Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of autophagy induced by overexpression of mda-7/interleukin-24 strongly augments the antileukemia activity in vitro and in vivo

Abstract

Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel candidate of tumor suppressor that can selectively induce apoptosis experimentally in a spectrum of human cancer cells including leukemia cells. However, a recent study suggests that mda-7/IL-24 promotes the survival of chronic lymphocytic leukemia B-cells. In this study, we showed that mda-7/IL-24 was constitutively expressed in leukemia cell lines and primary acute myeloid leukemia samples. Using a conditionally replicating adenovirus expressing mda-7/IL-24 (ZD55-IL-24), we showed that enforced expression of mda-7/IL-24 in leukemia cells induced autophagy, which was triggered by the upregulation of Beclin-1. Immunofluorescence and coimmunoprecipitation studies suggested that mda-7/IL-24 protein interacts with Beclin-1. Class III PI3K/Beclin-1 complex was shown involved in the mda-7/IL-24-induced autophagy. Moreover, autophagy inhibition by phosphatidylinositol 3-kinase inhibitor, wortmannin, resulted in a reduced Beclin-1 expression and autophagosome formation associated with significantly enhanced cell death. Importantly, the combination of ZD55-IL-24 with wortmannin elicited a strongly enhanced antileukemia efficacy in established leukemia xenografts. These results suggest that mda-7/IL-24-induced autophagy in leukemia cells may provide survival advantage and mda-7/IL-24 combined with agents that disrupt autophagy is a promising new strategy for the treatment of leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB . Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995; 11: 2477–2486.

    CAS  PubMed  Google Scholar 

  2. Ekmekcioglu S, Ellerhorst J, Mhashilkar AM, Sahin AA, Read CM, Prieto VG et al. Down-regulated melanoma differentiation associated gene (mda-7) expression in human melanomas. Int J Cancer 2001; 94: 54–59.

    Article  CAS  PubMed  Google Scholar 

  3. Ellerhorst JA, Prieto VG, Ekmekcioglu S, Broemeling L, Yekell S, Chada S et al. Loss of MDA-7 expression with progression of melanoma. J Clin Oncol 2002; 20: 1069–1074.

    Article  PubMed  Google Scholar 

  4. Ishikawa S, Nakagawa T, Miyahara R, Kawano Y, Takenaka K, Yanagihara K et al. Expression of MDA-7/IL-24 and its clinical significance in resected non-small cell lung cancer. Clin Cancer Res 2005; 11: 1198–1202.

    Article  CAS  PubMed  Google Scholar 

  5. Mhashilkar AM, Schrock RD, Hindi M, Liao J, Sieger K, Kourouma F et al. Melanoma-differentiation associated gene-7 (mda7): a novel antitumor gene for cancer gene therapy. Mol Med 2001; 7: 271–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saeki T, Mhashilkar A, Swanson X, Zou-Yang XH, Sieger K, Kawabe S et al. Inhibition of human lung cancer growth following adenovirus-mediated mda7 gene expression in vivo. Oncogene 2002; 21: 4558–4566.

    Article  CAS  PubMed  Google Scholar 

  7. Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA et al. Bcl-2 and Bcl-xL differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda7/IL-24. Oncogene 2003; 22: 8758–8773.

    Article  CAS  PubMed  Google Scholar 

  8. Pataer A, Vorburger SA, Chada S, Balachandran S, Barber GN, Roth JA et al. Melanoma differentiation-associated gene-7 protein physically associates with the double-stranded RNA-activated protein kinase PKR. Mol Ther 2005; 11: 717–723.

    Article  CAS  PubMed  Google Scholar 

  9. Su ZZ, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA 1998; 95: 14400–14405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yacoub A, Mitchell C, Lister A, Lebedeva IV, Sarkar D, Su ZZ et al. Melanoma differentiation-associated 7 (interleukin 24) inhibits growth and enhances radiosensitivity of glioma cells in vitro and in vivo. Clin Cancer Res 2003; 9: 3272–3281.

