Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Growth inhibition of an established A431 xenograft tumor by a full-length anti-EGFR antibody following gene delivery by AAV

Abstract

Therapeutic monoclonal antibodies continue to achieve clinical success for the treatment of many different diseases, particularly cancer. However, the production and purification of antibodies continues to be a time and labor-intensive process with considerable technical challenges. Gene-based delivery of antibodies may address this, via direct production within the host that achieves therapeutic levels. In this report, we validate the feasibility that gene-based delivery is a viable approach for efficacious delivery of antibodies in the preclinical and, presumably, clinical setting. We demonstrate high and sustained in vivo expression of the murine antihuman epidermal growth factor receptor antibody 14E1 following intramuscular delivery by adeno-associated virus (AAV) 2/1. Incorporating the Furin/2A technology for monocistronic expression of both heavy and light chains, we achieved sustained serum levels of full-length 14E1 peaking over 1 mg ml−1 in athymic nude mice. In the A431 xenograft tumor model, 14E1 was capable of significantly inhibiting tumor growth and prolonging survival when AAV was administered prior to tumor challenge. Furthermore, 14E1 demonstrated significant antitumor efficacy against well-established tumors (400 mm3) when AAV was administered up to 20 days after tumor challenge. Here we demonstrate for the first time growth inhibition of a well-established tumor by a full-length antibody following delivery by AAV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Imai K, Takaoka A . Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 2006; 6: 714–727.

    Article  CAS  PubMed  Google Scholar 

  2. Reichert JM, Valge-Archer VE . Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 2007; 6: 349–356.

    Article  CAS  PubMed  Google Scholar 

  3. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC . Monoclonal antibody successes in the clinic. Nat Biotechnol 2005; 23: 1073–1078.

    Article  CAS  PubMed  Google Scholar 

  4. Pelegrin M, Gros L, Dreja H, Piechaczyk M . Monoclonal antibody-based genetic immunotherapy. Curr Gene Ther 2004; 4: 347–356.

    Article  CAS  PubMed  Google Scholar 

  5. Marasco WA . Therapeutic antibody gene transfer. Nat Biotechnol 2005; 23: 551–552.

    Article  CAS  PubMed  Google Scholar 

  6. Scott CT . The problem with potency. Nat Biotechnol 2005; 23: 1037–1039.

    Article  CAS  PubMed  Google Scholar 

  7. Noel D, Pelegrin M, Kramer S, Jacquet C, Skander N, Piechaczyk M . High in vivo production of a model monoclonal antibody on adenoviral gene transfer. Hum Gene Ther 2002; 13: 1483–1493.

    Article  CAS  PubMed  Google Scholar 

  8. Gura T . Therapeutic antibodies: magic bullets hit the target. Nature 2002; 417: 584–586.

    Article  CAS  PubMed  Google Scholar 

  9. Roque AC, Lowe CR, Taipa MA . Antibodies and genetically engineered related molecules: production and purification. Biotechnol Prog 2004; 20: 639–654.

    Article  CAS  PubMed  Google Scholar 

  10. Birch JR, Racher AJ . Antibody production. Adv Drug Deliv Rev 2006; 58: 671–685.

    Article  CAS  PubMed  Google Scholar 

  11. Secko D . Immunotherapy made more accessible? CMAJ 2005; 173: 144.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bakker JM, Bleeker WK, Parren PW . Therapeutic antibody gene transfer: an active approach to passive immunity. Mol Ther 2004; 10: 411–416.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng D . Antibody gene therapy: an attractive approach for the treatment of cancers and other chronic diseases. Cell Res 2007; 17: 303–306.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Q, Chen G, Liu X, Qian Q . Monoclonal antibodies as therapeutic agents in oncology and antibody gene therapy. Cell Res 2007; 17: 89–99.

    Article  CAS  PubMed  Google Scholar 

  15. Prud'homme GJ, Glinka Y, Khan AS, Draghia-Akli R . Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther 2006; 6: 243–273.

    Article  CAS  PubMed  Google Scholar 

  16. Tjelle TE, Corthay A, Lunde E, Sandlie I, Michaelsen TE, Mathiesen I et al. Monoclonal antibodies produced by muscle after plasmid injection and electroporation. Mol Ther 2004; 9: 328–336.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang M, Shi W, Zhang Q, Wang X, Guo M, Cui Z et al. Gene therapy using adenovirus-mediated full-length anti-HER-2 antibody for HER-2 overexpression cancers. Clin Cancer Res 2006; 12: 6179–6185.

    Article  CAS  PubMed  Google Scholar 

  18. Young LS, Searle PF, Onion D, Mautner V . Viral gene therapy strategies: from basic science to clinical application. J Pathol 2006; 208: 299–318.

