrezenmeir J . Protection from gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 2001; 73: 430S–436S.

    Article  CAS  PubMed  Google Scholar 

  16. Ito M, Sawada H, Ohishi K, Yoshida Y, Yokoi W, Watanabe T et al. Suppressive effects of Bifidobacteria on lipid peroxidation in the colonic mucosa of iron-overloaded mice. J Dairy Sci 2001; 84: 1583–1589.

    Article  CAS  PubMed  Google Scholar 

  17. Yasui H, Ohwaki M . Enhancement of immune response in Peyer's patch cells cultured with Bifidobacterium breve. J Dairy Sci 1991; 74: 1187–1195.

    Article  CAS  PubMed  Google Scholar 

  18. Kimura NT, Taniguchi S, Aoki K, Baba T . Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res 1980; 40: 2061–2068.

    CAS  PubMed  Google Scholar 

  19. Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S . Bifidobacterium longum as a delivery system for cancer gene therapy: selective location and growth in hypoxic tumors. Cancer Gene Ther 2000; 7: 269–274.

    Article  CAS  PubMed  Google Scholar 

  20. Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N, Reddy BS . Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 1997; 18: 833–841.

    Article  CAS  PubMed  Google Scholar 

  21. Fujimori M, Amano J, Taniguchi S . The genus Bifidobacterium for cancer gene therapy. Curr Opin Drug Discov Devel 2002; 5: 200–203.

    CAS  PubMed  Google Scholar 

  22. Pawelek J, Low K, Bermudes D . Bacteria as tumour-targeting vectors. Lancet Oncol 2003; 4: 548–556.

    Article  PubMed  Google Scholar 

  23. Rossi M, Brigidi P, Matteuzzi D . Improved cloning vectors for Bifidobacterium spp. Lett Appl Microbiol 1998; 26: 101–104.

    Article  CAS  PubMed  Google Scholar 

  24. Rossi M, Brigidi P, Gonzalez Vara y Rodriguez A, Matteuzzi D . Characterization of the plasmid pMB1 from Bifidobacterium longum and its use for shuttle vector construction. Res Microbiol 1996; 147: 133–143.

    Article  CAS  PubMed  Google Scholar 

  25. Yazawa K, Fujimori M, Nakamura T, Sasaki T, Amano J, Kano Y et al. Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat 2001; 66: 165–170.

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura T, Sasaki T, Fujimori M, Yazawa K, Kano Y, Amano J et al. Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors. Biosci Biotechnol Biochem 2002; 66: 2362–2366.

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Fu GF, Fan YR, Liu WH, Liu XJ, Wang JJ et al. Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther 2003; 10: 105–111.

    Article  CAS  PubMed  Google Scholar 

  28. Fu GF, Li X, Hou YY, Fan YR, Liu WH, Xu GX . Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Ther 2005; 12: 133–140.

    Article  CAS  PubMed  Google Scholar 

  29. Yi C, Huang Y, Guo ZY, Wang SR . Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma. Acta Pharmacol Sin 2005; 26: 629–634.

    Article  CAS  PubMed  Google Scholar 

  30. Xu YF, Zhu LP, Hu B, Fu GF, Zhang HY, Wang JJ et al. A new expressing plasmid in Bifidobacterium Longum as a delivery system of endostatin for cancer gene therapy. Cancer Gene Ther 2007; 14: 151–157.

    Article  CAS  PubMed  Google Scholar 

  31. Park MS, Kwon B, Shim JJ, Huh CS, Ji GE . Heterologous expression of cholesterol oxidase in Bifidobacterium longum under the control of 16S rRNA gene promoter of bifidobacteria. Biotechnol Lett 2008; 30: 165–172.

    Article  CAS  PubMed  Google Scholar 

  32. Reyes Escogido ML, De Leon Rodriguez A, Barba de la Rosa AP . A novel binary expression vector for production of human IL-10 in Escherichia coli and Bifidobacterium longum. Biotechnol Lett 2007; 29: 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  33. Guglielmetti S, Ciranna A, Mora D, Parini C, Karp M . Construction, characterization and exemplificative application of bioluminescent Bifidobacterium longum biovar longum. Int J Food Microbiol 2008; 124: 285–290.

