Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression and function of the coxsackie and adenovirus receptor in Barrett's esophagus and associated neoplasia

Abstract

Cell surface presence of the coxsackie and adenovirus receptor (CAR) is considered a crucial prerequisite for the uptake of attenuated adenovirus. In cancers, however, a frequent loss of CAR has been noted potentially hampering the success of adenovirus-based therapy. In esophageal Barrett's carcinomas and its precursor lesions CAR presence has not been systematically determined yet. Immunohistochemical assessment in tissue specimens of 111 patients revealed CAR-positivity in all cases of Barrett's esophagus, including various degrees of intraepithelial neoplasia. In contrast, no considerable CAR presence was seen in squamous esophageal epithelium. Among Barrett's carcinomas, 93% displayed CAR presence, whereas CAR-negativity was observed preferentially in advanced cancers. Aiming to evaluate whether this loss of CAR impacts tumor-biologic properties of esophageal adenocarcinomas we studied cell lines OE19 and OE33 and observed an increased proliferation, migration and invasion upon siRNA-mediated functional CAR knock down. In conclusion, our results indicate that CAR may provide a valuable target for adenovirus-based therapy of Barrett's carcinomas and its precursor lesions. These data do also suggest that CAR does not contribute substantially to carcinogenesis in Barrett's esophagus, however, it may be speculated that loss of CAR promotes tumor progression in advanced stages of Barrett's carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

BC:

Barrett's carcinoma

BE:

Barrett's esophagus

CAR:

coxsackie and adenovirus receptor

IN:

intraepithelial neoplasia

TJ:

tight junction

References

  1. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM . The coxsackie virus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 2001; 98: 15191–15196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kasuya H, Takeda S, Shimoyama S, Shikano T, Nomura N, Kanazumi N et al. Oncolytic virus therapy—foreword. Curr Cancer Drug Targets 2007; 7: 123–125.

    Article  CAS  PubMed  Google Scholar 

  4. Heideman DA, Snijders PJ, Craanen ME, Bloemena E, Meijer CJ, Meuwissen SG et al. Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Ther 2001; 8: 342–351.

    Article  CAS  PubMed  Google Scholar 

  5. Korn WM, Macal M, Christian C, Lacher MD, McMillan A, Rauen KA et al. Expression of the coxsackievirus- and adenovirus receptor in gastrointestinal cancer correlates with tumor differentiation. Cancer Gene Ther 2006; 13: 792–797.

    Article  CAS  PubMed  Google Scholar 

  6. Matsumoto K, Shariat SF, Ayala GE, Rauen KA, Lerner SP . Loss of coxsackie and adenovirus receptor expression is associated with features of aggressive bladder cancer. Urology 2005; 66: 441–446.

    Article  PubMed  Google Scholar 

  7. Rauen KA, Sudilovsky D, Le JL, Chew KL, Hann B, Weinberg V et al. Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: potential relevance to gene therapy. Cancer Res 2002; 62: 3812–3818.

    CAS  PubMed  Google Scholar 

  8. Sachs MD, Rauen KA, Ramamurthy M, Dodson JL, De Marzo AM, Putzi M et al. Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer. Urology 2002; 60: 531–536.

    Article  PubMed  Google Scholar 

  9. Bruning A, Runnebaum IB . The coxsackie adenovirus receptor inhibits cancer cell migration. Exp Cell Res 2004; 298: 624–631.

    Article  PubMed  Google Scholar 

  10. Huang KC, Altinoz M, Wosik K, Larochelle N, Koty Z, Zhu L et al. Impact of the coxsackie and adenovirus receptor (CAR) on glioma cell growth and invasion: requirement for the C-terminal domain. Int J Cancer 2005; 113: 738–745.

    Article  CAS  PubMed  Google Scholar 

  11. Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, Hsieh JT . The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res 2001; 61: 6592–6600.

    CAS  PubMed  Google Scholar 

  12. Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J, Hsieh JT . The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res 2000; 60: 5031–5036.

    CAS  PubMed  Google Scholar 

  13. Wang B, Chen G, Li F, Zhou J, Lu Y, Ma D . Inhibitory effect of coxsackie adenovirus receptor on invasion and metastasis phenotype of ovarian cancer cell line SKOV3. J Huazhong Univ Sci Technol Med Sci 2005; 25: 85–87, 93.

    Article  Google Scholar 

  14. Anders M, Hansen R, Ding RX, Rauen KA, Bissell MJ, Korn WM . Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackie virus and adenovirus receptor. Proc Natl Acad Sci USA 2003; 100: 1943–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bruning A, Stickeler E, Diederich D, Walz L, Rohleder H, Friese K et al. Coxsackie and adenovirus receptor promotes adenocarcinoma cell survival and is expressionally activated after transition from preneoplastic precursor lesions to invasive adenocarcinomas. Clin Cancer Res 2005; 11: 4316–4320.

