Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antitumoral efficacy of DNA nanoparticles in murine models of lung cancer and pulmonary metastasis

Abstract

Polyethylenimine (PEI)–DNA complexes are nanoparticles that are able to efficiently transfer plasmids to the lungs. Interleukin-12 (IL12) gene transfer using PEI may represent an important strategy for lung cancer treatment. In this study, we evaluated the antitumoral efficacy of the administration of PEI–DNA nanoparticles carrying IL12 gene (PEI–IL12) for the treatment of lung cancer and pulmonary metastases in animal models. After inoculation of tumor cells, mice were treated intravenously with a single dose of PEI–IL12, PEI nanoparticles carrying the reporter gene β-galactosidase (PEI–LacZ) or vehicle. Transgene expression, survival rates and immune response were analyzed in both models. Administration of PEI–LacZ and PEI–IL12 nanoparticles controlled tumor growth and prolonged survival times in both animal models. Although PEI–IL12 and PEI–LacZ administration showed similar antitumoral effects in the lung cancer model, the efficacy of PEI–IL12 was significantly superior in the inhibition of the development of pulmonary metastases. Furthermore, the administration of PEI–DNA nanoparticles results in the production of high levels of proinflammatory cytokines. Our results showed that PEI–DNA nanoparticles are an efficient vector for mediating gene transfer to the lungs, are a potent inducer of the innate immune response and represents an interesting strategy for the treatment of bronchogenic carcinoma and metastatic lung carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dubey S, Powell CA., Update in lung cancer 2007. Am J Respir Crit Care Med 2008; 177: 941–946.

    Article  CAS  Google Scholar 

  2. Ries L, Melbert D, Krapcho M, Stinchcomb DG, Howlader N, Horner MJ . et al. SEER Cancer Statistics Review, 1975–2005. National Cancer Institute: Bethesda, MD, 2008.

    Google Scholar 

  3. Parkin DM, Bray FI, Devesa SS . Cancer burden in the year 2000. The global picture. Eur J Cancer 2001; 37 (Suppl 8): S4–66.

    Article  Google Scholar 

  4. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  Google Scholar 

  5. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993; 178: 1223–1230.

    Article  CAS  Google Scholar 

  6. Cavallo F, Signorelli P, Giovarelli M, Musiani P, Modesti A, Brunda MJ et al. Antitumor efficacy of adenocarcinoma cells engineered to produce interleukin 12 (IL-12) or other cytokines compared with exogenous IL-12. J Natl Cancer Inst 1997; 89: 1049–1058.

    Article  CAS  Google Scholar 

  7. Roy EJ, Gawlick U, Orr BA, Rund LA, Webb AG, Kranz DM . IL-12 treatment of endogenously arising murine brain tumors. J Immunol 2000; 165: 7293–7299.

    Article  CAS  Google Scholar 

  8. Lenzi R, Edwards R, June C, Seiden MV, Garcia ME, Rosenblum M et al. Phase II study of intraperitoneal recombinant interleukin-12 (rhIL-12) in patients with peritoneal carcinomatosis (residual disease<1 cm) associated with ovarian cancer or primary peritoneal carcinoma. J Transl Med 2007; 5: 66.

    Article  Google Scholar 

  9. Ansell SM, Geyer SM, Maurer MJ, Kurtin PJ, Micallef IN, Stella P et al. Randomized phase II study of interleukin-12 in combination with rituximab in previously treated non-Hodgkin's lymphoma patients. Clin Cancer Res 2006; 12 (20 Pt 1): 6056–6063.

    Article  CAS  Google Scholar 

  10. Albelda SM . Gene therapy for lung cancer and mesothelioma. Chest 1997; 111 (6 Suppl): 144S–149S.

    Article  CAS  Google Scholar 

  11. Frederiksen KS, Petri A, Abrahamsen N, Poulsen HS . Gene therapy for lung cancer. Lung Cancer 1999; 23: 191–207.

    Article  CAS  Google Scholar 

  12. Duan X, Jia SF, Koshkina N, Kleinerman ES . Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer 2006; 106: 1382–1388.