    CAS  PubMed  Google Scholar 

  11. Ramesh R, Ito I, Saito Y, Wu Z, Mhashikar AM, Wilson DR et al. Local and systemic inhibition of lung tumor growth after nanoparticle-mediated mda-7/IL-24 gene delivery. DNA Cell Biol 2004; 23: 850–857.

    Article  CAS  PubMed  Google Scholar 

  12. Oida Y, Gopalan B, Miyahara R, Inoue S, Branch CD, Mhashilkar AM et al. Sulindac enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human lung cancer. Mol Cancer Ther 2005; 4: 291–304.

    CAS  PubMed  Google Scholar 

  13. Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther 2005; 11: 149–159.

    Article  CAS  PubMed  Google Scholar 

  14. Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N et al. Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther 2005; 11: 160–172.

    Article  CAS  PubMed  Google Scholar 

  15. Gozuacik D, Kimchi A . Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004; 23: 2891–2906.

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004; 6: 1221–1228.

    Article  CAS  PubMed  Google Scholar 

  17. Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN et al. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005; 280: 20722–20729.

    Article  CAS  PubMed  Google Scholar 

  18. Ellington AA, Berhow MA, Singletary KW . Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 2006; 27: 298–306.

    Article  CAS  PubMed  Google Scholar 

  19. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I . Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 2003; 63: 2103–2108.

    CAS  PubMed  Google Scholar 

  20. Ondrousková E, Soucek K, Horváth V, Smarda J . Alternative pathways of programmed cell death are activated in cells with defective caspase-dependent apoptosis. Leuk Res 2008; 32: 599–609.

    Article  PubMed  Google Scholar 

  21. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 2007; 110: 313–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tiwari M, Bajpai VK, Sahasrabuddhe AA, Kumar A, Sinha RA, Behari S et al. Inhibition of N-(4-hydroxyphenyl)retinamide-induced autophagy at a lower dose enhances cell death in malignant glioma cells. Carcinogenesis 2008; 29: 600–609.

    Article  CAS  PubMed  Google Scholar 

  23. Levine B, Kroemer G . Autophagy in the pathogenesis of disease. Cell 2008; 132: 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiao Y, Zhang W, Liu J, Ni W, Xu W, Jin J et al. Telomere attrition and chromosome instability via downregulation of TRF2 contributes to arsenic trioxide-induced apoptosis of human T-Cell leukemia cell line molt-4 cells. Cancer Biol Ther 2007; 6: 1186–1192.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Zou W, Luo C, Li B, Wang J, Sun L et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 2003; 13: 481–489.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao L, Gu J, Dong A, Zhang Y, Zhong L, He Y et al. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer. Hum Gene Ther 2005; 16: 845–858.

    Article  CAS  PubMed  Google Scholar 

  27. Qian W, Liu J, Jin J, Ni W, Xu W . Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res 2007; 31: 329–339.

    Article  PubMed  Google Scholar 

  28. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720–5728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 2005; 65: 3336–3346.

    Article  CAS  PubMed  Google Scholar 

  30. Ito H, Aoki H, Kühnel F, Kondo Y, Kubicka S, Wirth T et al. Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 2006; 98: 625–636.

    Article  CAS  PubMed  Google Scholar 

  31. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 2001; 61: 439–444.

    CAS  PubMed  Google Scholar 

  32. Bradford MM . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  33. Heinonen JE, Smith CI, Nore BF . Silencing of Bruton's tyrosine kinase (Btk) using short interfering RNA duplexes (siRNA). FEBS Lett 2002; 527: 274–278.

    Article  CAS  PubMed  Google Scholar 

  34. LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Neuberg D et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002; 62: 4996–5000.

    CAS  PubMed  Google Scholar 

  35. Qian W, Liu J, Tong Y, Yan S, Yang C, Yang M et al. Enhanced antitumor activity by a selective conditionally replicating adenovirus combining with MDA-7/interleukin-24 for B-lymphoblastic leukemia via induction of apoptosis. Leukemia 2008; 22: 361–369.

    Article  CAS  PubMed  Google Scholar 

  36. Wu H, Yang JM, Jin S, Zhang H, Hait WN . Elongation factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res 2006; 66: 3015–3023.