    Article  PubMed  Google Scholar 

  16. Flejou JF . Barrett's oesophagus: from metaplasia to dysplasia and cancer. Gut 2005; 54 (Suppl 1): i6–i12.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Montgomery E, Mamelak AJ, Gibson M, Maitra A, Sheikh S, Amr SS et al. Overexpression of claudin proteins in esophageal adenocarcinoma and its precursor lesions. Appl Immunohistochem Mol Morphol 2006; 14: 24–30.

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Correa CA, Brown BH, Smallwood RH, Stephenson TJ, Stoddard CJ, Bardhan KD . Low frequency electrical bioimpedance for the detection of inflammation and dysplasia in Barrett's oesophagus. Physiol Meas 2003; 24: 291–296.

    Article  CAS  PubMed  Google Scholar 

  19. Mullin JM, Valenzano MC, Trembeth S, Allegretti PD, Verrecchio JJ, Schmidt JD et al. Transepithelial leak in Barrett's esophagus. Dig Dis Sci 2006; 51: 2326–2336.

    Article  CAS  PubMed  Google Scholar 

  20. Rendon-Huerta E, Valenzano MC, Mullin JM, Trembeth SE, Kothari R, Hameed B et al. Comparison of three integral tight junction barrier proteins in Barrett's epithelium versus normal esophageal epithelium. Am J Gastroenterol 2003; 98: 1901–1903.

    Article  PubMed  Google Scholar 

  21. Gyorffy H, Holczbauer A, Nagy P, Szabó Z, Kupcsulik P, Páska C et al. Claudin expression in Barrett's esophagus and adenocarcinoma. Virchows Arch 2005; 447: 961–968.

    Article  CAS  PubMed  Google Scholar 

  22. Marsman WA, Buskens CJ, Wesseling JG, Offerhaus GJ, Bergman JJ, Tytgat GN et al. Gene therapy for esophageal carcinoma: the use of an explant model to test adenoviral vectors ex vivo. Cancer Gene Ther 2004; 11: 289–296.

    Article  CAS  PubMed  Google Scholar 

  23. Hamilton SR, Aaltonen LA, WHO Classification. Tumours of the Digestive System: Pathology & Genetics. IARC Press: Lyon, France, 2000.

  24. Wittekind C, Meyer HJ, Bootz F . TNM Classification of Malignant Tumors (ed 6). John Wiley & Sons Inc, New York, NY, 2002.

  25. Montgomery E, Goldblum JR, Greenson JK, Haber MM, Lamps LW, Lauwers GY et al. Dysplasia as a predictive marker for invasive carcinoma in Barrett esophagus: a follow-up study based on 138 cases from a diagnostic variability study. Hum Pathol 2001; 32: 379–388.

    Article  CAS  PubMed  Google Scholar 

  26. Sarbia M, Donner A, Franke C, Gabbert HE . Distinction between intestinal metaplasia in the cardia and in Barrett's esophagus: the role of histology and immunohistochemistry. Hum Pathol 2004; 35: 371–376.

    Article  PubMed  Google Scholar 

  27. Rockett JC, Larkin K, Darnton SJ, Morris AG, Matthews HR . Five newly established oesophageal carcinoma cell lines: phenotypic and immunological characterization. Br J Cancer 1997; 75: 258–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heitmiller RF . Prophylactic esophagectomy in Barrett esophagus with high-grade dysplasia. Langenbecks Arch Surg 2003; 388: 83–87.

    PubMed  Google Scholar 

  29. Prasad GA, Wang KK, Buttar NS, Wongkeesong LM, Krishnadath KK, Nichols III FC et al. Long-term survival following endoscopic and surgical treatment of high-grade dysplasia in Barrett's esophagus. Gastroenterology 2007; 132: 1226–1233.

    Article  PubMed  Google Scholar 

  30. Marsman WA, Buskens CJ, Wesseling JG, van Lanschot JJ, Bosma PJ . Gene therapy for Barrett's esophagus: adenoviral gene transfer in different intestinal models. Cancer Gene Ther 2005; 12: 778–786.

    Article  CAS  PubMed  Google Scholar 

  31. Raschperger E, Thyberg J, Pettersson S, Philipson L, Fuxe J, Pettersson RF . The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis. Exp Cell Res 2006; 312: 1566–1580.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr J Bergelson (Division of Infectious Diseases, Children's Hospital of Philadelphia, PA) for providing the ‘CHO-CAR’ cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Anders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anders, M., Rösch, T., Küster, K. et al. Expression and function of the coxsackie and adenovirus receptor in Barrett's esophagus and associated neoplasia. Cancer Gene Ther 16, 508–515 (2009). https://doi.org/10.1038/cgt.2008.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.103

Keywords

This article is cited by

Search

Quick links