    Article  CAS  Google Scholar 

  13. Sangro B, Melero I, Qian C, Prieto J . Gene therapy of cancer based on interleukin 12. Curr Gene Ther 2005; 5: 573–581.

    Article  CAS  Google Scholar 

  14. Holt GE, Disis ML . Immune modulation as a therapeutic strategy for non-small-cell lung cancer. Clin Lung Cancer 2008; 9 (Suppl 1): S13–S19.

    Article  CAS  Google Scholar 

  15. Sterman DH, Recio A, Carroll RG, Gillespie CT, Haas A, Vachani A et al. A phase I clinical trial of single-dose intrapleural IFN-beta gene transfer for malignant pleural mesothelioma and metastatic pleural effusions: high rate of antitumor immune responses. Clin Cancer Res 2007; 13 (15 Pt 1): 4456–4466.

    Article  CAS  Google Scholar 

  16. Tang MX, Szoka FC . The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 1997; 4: 823–832.

    Article  CAS  Google Scholar 

  17. Goula D, Remy JS, Erbacher P, Wasowicz M, Levi G, Abdallah B et al. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 1998; 5: 712–717.

    Article  CAS  Google Scholar 

  18. Coll JL, Chollet P, Brambilla E, Desplanques D, Behr JP, Favrot M . In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum Gene Ther 1999; 10: 1659–1666.

    Article  CAS  Google Scholar 

  19. Poulain L, Ziller C, Muller CD, Erbacher P, Bettinger T, Rodier JF et al. Ovarian carcinoma cells are effectively transfected by polyethylenimine (PEI) derivatives. Cancer Gene Ther 2000; 7: 644–652.

    Article  CAS  Google Scholar 

  20. Zou Y, Tornos C, Qiu X, Lia M, Perez-Soler R . p53 aerosol formulation with low toxicity and high efficiency for early lung cancer treatment. Clin Cancer Res 2007; 13: 4900–4908.

    Article  CAS  Google Scholar 

  21. Ohana P, Gofrit O, Ayesh S, Al-Sharef W, Mizrahi A, Birman T et al. Regulatory sequences of the H19 gene in DNA based therapy of bladder cancer. Gene Ther Mol Biol 2004; 8: 181–192.

    Google Scholar 

  22. Ferrari S, Moro E, Pettenazzo A, Behr JP, Zacchello F, Scarpa M . ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther 1997; 4: 1100–1106.

    Article  CAS  Google Scholar 

  23. Brattain MG, Strobel-Stevens J, Fine D, Webb M, Sarrif AM . Establishment of mouse colonic carcinoma cell lines with different metastatic properties. Cancer Res 1980; 40: 2142–2146.

    CAS  PubMed  Google Scholar 

  24. Carvalho LH, Hafalla JC, Zavala F . ELISPOT assay to measure antigen-specific murine CD8(+) T cell responses. J Immunol Methods 2001; 252: 207–218.

    Article  CAS  Google Scholar 

  25. Berraondo P, Crettaz J, Ochoa L, Pañeda A, Prieto J, Trocóniz IF et al. Intrahepatic injection of recombinant adeno-associated virus serotype 2 overcomes gender-related differences in liver transduction. Hum Gene Ther 2006; 17: 601–610.

    Article  CAS  Google Scholar 

  26. Ramirez-Ortiz ZG, Specht CA, Wang JP, Lee CK, Bartholomeu DC, Gazzinelli RT et al. Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect Immun 2008; 76: 2123–2129.

    Article  CAS  Google Scholar 

  27. Smyth MJ, Wallace ME, Nutt SL, Yagita H, Godfrey DI, Hayakawa Y . Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J Exp Med 2005; 201: 1973–1985.