    Article  CAS  PubMed  Google Scholar 

  19. Warrington Jr KH, Herzog RW . Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 2006; 119: 571–603.

    Article  CAS  PubMed  Google Scholar 

  20. Dong JY, Fan PD, Frizzell RA . Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 1996; 7: 2101–2112.

    Article  CAS  PubMed  Google Scholar 

  21. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 2005; 23: 584–590.

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt M, Vakalopoulou E, Schneider DW, Wels W . Construction and functional characterization of scFv(14E1)-ETA—a novel, highly potent antibody-toxin specific for the EGF receptor. Br J Cancer 1997; 75: 1575–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoffmann M, Schmidt M, Wels W . Activation of EGF receptor family members suppresses the cytotoxic effects of tumor necrosis factor-alpha. Cancer Immunol Immunother 1998; 47: 167–175.

    Article  CAS  PubMed  Google Scholar 

  24. Genersch E, Schneider DW, Sauer G, Khazaie K, Schuppan D, Lichtner RB . Prevention of EGF-modulated adhesion of tumor cells to matrix proteins by specific EGF receptor inhibition. Int J Cancer 1998; 75: 205–209.

    Article  CAS  PubMed  Google Scholar 

  25. Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J . Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1995; 1: 1311–1318.

    CAS  PubMed  Google Scholar 

  26. Masui H, Kawamoto T, Sato JD, Wolf B, Sato G, Mendelsohn J . Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 1984; 44: 1002–1007.

    CAS  PubMed  Google Scholar 

  27. Kawamoto T, Sato JD, Le A, Polikoff J, Sato GH, Mendelsohn J . Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci USA 1983; 80: 1337–1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG, Jakobovits A . Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res 1999; 59: 1236–1243.

    CAS  PubMed  Google Scholar 

  29. Riviere C, Danos O, Douar AM . Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Therapy 2006; 13: 1300–1308.

    Article  CAS  PubMed  Google Scholar 

  30. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14: 316–327.

    Article  CAS  PubMed  Google Scholar 

  32. Fang J, Yi S, Simmons A, Tu GH, Nguyen M, Harding TC et al. An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo. Mol Ther 2007; 15: 1153–1159.

    Article  CAS  PubMed  Google Scholar 

  33. De BP, Hackett NR, Crystal RG, Boyer JL . Rapid/sustained anti-anthrax passive immunity mediated by co-administration of Ad/AAV. Mol Ther 2008; 16: 203–209.

    Article  CAS  PubMed  Google Scholar 

  34. Sato JD, Kawamoto T, Le AD, Mendelsohn J, Polikoff J, Sato GH . Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med 1983; 1: 511–529.

    CAS  PubMed  Google Scholar 

  35. Fan Z, Lu Y, Wu X, Mendelsohn J . Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 1994; 269: 27595–27602.

    CAS  PubMed  Google Scholar 

  36. Masui H, Moroyama T, Mendelsohn J . Mechanism of antitumor activity in mice for anti-epidermal growth factor receptor monoclonal antibodies with different isotypes. Cancer Res 1986; 46: 5592–5598.

    CAS  PubMed  Google Scholar 

  37. Fan Z, Masui H, Altas I, Mendelsohn J . Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 1993; 53: 4322–4328.

    CAS  PubMed  Google Scholar 

  38. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt M, Voutetakis A, Afione S, Zheng C, Mandikian D, Chiorini JA . Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulphate proteoglycan-independent transduction activity. J Virol 2008; 82: 1399–1406.

    Article  CAS  PubMed  Google Scholar 

  40. Baron U, Bujard H . Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 2000; 327: 401–421.

    Article  CAS  PubMed  Google Scholar 

  41. Haberman RP, McCown TJ . Regulation of gene expression in adeno-associated virus vectors in the brain. Methods 2002; 28: 219–226.

    Article  CAS  PubMed  Google Scholar 

  42. Szymanski P, Kretschmer PJ, Bauzon M, Jin F, Qian HS, Rubanyi GM et al. Development and validation of a robust and versatile one-plasmid regulated gene expression system. Mol Ther 2007; 15: 1340–1347.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mary Rosser, George Wang, Sandra Biroc and Brent Larsen of Bayer Healthcare for their invaluable technical support and scientific discussions during this research. We also thank the animal service group at Bayer Healthcare for their technical assistance and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Kretschmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, D., Wykoff-Clary, S., Gross, C. et al. Growth inhibition of an established A431 xenograft tumor by a full-length anti-EGFR antibody following gene delivery by AAV. Cancer Gene Ther 16, 184–194 (2009). https://doi.org/10.1038/cgt.2008.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.68

Keywords

This article is cited by

Search

Quick links