    Article  CAS  PubMed  Google Scholar 

  37. Liang XH, Yu J, Brown K, Levine B . Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res 2001; 61: 3443–3449.

    CAS  PubMed  Google Scholar 

  38. Sauane M, Lebedeva IV, Su ZZ, Choo HT, Randolph A, Valerie K et al. Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways. Cancer Res 2004; 64: 2988–2993.

    Article  CAS  PubMed  Google Scholar 

  39. Sieger KA, Mhashilkar AM, Stewart A, Sutton RB, Strube RW, Chen SY et al. The tumor suppressor activity of MDA-7/IL-24 is mediated by intracellular protein expression in NSCLC cells. Mol Ther 2004; 9: 355–367.

    Article  CAS  PubMed  Google Scholar 

  40. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T . Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001; 2: 330–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006; 8: 688–699.

    Article  CAS  PubMed  Google Scholar 

  42. Munafó DB, Colombo MI . A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001; 114: 3619–3629.

    PubMed  Google Scholar 

  43. Amaravadi R, Thompson CB . The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 2005; 115: 2618–2624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fisher PB . Is mda-7/IL-24 a ‘magic bullet’ for cancer? Cancer Res 2005; 65: 10128–10138.

    Article  CAS  PubMed  Google Scholar 

  45. Sainz-Perez A, Gary-Gouy H, Portier A, Davi F, Merle-Beral H, Galanaud P et al. High Mda-7 expression promotes malignant cell survival and p38 MAP kinase activation in chronic lymphocytic leukemia. Leukemia 2006; 20: 498–504.

    Article  CAS  PubMed  Google Scholar 

  46. Huang EY, Madireddi MT, Gopalkrishnan RV, Leszczyniecka M, Su Z, Lebedeva IV et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene 2001; 20: 7051–7063.

    Article  CAS  PubMed  Google Scholar 

  47. Yacoub A, Park MA, Gupta P, Rahmani M, Zhang G, Hamed H et al. Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells. Mol Cancer Ther 2008; 7: 297–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 2007; 21: 1367–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alva AS, Gultekin SH, Baehrecke EH . Autophagy in human tumors: cell survival or death? Cell Death Differ 2004; 11: 1046–1048.

    Article  CAS  PubMed  Google Scholar 

  50. Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y et al. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 2007; 67: 9677–9684.

    Article  CAS  PubMed  Google Scholar 

  51. Ogier-Denis E, Codogno P . Autophagy a barrier or an adaptive response to cancer. Biochim Biophys Acta 2003; 1603: 113–128.

    CAS  PubMed  Google Scholar 

  52. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S . Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 2004; 11: 448–457.

    Article  CAS  PubMed  Google Scholar 

  53. Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A . Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 2007; 14: 500–510.

    Article  CAS  PubMed  Google Scholar 

  54. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007; 117: 326–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Botti J, Djavaheri-Mergny M, Pilatte Y, Codogno P . Autophagy signaling and the cogwheels of cancer. Autophagy 2006; 2: 67–73.

    Article  CAS  PubMed  Google Scholar 

  56. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–676.

    Article  CAS  PubMed  Google Scholar 

  57. Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem 2006; 281: 36883–36890.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China grants 30470745 (W Qian); 30600257 (Y Tong, W Qian); the Key Social Development Project of Zhejiang Province grants 2004c23005 (W Qian); Chinese National ‘973’ Project Foundation grants 2003AA216031, 2002AA216021, and Natural Science Foundation of China grants 30120160823 (X Liu). We are grateful to Prof. PhD Tamotsu Yoshimori (Research Institute for Microbial Disease, Osaka University) for providing EGFP-LC3 plasmide), and L Wang for her help with electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Tong, Y., Ni, W. et al. Inhibition of autophagy induced by overexpression of mda-7/interleukin-24 strongly augments the antileukemia activity in vitro and in vivo. Cancer Gene Ther 17, 109–119 (2010). https://doi.org/10.1038/cgt.2009.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.57

Keywords

This article is cited by

Search

Quick links