Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic adenovirus retargeted to Delta-EGFR induces selective antiglioma activity

Abstract

The fact that glioblastomas, which are one of the most devastating cancers, frequently express the Delta-EGFR (epithelial growth factor receptor) also called mutant variant III of EGFR (EGFRvIII) suggests that this cancer cell-specific receptor might serve as an ideal target for cancer therapy. To assess its potential as such a target, we constructed an oncolytic adenovirus with Retargeted Infectivity Via EGFR (Delta-24-RIVER) on the backbone of Delta-24. This new oncolytic adenovirus targets, as Delta-24 does, the disrupted Rb pathway in cancer cells; in addition, this adenovirus has also been retargeted through the abrogation of CAR binding (Y477A mutation in adenoviral fiber protein) and insertion of an EGFRvIII-specific binding peptide in the HI loop of the fiber protein. As compared with Delta-24, Delta-24-RIVER induced EGFRvIII-selective cytotoxicity in U-87 MG isogenic cell lines and in tetracycline-inducible EGFRVIII expressing U-251 MG cells. Accordingly, by tittering the viral progeny and examining fiber protein expression in the above cells, we showed that the replication of this new construct also correlated with EGFRvIII expression. Consistently, immunohistochemistry staining of the adenoviral capsid protein hexon in the virus-treated tumors revealed that the virus replicated more efficiently in EGFRvIII-expressing U-87 MG.ΔEGFR xenografts than in the tumors grown from U-87 MG cells. Importantly, treatment with Delta-24-RIVER prolonged the survival of animals with intracranial xenografts derived from U-87 MG.ΔEGFR cells. Therefore, our results constitute the first proof of the direct targeting of a cancer-specific receptor using an oncolytic adenovirus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P . Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170: 1445–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  PubMed  Google Scholar 

  3. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007; 21: 2683–2710.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang H, McCormick F, Lang FF, Gomez-Manzano C, Fueyo J . Oncolytic adenoviruses as antiglioma agents. Expert Rev Anticancer Ther 2006; 6: 697–708.

    Article  CAS  PubMed  Google Scholar 

  5. Kuan CT, Wikstrand CJ, Bigner DD . EGFRvIII as a promising target for antibody-based brain tumor therapy. Brain Tumor Pathol 2000; 17: 71–78.

    Article  CAS  PubMed  Google Scholar 

  6. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  PubMed  Google Scholar 

  7. Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 2003; 95: 652–660.

    Article  CAS  PubMed  Google Scholar 

  8. Barnett BG, Crews CJ, Douglas JT . Targeted adenoviral vectors. Biochim Biophys Acta 2002; 1575: 1–14.

    Article  CAS  PubMed  Google Scholar 

  9. Mishima K, Johns TG, Luwor RB, Scott AM, Stockert E, Jungbluth AA et al. Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res 2001; 61: 5349–5354.

    CAS  PubMed  Google Scholar 

  10. Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H et al. Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res 2006; 66: 867–874.

    Article  CAS  PubMed  Google Scholar 

  11. Belousova N, Korokhov N, Krendelshchikova V, Simonenko V, Mikheeva G, Triozzi PL et al. Genetically targeted adenovirus vector directed to CD40-expressing cells. J Virol 2003; 77: 11367–11377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Therapy 2001; 8: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  13. Campa MJ, Kuan CT, O’Connor-McCourt MD, Bigner DD, Patz Jr EF . Design of a novel small peptide targeted against a tumor-specific receptor. Biochem Biophys Res Commun 2000; 275: 631–636.

    Article  CAS  PubMed  Google Scholar 

  14. Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V . Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol 2002; 76: 8621–8631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahasreshti PJ, Kataram M, Wu H, Yalavarthy LP, Carey D, Fisher PB et al. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecol Oncol 2006; 100: 521–532.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang H, Alemany R, Gomez-Manzano C, Medrano DR, Lemoine MG, Olson MV et al. Downmodulation of E1A protein expression as a novel strategy to design cancer-selective adenoviruses. Neoplasia 2005; 7: 723–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F et al. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 2007; 99: 1410–1414.

    Article  CAS  PubMed  Google Scholar 

  18. Ariani F, Mari F, Pescucci C, Longo I, Bruttini M, Meloni I et al. Real-time quantitative PCR as a routine method for screening large rearrangements in Rett syndrome: report of one case of MECP2 deletion and one case of MECP2 duplication. Hum Mutat 2004; 24: 172–177.