    Article  CAS  Google Scholar 

  28. Krieg AM . Direct immunologic activities of CpG DNA and implications for gene therapy. J Gene Med 1999; 1: 56–63.

    Article  CAS  Google Scholar 

  29. Chace JH, Hooker NA, Mildenstein KL, Krieg AM, Cowdery JS . Bacterial DNA-induced NK cell IFN-gamma production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol 1997; 84: 185–193.

    Article  CAS  Google Scholar 

  30. Ballas ZK, Rasmussen WL, Krieg AM . Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 1996; 157: 1840–1845.

    CAS  PubMed  Google Scholar 

  31. Stacey KJ, Sweet MJ, Hume DA . Macrophages ingest and are activated by bacterial DNA. J Immunol 1996; 157: 2116–2122.

    CAS  PubMed  Google Scholar 

  32. Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 1998; 28: 2045–2054.

    Article  CAS  Google Scholar 

  33. Cowdery JS, Chace JH, Yi AK, Krieg AM . Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. J Immunol 1996; 156: 4570–4575.

    CAS  PubMed  Google Scholar 

  34. Roman M, Martin-Orozco E, Goodman JS, Nguyen MD, Sato Y, Ronaghy A et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997; 3: 849–854.

    Article  CAS  Google Scholar 

  35. Li S, Wu SP, Whitmore M, Loeffert EJ, Wang L, Watkins SC et al. Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am J Physiol 1999; 276 (5 Pt 1): L796–L804.

    CAS  PubMed  Google Scholar 

  36. Tan Y, Li S, Pitt BR, Huang L . The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum Gene Ther 1999; 10: 2153–2161.

    Article  CAS  Google Scholar 

  37. Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS . Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8: 2019–2029.

    Article  CAS  Google Scholar 

  38. Dow SW, Elmslie RE, Fradkin LG, Liggitt DH, Heath TD, Willson AP et al. Intravenous cytokine gene delivery by lipid-DNA complexes controls the growth of established lung metastases. Hum Gene Ther 1999; 10: 2961–2972.

    Article  CAS  Google Scholar 

  39. Whitmore MM, Li S, Falo Jr L, Huang L . Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired antitumor immune responses. Cancer Immunol Immunother 2001; 50: 503–514.

    Article  CAS  Google Scholar 

  40. Whitmore M, Li S, Huang L . LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther 1999; 6: 1867–1875.

    Article  CAS  Google Scholar 

  41. Yoshizawa H, Kagamu H, Gejyo F . Cancer immunogene therapy. Arch Immunol Ther Exp (Warsz) 2001; 49: 337–343.

    CAS  Google Scholar 

  42. Garzon MR, Berraondo P, Crettaz J, Ochoa L, Vera M, Lasarte JJ et al. Induction of gp120-specific protective immune responses by genetic vaccination with linear polyethylenimine-plasmid complex. Vaccine 2005; 23: 1384–1392.

    Article  Google Scholar 

  43. Tirapu I, Arina A, Mazzolini G, Duarte M, Alfaro C, Feijoo E et al. Improving efficacy of interleukin-12-transfected dendritic cells injected into murine colon cancer with anti-CD137 monoclonal antibodies and alloantigens. Int J Cancer 2004; 110: 51–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Cristina Olague and Africa Vales for their technical support. We thank CIFA staff for animal care. Supported in part by grants of the UTE project CIMA, Instituto Salud Carlos III C03/02, SAF 2006-03623 (Ministerio Educación y Ciencia) to G. G-A, J.C. P. B. and by Department of Education and Culture of the Government of Navarra (IIQ4273). M.R.G. is a recipient of a ‘Fundación Echebano’ fellowship. PB is a recipient of a ‘Juan de la Cierva’ contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G González-Aseguinolaza.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigo-Garzón, M., Berraondo, P., Ochoa, L. et al. Antitumoral efficacy of DNA nanoparticles in murine models of lung cancer and pulmonary metastasis. Cancer Gene Ther 17, 20–27 (2010). https://doi.org/10.1038/cgt.2009.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.45

Keywords

This article is cited by

Search

Quick links