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Evidence that S6K1, but not 4E-BP1, mediates skeletal
muscle pathology associated with loss of A-type lamins
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The mechanistic target of rapamycin (mTOR) signaling pathway plays a central role in aging and a number of different
disease states. Rapamycin, which suppresses activity of the mTOR complex 1 (mTORC1), shows preclinical (and some-
times clinical) efficacy in a number of disease models. Among these are Lmna−/− mice, which serve as a mouse model for
dystrophy-associated laminopathies. To confirm that elevated mTORC1 signaling is responsible for the pathology mani-
fested in Lmna−/− mice and to decipher downstream genetic mechanisms underlying the benefits of rapamycin, we tested in
Lmna−/− mice whether survival could be extended and disease pathology suppressed either by reduced levels of S6K1 or
enhanced levels of 4E-BP1, two canonical mTORC1 substrates. Global heterozygosity for S6K1 ubiquitously extended
lifespan of Lmna−/− mice (Lmna−/− S6K1+/− mice). This life extension is due to improving muscle, but not heart or adipose,
function, consistent with the observation that genetic ablation of S6K1 specifically in muscle tissue also extended survival of
Lmna−/− mice. In contrast, whole-body overexpression of 4E-BP1 shortened the survival of Lmna−/− mice, likely by
accelerating lipolysis. Thus, rapamycin-mediated lifespan extension in Lmna−/− mice is in part due to the improvement of
skeletal muscle function and can be phenocopied by reduced S6K1 activity, but not 4E-BP1 activation.
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Introduction

The mechanistic target of rapamycin (mTOR)
kinase is a central regulator of growth factor signaling
and metabolism [1–3] and is closely linked to aging and
a wide range of diseases [4]. The mTOR protein is a
component of two complexes, the mTOR complex 1
(mTORC1) and complex 2 (mTORC2). The best-
defined substrates of the mTORC1 complex are S6K1
(ribosomal protein S6 protein kinase 1) and 4E-BP1
(eIF4E (eukaryotic translation initiation factor 4E)-
binding protein 1) [5], both of which are important in
the control of translation initiation [6]. Activation of

the mTORC1 signaling cascade results in the phos-
phorylation of downstream substrates such as S6K1
and 4E-BP1, which in turn affect protein synthesis.
Specifically, phosphorylation of S6K1 results in its
activation and the subsequent phosphorylation of
ribosomal protein S6 (rpS6), as well as other compo-
nents of the translation machinery, whereas phos-
phorylation of 4E-BP1 disrupts its binding to eIF4E,
freeing this initiation factor to promote cap-dependent
translation [7].

Mutations in A-type lamins are associated with a
range of dystrophic and progeroid syndromes in
humans [8], including dilated cardiomyopathy with
conduction-system disease (CMD1A) [9], Emery-
Dreifuss muscular dystrophy (EDMD2/3) [10], famil-
ial partial lipodystrophy [11]. and Hutchinson-Gilford
progeria syndrome [12]. Lmna−/− mice were generated
nearly two decades ago to better understand the role of
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A-type lamins in nuclear organization and disease [13].
Despite a more recent report that these mice express a
modified LMNA transcript and are actually hypo-
morphs [14], these mice have served as a workhorse
disease model for the dystrophic syndromes. Lmna−/−

mice rapidly develop dilated cardiomyopathy and
muscular dystrophy, resulting in death by 6–8 weeks
[13]. Recently, we demonstrated that rapamycin
reverses elevated mTORC1 signaling in multiple tissues
and rescues pathogenesis of dilated cardiomyopathy,

Figure 1Whole-body genetic knockdown of S6K1 extends survival of Lmna−/− mice. (a) Western blots of S6K1 protein expression
in muscle (gastrocnemius), heart, liver, subcutaneous (Sub.) fat and brown adipose tissue (BAT). Representative blot derived
from two mice for each genotype. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as loading control. Relative
S6K1 protein levels (normalized to GAPDH) were quantified. Each value is mean± s.e.m. for the number of mice indicated in
parentheses. P-values were derived from unpaired two-tailed Student’s t-test. (b) Kaplan–Meier survival plot of Lmna−/− S6K1+/+