    Article  CAS  PubMed  Google Scholar 

  19. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  20. Bernt KM, Ni S, Gaggar A, Li ZY, Shayakhmetov DM, Lieber A . The effect of sequestration by nontarget tissues on anti-tumor efficacy of systemically applied, conditionally replicating adenovirus vectors. Mol Ther 2003; 8: 746–755.

    Article  CAS  PubMed  Google Scholar 

  21. Rivera AA, Davydova J, Schierer S, Wang M, Krasnykh V, Yamamoto M et al. Combining high selectivity of replication with fiber chimerism for effective adenoviral oncolysis of CAR-negative melanoma cells. Gene Therapy 2004; 11: 1694–1702.

    Article  CAS  PubMed  Google Scholar 

  22. Shinoura N, Yoshida Y, Tsunoda R, Ohashi M, Zhang W, Asai A et al. Highly augmented cytopathic effect of a fiber-mutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Res 1999; 59: 3411–3416.

    CAS  PubMed  Google Scholar 

  23. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R . A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001; 7: 120–126.

    CAS  PubMed  Google Scholar 

  24. Trembath DG, Lal A, Kroll DJ, Oberlies NH, Riggins GJ . A novel small molecule that selectively inhibits glioblastoma cells expressing EGFRvIII. Mol Cancer 2007; 6: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lorimer IA . Mutant epidermal growth factor receptors as targets for cancer therapy. Curr Cancer Drug Targets 2002; 2: 91–102.

    Article  CAS  PubMed  Google Scholar 

  26. Lorimer IA, Lavictoire SJ . Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J Immunol Methods 2000; 237: 147–157.

    Article  CAS  PubMed  Google Scholar 

  27. Snitkovsky S, Niederman TM, Carter BS, Mulligan RC, Young JA . A TVA-single-chain antibody fusion protein mediates specific targeting of a subgroup A avian leukosis virus vector to cells expressing a tumor-specific form of epidermal growth factor receptor. J Virol 2000; 74: 9540–9545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Allen C, Vongpunsawad S, Nakamura T, James CD, Schroeder M, Cattaneo R et al. Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res 2006; 66: 11840–11850.

    Article  CAS  PubMed  Google Scholar 

  29. Grill J, Van Beusechem VW, Van Der Valk P, Dirven CM, Leonhart A, Pherai DS et al. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin Cancer Res 2001; 7: 641–650.

    CAS  PubMed  Google Scholar 

  30. Ayuso-Sacido A, Graham C, Greenfield JP, Boockvar JA . The duality of epidermal growth factor receptor (EGFR) signaling and neural stem cell phenotype: cell enhancer or cell transformer? Curr Stem Cell Res Ther 2006; 1: 387–394.

    Article  CAS  PubMed  Google Scholar 

  31. Lammering G, Valerie K, Lin PS, Hewit TH, Schmidt-Ullrich RK . Radiation-induced activation of a common variant of EGFR confers enhanced radioresistance. Radiother Oncol 2004; 72: 267–273.

    Article  CAS  PubMed  Google Scholar 

  32. Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ . Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci USA 1998; 95: 5724–5729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang PH, Cavenee WK, Furnari FB, White FM . Uncovering therapeutic targets for glioblastoma: a systems biology approach. Cell Cycle 2007; 6: 2750–2754.

    Article  CAS  PubMed  Google Scholar 

  34. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353: 2012–2024.

    Article  CAS  PubMed  Google Scholar 

  35. Fulci G, Breymann L, Gianni D, Kurozomi K, Rhee SS, Yu J et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12873–12878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Betty Notzon (Department of Scientific Publications, The University of Texas MD Anderson Cancer Center) for editorial support and Verlene Henry and Jennifer Edge (Brain Tumor Center, The University of Texas MD Anderson Cancer Center) for technical assistance in the in vivo experiments. These studies were supported by R01-CA090879 and R01 CA116621 from National Cancer Institute (to JF and VK, respectively), Marcus Foundation (to JF and CAC), Nick Eric Wichman Foundation grant (to JF and CG-M), an Institutional Research Grant to MD Anderson (to HJ), and NCI CA-16672 grant (to MD Anderson Cancer Center: DNA Analysis, Research Animal Support, and Media Preparation Facilities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Fueyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piao, Y., Jiang, H., Alemany, R. et al. Oncolytic adenovirus retargeted to Delta-EGFR induces selective antiglioma activity. Cancer Gene Ther 16, 256–265 (2009). https://doi.org/10.1038/cgt.2008.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.75

Keywords

This article is cited by

Search

Quick links