    Article  CAS  PubMed  Google Scholar 

  34. Rossi M, Brigidi P, Matteuzzi D . An efficient transformation system for Bifidobacterium spp. Lett Appl Microbiol 1997; 24: 33–36.

    Article  CAS  Google Scholar 

  35. Park MS, Lee KH, Ji GE . Isolation and characterization of two plasmids from Bifidobacterium longum. Lett Appl Microbiol 1997; 25: 5–7.

    Article  CAS  PubMed  Google Scholar 

  36. Boehm T, Folkman J, Browder T, O'Reilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390: 404–407.

    Article  CAS  PubMed  Google Scholar 

  37. Yi C, Huang Y, Guo Z, Wang S . Construction of Bifidobacterium Infantis/CD targeting gene therapy system. The Chinese-German Journal of Clinical Oncology 2005; 4: 244–247.

    Article  Google Scholar 

  38. Zhu L, Li W, Dong X . Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov. Int J Syst Evol Microbiol 2003; 53: 1619–1623.

    Article  CAS  PubMed  Google Scholar 

  39. Singh TR, Shankar S, Chen X, Asim M, Srivastava RK . Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on inhibition of breast carcinoma in vivo. Cancer Res 2003; 63: 5390–5400.

    CAS  PubMed  Google Scholar 

  40. Jin H, Yang R, Fong S, Totpal K, Lawrence D, Zheng Z et al. Apo2 ligand/tumor necrosis factor related apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Cancer Res 2004; 64: 4900–4905.

    Article  CAS  PubMed  Google Scholar 

  41. Son YG, Kim EH, Kim JY, Kim SU, Kwon TK, Yoon AR et al. Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 pp-regulation and down-regulation of c-FLIP and survivin. Cancer Res 2007; 67: 8274–8284.

    Article  CAS  PubMed  Google Scholar 

  42. Baritaki S, Huerta-Yepez S, Sakai T, Spandidos DA, Bonavida B . Chemotherapeutic drugs sensitize cancer cells to TRAIL-mediated apoptosis: up-regulation of DR5 and inhibition of Yin Yang 1. Mol Cancer Ther 2007; 6: 1387–1399.

    Article  CAS  PubMed  Google Scholar 

  43. Wen J, Ramadevi N, Nguyen D, Perkins C, Worthington E, Bhalla K . Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 2000; 96: 3900–3906.

    CAS  PubMed  Google Scholar 

  44. Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL . Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol 2000; 20: 205–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matsui T, Sowa Y, Yoshida T, Murata H, Horinaka M, Wakada M et al. Sulforaphane enhances TRAIL-induced apoptosis through the induction of DR5 expression in human osteosarcoma cells. Carcinogenesis 2006; 27: 1768–1777.

    Article  CAS  PubMed  Google Scholar 

  46. Villunger A, Michalak EM, Coultas L, Müllauer F, Böck G, Ausserlechner MJ et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  47. Siervo-Sassi RR, Marrangoni AM, Feng X, Naoumova N, Winans M, Edwards RP et al. Physiological and molecular effects of Apo2L/TRAIL and cisplatin in ovarian carcinoma cell lines. Cancer Lett 2003; 190: 61–72.

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Kandasamy K, Srivastava RK . Differential roles of RelA (p65) and c-Rel subunits of nuclear factor κB in tumor necrosis factor-related apoptosis inducing ligand signaling. Cancer Res 2003; 63: 1059–1066.

    CAS  PubMed  Google Scholar 

  49. Meurette O, Fontaine A, Rebillard A, Le Moigne G, Lamy T, Lagadic-gossmann D et al. Cytotoxicity of TRAIL/anticancer drug combinations in human normal cells. Ann NY Acad Sci 2006; 1090: 209–216.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 2006AA02Z19E of the 863 Project from the State Ministry of Science and Technology of China, the 985-II Project from Nanjing University and Grant BK2008150 from the Natural Science Foundation of Jiangsu Province to GXX; and grant 30670671 from the National Natural Science Foundation of China, grant BK2006713 from the Natural Science Foundation of Jiangsu Province, China and RFDP grant 20050284025 from the State Educational Ministry of China to JJW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J-J Wang or G-X Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, B., Kou, L., Li, C. et al. Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth. Cancer Gene Ther 16, 655–663 (2009). https://doi.org/10.1038/cgt.2009.7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.7

Keywords

This article is cited by

Search

Quick links