Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy

Abstract

The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-γ, IL-1β, and tumor necrosis factor-α proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  Google Scholar 

  2. Hussain MH, MacVicar GR, Petrylak DP, Dunn RL, Vaishampayan U, Lara Jr PN et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II national cancer institute trial. J Clin Oncol 2007; 25: 2218–2224.

    Article  CAS  Google Scholar 

  3. Krüger S, Weitsch G, Büttner H, Matthiensen A, Böhmer T, Marquardt T et al. HER2 overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic implications. Int J Cancer 2002; 102: 514–518.

    Article  Google Scholar 

  4. Tsai YS, Tzai TS, Chow NH, Yang WH, Tong YC, Lin JS et al. Prognostic values of p53 and HER-2/neu coexpression in invasive bladder cancer in Taiwan. Urol Int 2003; 71: 262–270.

    Article  CAS  Google Scholar 

  5. Lonn U, Lonn S, Friberg S, Nilsson B, Silfversward C, Stenkvist B . Prognostic value of amplification of c-erb-B2 in bladder carcinoma. Clin Cancer Res 1995; 1: 1189–1194.

    CAS  PubMed  Google Scholar 

  6. Gandour-Edwards R, Lara Jr PN, Folkins AK, LaSalle JM, Beckett L, Li Y et al. Does HER2/neu expression provide prognostic information in patients with advanced urothelial carcinoma? Cancer 2002; 95: 1009–1015.

    Article  CAS  Google Scholar 

  7. Shiau AL, Lin YP, Shieh GS, Su CH, Wu WL, Tsai YS et al. Development of a conditionally replicating pseudorabies virus for HER-2/neu-overexpressing bladder cancer therapy. Mol Ther 2007; 15: 131–138.

    Article  CAS  Google Scholar 

  8. Lin CC, Chou CW, Shiau AL, Tu CF, Ko TM, Chen YL et al. Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther 2004; 10: 290–301.

    Article  CAS  Google Scholar 

  9. Suzuki M, Shinkai M, Honda H, Kamihira M, Iijima S, Kobayashi T . Construction of tumor-specific cells expressing a membrane-anchored single-chain Fv of anti-erbB-2 antibody. Biochim Biophys Acta 2001; 1525: 191–196.

    Article  CAS  Google Scholar 

  10. Arafat WO, Gómez-Navarro J, Buchsbaum DJ, Xiang J, Wang M, Casado E et al. Effective single chain antibody (scFv) concentrations in vivo via adenoviral vector mediated expression of secretory scFv. Gene Ther 2002; 9: 256–262.

    Article  CAS  Google Scholar 

  11. De Lorenzo C, Palmer DB, Piccoli R, Ritter MA, D'Alessio G . A new human antitumor immunoreagent specific for ErbB2. Clin Cancer Res 2002; 8: 1710–1719.

    CAS  PubMed  Google Scholar 

  12. Neve RM, Nielsen UB, Kirpotin DB, Poul M-A, Marks JD, Benz CC . Biological effects of anti-erbB2 single chain antibodies selected for internalizing function. Biochem Biophys Res Commun 2001; 280: 274–279.

    Article  CAS  Google Scholar 

  13. Lorimer IA, Lavictoire SJ . Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J Immunol Methods 2000; 237: 147–157.

    Article  CAS  Google Scholar 

  14. Nguyen TH, Loux N, Dagher I, Vons C, Carey K, Briand P et al. Improved gene transfer selectivity to hepatocarcinoma cells by retrovirus vector displaying single-chain variable fragment antibody against c-Met. Cancer Gene Ther 2003; 10: 840–849.

    Article  CAS  Google Scholar 

  15. Khare PD, Shao-Xi L, Kuroki M, Hirose Y, Arakawa F, Nakamura K et al. Specifically targeted killing of carcinoembryonic antigen (CEA)-expressing cells by a retroviral vector displaying single-chain variable fragmented antibody to CEA and carrying the gene for inducible nitric oxide synthase. Cancer Res 2001; 61: 370–375.

    CAS  PubMed  Google Scholar 

  16. Hunter CA . New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 2005; 5: 521–531.

    Article  CAS  Google Scholar 

  17. Fogler WE, Volker K, Watanabe M, Wigginton JM, Roessler P, Brunda MJ et al. Recruitment of hepatic NK cells by IL-12 is dependent on IFN-gamma and VCAM-1 and is rapidly down-regulated by a mechanism involving T cells and expression of Fas. J Immunol 1998; 161: 6014–6021.

    CAS  PubMed  Google Scholar 

  18. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol 1994; 153: 1697–1706.

    CAS  PubMed  Google Scholar 

  19. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993; 178: 1223–1230.

    Article  CAS  Google Scholar 

  20. Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ, Folkman J . Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 1995; 87: 581–586.

    Article  CAS  Google Scholar 

  21. Shi X, Cao S, Mitsuhashi M, Xiang Z, Ma X . Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. J Immunol 2004; 172: 4111–4122.