(n = 19, black) and Lmna−/− S6K1+/− (n = 29, red) mice. Data frommales and females are combined. Symbols represent individual
mice. Survival of Lmna−/− S6K1+/ − mice is significantly longer than Lmna−/− S6K1+/+ mice (Po0.0001 by log-rank test), resulting in
a 33% increase in mean lifespan (51.5 vs 38.6 days). (c) Body weight (BW) of Lmna−/− S6K1+/+ (started with n = 12, black) and
Lmna−/− S6K1+/− (started with n = 19, red) mice were measured every other day from 4 weeks of age. (d) Adiposity (percent body
fat) was measured weekly ((fat mass/BW)×100) from Lmna−/− S6K1+/+ (started with n = 8, black) and Lmna−/− S6K1+/− (started
with n = 19, red) mice. Symbols represent mean BW or percent body fat± s.e.m.
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skeletal muscle dystrophy and lipodystrophy, and as a
result doubles the survival of Lmna−/− mice [15, 16].
Given the multiple downstream substrates of
mTORC1, it is critical to identify those that have a role
in Lmna-mediated pathogenesis. Furthermore, under-
standing about how rapamycin suppresses mTORC1
and rescues pathologies in Lmna−/− mice may lead to
better strategies to target the mTORC1 pathway in
other disease states, as well as aging itself.

Here, we assess the role of two key mTORC1 sub-
strates, S6K1 and 4E-BP1, in Lmna−/− mice, finding
that S6K1 is the more important mediator of patho-
genesis and early mortality. Moreover, our findings
indicate that a reduction in S6K1 activity in muscle
underlies the benefits to these mice, indicating that
altered skeletal muscle function is a contributor to
mortality in the Lmna−/− mouse model of
laminopathies.

Results

Whole-body knockdown of S6K1 extends survival of
Lmna−/− mice

Previously, we reported that elevated mTORC1
signaling is responsible for many of the pathologies
manifested in Lmna−/− mice, and that rapamycin, which
suppresses mTORC1 signaling, extends survival by
rescuing those phenotypes [15, 16]. In the first step to
identify the downstream pathways/targets that mediate
life extension by rapamycin in Lmna−/− mice, we tested
the hypothesis that genetic ablation of S6K1 may be
protective in the Lmna−/− mice, phenocopying the
benefits of rapamycin. We crossed Lmna+/− mice with
S6K1+/− mice [17], generating both Lmna−/− S6K1+/−

and Lmna−/− S6K1−/− double-mutant mice and assessed
their phenotypes (Supplementary Figure S1A). Wes-
tern blot analysis of a broad spectrum of tissues in
Lmna−/− S6K1+/− and Lmna−/− S6K1−/− (not shown)
indicated that S6K1 protein level is reduced or absent
(respectively) in disease-linked tissues of Lmna−/− mice:
skeletal muscle, heart, liver, subcutaneous fat (white
adipose tissue, WAT) and brown adipose tissue (BAT)
(Figure 1a).

First, we compared the survival of Lmna−/− with 0, 1
or 2 copies of S6K1. Interestingly, complete deletion of
S6K1 did not enhance the survival of Lmna−/− mice
(Supplementary Figure S2G; see below), whereas
Lmna−/− S6K1+/− mice lived significantly longer than
Lmna−/− control mice (33% extension of mean lifespan,
Po0.0001 by log-rank test) (Figure 1b), and this result
was statistically significant in both sexes
(Supplementary Figure S2A, D). Therefore, Lmna−/−

mice heterozygous for S6K1, a major downstream
substrate of mTORC1 signaling, partially phenocopy
the life extension in Lmna−/− mice by rapamycin, which
doubled the survival of Lmna−/− mice [16].

Previously, we observed that rapamycin treatment
led to improved maintenance of adiposity in Lmna−/−

mice, underscoring its critical role in their survival [16].
Specifically, enhanced lipolysis in WAT and deficient
thermogenesis in BAT are at least partially rescued by
rapamycin in Lmna−/− mice. Unlike rapamycin, how-
ever, the body weight (BW) and fat content of long-
lived Lmna−/− S6K1+/− mice are indistinguishable from
Lmna−/− littermate controls (Figure 1c and d,
Supplementary Figure S2B, C, E and F). These results
are further supported by the observation that the lipid
metabolism of long-lived Lmna−/− S6K1+/− mice is not
changed. For instance, we reported that levels of adi-
pose triglyceride lipase (ATGL) are elevated in WAT
of Lmna−/− mice, and here show that they are unaltered
by S6K1 heterozygosity (Supplementary Figure S3A).
Similarly, the low levels of uncoupling protein 1
(UCP1) in BAT are not rescued (Supplementary
Figure S3B). This is in spite of the fact that phos-
phorylation of ribosomal protein S6 (rpS6) protein (p-
S6 S240/244), a well-documented readout of mTORC1
and S6K1 activity, is suppressed in both WAT and
BAT (although not statistically significant) in Lmna−/−

S6K1+/− mice (Supplementary Figure S3A, B). Thus,
reduced S6K1 signaling in adipose tissues does not
likely underlie the enhanced survival of Lmna−/−

S6K1+/− mice.
Analysis of BW and composition revealed that

double knockout mice (Lmna−/− S6K1−/−) were con-
sistently smaller than age-matched Lmna−/− littermates
(Supplementary Figure S2H and I). This smaller body
size, which is analogous to the phenotypes of S6K1−/−

mice compared to littermate controls [18], may
exacerbate dystrophic phenotypes of Lmna−/− mice and
thus override the potentially beneficial effects derived
from reduced S6K1 signaling (see Discussion). Given a
lower-than-expected number of double knockout mice
obtained from crosses (Supplementary Figure S1A)
and the unaltered lifespan (Supplementary
Figure S2G), we did not further characterize the
Lmna−/− S6K1−/− mice, focusing instead on their long-
lived Lmna−/− S6K1+/− counterparts.

Rapamycin induces glucose intolerance as indicated
by glucose tolerance test (GTT) in wild-type mice (WT;
Lmna+/+ S6K1+/+) [19] (Supplementary Figure S4A). In
contrast, Lmna−/− mice are hypoglycemic [20] and have
increased sensitivity upon glucose infusion
(Supplementary Figure S4A). After 1 week of
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rapamycin treatment, Lmna−/− mice had reduced glu-
cose tolerance compared with untreated controls;
however, they were comparable to untreated Lmna+/+

mice (Supplementary Figure S4A). After 3 weeks of
treatment, rapamycin induces glucose intolerance in
Lmna−/− mice (Supplementary Figure S4A). Given the
lack of response to glucose challenge in Lmna−/− mice,
it is possible that the glucose intolerance and hyper-
glycemia induced by rapamycin may play a positive
role in life extension in Lmna−/− mice. S6K1−/− mice are
long-lived, and in these mice glucose tolerance is
improved in 600-day-old females but impaired in 8-
week-old mice [18]. In contrast to rapamycin-treated
Lmna−/− mice (Supplementary Figure S4A), however,
long-lived Lmna−/− S6K1+/− mice have comparable
glucose profiles in response to GTT to Lmna−/− mice
(Supplementary Figure S4B). These results suggest life
extension in Lmna−/− S6K1+/− mice is not owing to
altered glucose sensitivity and support the hypothesis
that, whereas rapamycin targets multiple metabolic
tissues to extend lifespan in Lmna−/− mice [15, 16], a
reduction in S6K1 may only provide a subset of those
benefits.

Improved cardiac function is not observed in long-lived
Lmna−/− S6K1+/− mice

The primary cause of death for Lmna−/− mice has
been reported to be cardiac dysfunction [21], and
rapamycin at least partially reverses this phenotype
[15]. Given that metabolic parameters were not altered
in Lmna−/− S6K1+/− mice, we next speculated that these
mice may have improved cardiac function. S6K1 pro-
tein levels are reduced in heart tissue of Lmna−/−