    Article  CAS  Google Scholar 

  22. Rodolfo M, Colombo MP . Interleukin-12 as an adjuvant for cancer immunotherapy. Methods 1999; 19: 114–120.

    Article  CAS  Google Scholar 

  23. Portielje JE, Gratama JW, van Ojik HH, Stoter G, Kruit WH . IL-12: a promising adjuvant for cancer vaccination. Cancer Immunol Immunother 2003; 52: 133–144.

    CAS  PubMed  Google Scholar 

  24. Chen Y, Emtage P, Zhu Q, Foley R, Muller W, Hitt M et al. Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Gene Ther 2001; 8: 316–323.

    Article  CAS  Google Scholar 

  25. Bramson JL, Hitt M, Addison CL, Muller WJ, Gauldie J, Graham FL . Direct intratumoral injection of an adenovirus expressing interleukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of interleukin-12. Hum Gene Ther 1996; 7: 1995–2002.

    Article  CAS  Google Scholar 

  26. Naviaux RK, Costanzi E, Haas M, Verma IM . The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 1996; 70: 5701–5705.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shiau AL, Lin CY, Tzai TS, Wu CL . Postoperative immuno-gene therapy of murine bladder tumor by in vivo administration of retroviruses expressing mouse interferon-gamma. Cancer Gene Ther 2001; 8: 73–81.

    Article  CAS  Google Scholar 

  28. Tai CK, Logg CR, Park JM, Anderson WF, Press MF, Kasahara N . Antibody-mediated targeting of replication-competent retroviral vectors. Hum Gene Ther 2003; 14: 789–802.

    Article  CAS  Google Scholar 

  29. Chu TH, Dornburg R . Toward highly efficient cell-type-specific gene transfer with retroviral vectors displaying single-chain antibodies. J Virol 1997; 71: 720–725.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nilson BH, Morling FJ, Cosset FL, Russell SJ . Targeting of retroviral vectors through protease-substrate interactions. Gene Ther 1996; 3: 280–286.

    CAS  PubMed  Google Scholar 

  31. Cosset FL, Morling FJ, Takeuchi Y, Weiss RA, Collins MK, Russell SJ . Retroviral retargeting by envelopes expressing an N-terminal binding domain. J Virol 1995; 69: 6314–6322.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Russell SJ, Cosset FL . Modifying the host range properties of retroviral vectors. J Gene Med 1999; 1: 300–311.

    Article  CAS  Google Scholar 

  33. Landazuri N, Gupta M, Le Doux JM . Rapid concentration and purification of retrovirus by flocculation with polybrene. J Biotechnol 2006; 125: 529–539.

    Article  CAS  Google Scholar 

  34. Watkins NA, Dafforn TR, Kuijpers M, Brown C, Javid B, Lehner PJ et al. Molecular studies of anti-HLA-A2 using light-chain shuffling: a structural model for HLA antibody binding. Tissue Antigens 2004; 63: 345–354.

    Article  CAS  Google Scholar 

  35. De Lorenzo C, Cozzolino R, Carpentieri A, Pucci P, Laccetti P, D'Alessio G . Biological properties of a human compact anti-ErbB2 antibody. Carcinogenesis 2005; 26: 1890–1895.

    Article  CAS  Google Scholar 

  36. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ . Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 2006; 3: 269–280.

    Article  CAS  Google Scholar 

  37. Knutson KL, Disis ML . IL-12 enhances the generation of tumour antigen-specific Th1 CD4 T cells during ex vivo expansion. Clin Exp Immunol 2004; 135: 322–329.

    Article  CAS  Google Scholar 

  38. Peng LS, Penichet ML, Dela Cruz JS, Sampogna SL, Morrison SL . Mechanism of antitumor activity of a single-chain interleukin-12 IgG3 antibody fusion protein (mscIL-12.her2.IgG3). J Interferon Cytokine Res 2001; 21: 709–720.

    Article  CAS  Google Scholar 

  39. Weigert A, Tzieply N, von Knethen A, Johann AM, Schmidt H, Geisslinger G et al. Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. Mol Biol Cell 2007; 18: 3810–3819.

    Article  CAS  Google Scholar 

  40. Xing Z, Zganiacz A, Santosuosso M . Role of IL-12 in macrophage activation during intracellular infection: IL-12 and mycobacteria synergistically release TNF-alpha and nitric oxide from macrophages via IFN-gamma induction. J Leukoc Biol 2000; 68: 897–902.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Council of Taiwan (Grants NSC-94-2314-B-006-090, NSC-93-2314-006-070, NSC-92-2314-B-006-135, and NSC-91-2314-B-006-148) and Hospital of Department of Health, Executive Yuan, Taiwan (Grants 93033 and 9413).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T-S Tzai or C-L Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, YS., Shiau, AL., Chen, YF. et al. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy. Cancer Gene Ther 17, 37–48 (2010). https://doi.org/10.1038/cgt.2009.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.41

Keywords

This article is cited by

Search

Quick links