S6K1+/− mice by at least 50%, as expected (Figure 1a).
Thus, we evaluated the cardiac function by transthor-
acic echocardiography in long-lived Lmna−/− S6K1+/−

mice. In our experimental setting, we showed that
Lmna−/− mice have cardiac functional deficits, indicated
by increased left ventricular (LV) end-systolic diameter
and LV end-diastolic diameter, compared with wild-
type mice (WT; Lmna+/+ S6K1+/+) at 5 ~ 6 weeks of age
(Supplementary Figure S5A) [15]. However, improved
cardiac function was not observed in long-lived
Lmna−/− S6K1+/− mice. All the parameters, including
LV end-systolic diameter, LV end-diastolic diameter,
myocardial performance index, ejection fraction, frac-
tional shortening and cardiac output, are indis-
tinguishable between control Lmna−/− S6K1+/+ and
long-lived Lmna−/− S6K1+/− mice (Supplementary
Figure S5A). At the molecular level, rapamaycin
decreases the amount of desmin in cardiac tissue of
Lmna−/− mice [15]. However, desmin was not decreased

in cardiac tissue of long-lived Lmna−/− S6K1+/− mice
(Supplementary Figure S5B). Thus, the life extension in
Lmna−/− S6K1+/− mice is not due to detectable
improvements in cardiac function.

Improved skeletal muscle function in long-lived Lmna−/−

S6K1+/− mice
Since partial knockdown of S6K1 improves the

survival of Lmna−/− mice (Figure 1b), and neither car-
diac function nor metabolic parameters are improved
in long-lived Lmna−/− S6K1+/− mice (Supplementary
Figure S4B), we further evaluated whether genetic
reduction of S6K1 rescues skeletal muscle deficits in
Lmna−/− mice. If elevated mTORC-S6K1 activity
contributes to the muscle dystrophy and this phenotype
also reduces survival, then reduced S6K1 signaling may
be exerting its protective effect in skeletal muscle. Our
findings are consistent with this hypothesis. For
instance, muscle function was improved in long-lived
Lmna−/− S6K1+/− mice evaluated by rotarod at 4 and
5 weeks of age with double-mutant mice displaying
both enhanced latency to fall and increased maximum
speed reached (Figure 2a).

Consistent with a prior report, we find reduced
rotarod performance in Lmna−/− mice [15]. (Figure 2a).
Muscular dystrophy in Lmna−/− may also be driven by
reduced levels of peroxisome proliferator-activated
receptor gamma coactivator-1-alpha (PGC-1α), a
master regulator of mitochondrial biogenesis [22].
(Figure 2b). We interrogated Lmna−/− S6K1+/− mice to
see if PGC-1α levels were affected by reduced S6K1
activity. Interestingly, we found PGC-1α protein levels
were restored in muscle tissue (gastrocnemius) of long-
lived Lmna−/− S6K1+/− mice (Figure 2b and c). Fur-
thermore, mitochondrial protein subunit 4 of cyto-
chrome c oxidase complex (Cox IV), a nuclear-encoded
mitochondrial protein of the electron transport chain,
is reduced in skeletal muscle of Lmna−/− mice and also
restored in Lmna−/− S6K1+/− mice (Figure 2b and c).
This improved mitochondrial function in skeletal
muscle of long-lived Lmna−/− S6K1+/− mice is further
supported by a trend toward increased nuclear
respiratory factor 1 (NRF1) and increased mitochon-
drial transcription factor A (mtTFA) (Figure 2c).
NRF1 is a PGC-1α-inducible transcription activator
for the gene encoding cytochrome c [23]. PGC-1α also
could activate the expression of mtTFA through the
coactivation of NRF1-mediated transcription [24].
mtTFA is a nuclear-encoded gene product that is
imported into the mitochondrial for mitochondrial
biogenesis, including the replication and transcription
of mitochondrial DNA [24]. However, the amount of
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Figure 2 Improved muscle function in long-lived Lmna−/− S6K1+/− mice. (a) Analysis of muscle function by rotarod test. There was
a significant decrease in latency to fall and maximum speed reached in Lmna−/− (Lmna−/− S6K1+/+) mice compared to wild-type
(WT; Lmna+/+ S6K1+/+) mice. Long-lived Lmna−/− S6K1+/− mice experienced significantly increased latency to fall and maximum
speed reached compared to Lmna−/− mice. (b) PGC-1α and Cox IV protein levels in muscle (gastrocnemius) tissue of Lmna+/+ and
Lmna−/− mice. Relative PGC-1α and Cox IV protein levels (normalized to GAPDH) were quantified. (c) Signaling through the
mTORC1 pathway, indicated by p-S6, in muscle (gastrocnemius) tissue of long-lived Lmna−/− S6K1+/− mice. Relative p-S6 levels
(normalized to S6) and relative desmin, PGC-1α, Cox IV, NRF1 and mtTFA protein levels (normalized to GAPDH) were
quantified. Each value is mean± s.e.m. for replicate numbers indicated in parentheses, and statistical significance was
determined by unpaired two-tailed Student’s t-test.
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desmin was not reduced in skeletal muscle of long-lived
Lmna−/− S6K1+/− mice (Figure 2c). Of note, we detect a
modest trend toward reduced phosphorylation of the
S6K1 substrate, ribosomal protein S6 (rpS6), although
it was not statistically significant (Figure 2c). We
speculate that phosphorylation is maintained by S6K2
and/or other reported kinases [25, 26]. and it is also
possible that the rescue in skeletal muscle may occur
through phosphorylation of other S6K1 substrates.
The rescue of PGC-1α in skeletal muscle was not
observed in cardiac tissue (Supplementary Figure S5B),
further supporting our findings that cardiac function is
not improved in long-lived Lmna−/− S6K1+/− mice.

Muscle-specific S6K1 knockdown improves survival in
Lmna−/− mice

Given our findings that Lmna−/− mice with reduced
S6K1 activity have enhanced survival and improved
skeletal muscle (but not cardiac and metabolic) func-
tion, we decided to target S6K1 specifically in skeletal
muscle to provide a more direct test of the role of ele-
vated mTORC1 signaling in this tissue. Thus, we
generated a muscle-specific S6K1 knockout mice in the
Lmna−/− context to test this hypothesis (Supplementary
Figure S1B). A breeding strategy utilizing Lmna+/−

mice [13], mice bearing one allele floxed S6K1 gene
(S6K1flox/+ or S6K1f/+ mice) [27], mice expressing Cre
recombinase under the control of the muscle creatine
kinase promoter (Ckmm-Cre) [28] was utilized to gen-
erate muscle-specific S6K1 knockdown in Lmna−/−

background (that is, Lmna−/− S6K1flox/flox Ckmm or
Lmna−/− S6K1f/f Ckmm mice) (Supplementary
Figure S1B). As expected, western blot analysis of a
broad spectrum of tissues showed that the S6K1 pro-
tein level is reduced in skeletal muscle and to some
extent in heart, but not in liver, WAT or BAT of
Lmna−/− S6K1f/f Ckmm mice (Figure 3a).

Interestingly and consistent with our hypothesis,
both Lmna−/− S6K1f/+ Ckmm and Lmna−/− S6K1f/f

Ckmmmice outlived control Lmna−/− mice (Figure 3b).
This survival study indicates that Lmna−/− S6K1f/+

Ckmm and Lmna−/− S6K1f/f Ckmm mice resemble the
conventional deletion of one copy of S6K1 in Lmna−/−

mice (Lmna−/− S6K+/− mice) (Figure 1b). Of note, the
S6K1 gene with the floxed allele alone or the presence
of the Ckmm gene alone could in theory have been a
confounding factor that contributed to longer lifespan
of Lmna−/− S6K1f/+ Ckmm and Lmna−/− S6K1f/f Ckmm
mice. However, the lifespan of the following mice
derived from our breeding strategy is indistinguishable
from Lmna−/− mice: Lmna−/− S6K1f/+, Lmna−/− S6K1f/f

and Lmna−/− S6K1+/+ Ckmm have identical survival

curves (Supplementary Figure S6). Given Lmna−/−

S6K1f/f Ckmm mice lived longest in terms of mean
lifespan (although no statistically different from
Lmna−/− S6K1f/+ Ckmm mice; Supplementary
Figure S6), we compared Lmna−/− S6K1+/+ with Lmna
−/− S6K1f/f Ckmmmice (both were derived from Lmna−/−

S6K1f/+×Lmna−/− S6K1f/+ Ckmm crossing;
Supplementary Figure S1B) for the remainder of
the study.

As with the Lmna−/− S6K1+/− mice and unlike
rapamycin-treated Lmna−/− mice [16], BW and fat
content of long-lived Lmna−/− S6K1f/f Ckmm mice was
comparable to Lmna−/− mice (Figure 3c and d). Pre-
viously, we showed that elevated lipolysis in WAT,
indicated by higher levels of ATGL, may underlie the
lipodystrophic phenotype in Lmna−/− mice [16]. Inter-
estingly, ATGL is further elevated in long-lived S6K1f/f

Ckmm mice (Supplementary Figure S7A), whereas
thermogenic protein UCP1 is indistinguishable in BAT
(Supplementary Figure S7B). The reasons for this ele-
vated lipolysis are unclear given that we did not
observe a dramatic change in BW and adiposity
(Figure 3c and d). Nonetheless, consistent with the data
from long-lived Lmna−/− S6K1+/− mice (Figure 1c and
d), the loss of adipose tissue is not rescued in the
Lmna−/− S6K1f/f Ckmm mice.

Muscle function is improved in Lmna−/− mice with
muscle-specific S6K1 knockout

Consistent with whole-body heterozygosity for
S6K1 in Lmna−/− mice (Lmna−/− S6K1+/−) (Figure 2),
the long-lived Lmna−/− S6K1f/f Ckmm mice also have
improved muscle function at 5 weeks of age, as eval-
uated by latency to fall and maximum speed on rotarod
(Figure 4a). At the molecular level, PGC-1α and Cox
IV were also rescued in muscle tissue (Figure 4b). This
improved mitochondrial function in skeletal muscle of
long-lived Lmna−/− S6K1f/f Ckmm mice is also further
supported by a significant increased NRF1 and a trend
toward increased mtTFA (Figure 4b). Thus, Lmna−/−

S6K1f/f Ckmm mice resemble Lmna−/− mice bearing the
whole-body knockdown S6K1 (Lmna−/− S6K1+/− mice;
Figure 2) for lifespan extension and improved muscle
function. Consistent with findings in the Lmna−/−

S6K1+/− mice, we did not observe a significant sup-
pression of p-S6 in muscle of Lmna−/− S6K1f/f Ckmm
mice (Figure 4b) even though S6K1 levels were reduced
as expected (Figure 3a).

Of note, the partial knockdown S6K1 is also
observed in the heart tissue of long-lived Lmna−/−

S6K1f/f Ckmm mice (Figure 3a), reflecting previously
published data showing that Cre driven by the muscle
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Figure 3 Muscle-specific S6K1 knockout improves survival of Lmna−/− mice. (a) Western blots of S6K1 protein expression in
muscle (gastrocnemius), heart, liver, subcutaneous (Sub.) fat and brown adipose tissue (BAT). Representative blot derived from
two mice for each genotype. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as loading control. Relative S6K1
protein levels (normalized to GAPDH) were quantified. Each value is mean± s.e.m. for the number of mice indicated in
parentheses. P-values were derived from unpaired two-tailed Student’s t-test. (b) Kaplan–Meier survival plot of Lmna−/− S6K1+/+

(n = 24, black), Lmna−/− S6K1f/+ Ckmm (n = 40, red) and Lmna−/− S6K1f/f Ckmm (n = 42, blue) mice. Survival is significantly
increased in Lmna−/− S6K1f/+ Ckmm (red) and Lmna−/− S6K1f/f Ckmm (blue) mice (Po0.01 and Po0.001, respectively, by log-
rank test). Data from males and females are combined. Symbols represent individual mice. (c) Body weight (BW) of Lmna−/−

S6K1+/+ (started with n = 22, black), Lmna−/− S6K1f/+ Ckmm (started with n = 38, red) and Lmna−/− S6K1f/f Ckmm (started with
n = 39, blue) mice were measured from 4 weeks of age. (d) Adiposity (percent body fat) was measured weekly ((fat mass/
BW) × 100) from Lmna−/− S6K1+/+ (started with n = 4, black) and Lmna−/− S6K1f/+ Ckmm (started with n = 5, red) and Lmna−/− S6K1f/

f Ckmm (started with n = 8, blue) mice from 4 weeks of age.
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Figure 4 Improvedmuscle function in long-lived Lmna−/− S6K1f/f Ckmmmice. (a) Analysis of muscle function by rotarod test. Long-
lived Lmna−/− S6K1f/f Ckmm mice experienced significantly increased latency to fall and maximum speed reached compared to
Lmna−/− S6K1+/+ mice at 5 weeks of age. (b) Signaling through the mTORC1 pathway, indicated by p-S6, in muscle
(gastrocnemius) tissue of long-lived Lmna−/− S6K1f/f Ckmm mice. Relative p-S6 levels (normalized to S6) and relative PGC-1α,
Cox IV, NRF1 and mtTFA protein levels (normalized to GAPDH) were quantified. Each value is mean± s.e.m. for replicate
numbers indicated in parentheses, and statistical significance was determined by unpaired two-tailed Student’s t-test.
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creatine kinase promoter is also partially expressed in
cardiac tissue [28]. This raised a caveat that extended
survival of Lmna−/− S6K1f/f Ckmm mice may be attri-
butable to improved cardiac function due to genetic
ablation of S6K1. However, the rescue of PGC-1α and
Cox IV protein levels in muscle tissue (Figure 4b) were
not observed in heart tissue of long-lived Lmna−/−

S6K1f/f Ckmm mice (Supplementary Figure S8). In
addition, even though long-lived Lmna−/− S6K1+/− mice
had reduced levels of phospho-rpS6 in cardiac tissue
(Supplementary Figure S5B), no improvement of car-
diac function was observed (Supplementary
Figure S5A) and PGC-1α protein levels were unaf-
fected (Supplementary Figure S5B).

Whole-body overexpression of 4E-BP1 shortened
survival of Lmna−/− mice

Another well-studied downstream target of
mTORC1 is the translational repressor, 4E-BP1 [2, 3],
the eIF4E-binding protein. If rapamycin extends life-
span of Lmna−/− by reducing mTORC1-mediated
phosphorylation of 4E-BP1 [15], Lmna−/− mice bear-
ing whole-body 4E-BP1-overexpression might be
expected to live longer than Lmna−/− mice and have
reduced pathology. To test this hypothesis, we crossed
Lmna+/− mice with those expressing whole-body 4E-
BP1 [29]. to generate Lmna−/− mice overexpressing 4E-
BP1 (Lmna−/− 4E-BP1) (Supplementary Figure S1C).

To our surprise, ubiquitous overexpression of 4E-
BP1 shortened the mean lifespan of Lmna−/− mice by
19% (Figure 5a). With respect to the sex of the mice,
Lmna−/− 4E-BP1 female mice are more adversely
affected than males (Supplementary Figure S9A, D).
This short lifespan may relate to extremely small body
size of the Lmna−/−4E-BP1 mice (Figure 5b and c,
Supplementary Figure S9B, C, E, F), a finding con-
sistent with our previous study showing that wild-type
mice overexpressing 4E-BP1 have smaller body size
and less adiposity [29].

We evaluated lipolysis in WAT of Lmna−/− 4E-BP1
mice, as measured by levels of ATGL and mono-
acylglycerol lipase (MGL), as well as thermogenesis, as
indicated by levels of UCP1 in BAT. Surprisingly,
lipolysis was further elevated in WAT and thermo-
genesis was further suppressed in BAT of Lmna−/− 4E-
BP1 mice (Figure 5d and e). Increased lipolysis and
suppressed thermogenesis suggest that Lmna−/− 4E-BP1
mice may experience further increased energy expen-
diture. This Lmna−/− 4E-BP1mouse model also further
supports our hypothesis that elevated energy expendi-
ture is one factor that shortens the survival of Lmna−/−

mice [16].

In summary, overexpression of 4E-BP1 exaggerates
the small phenotype in Lmna−/− mice and further
enhances early mortality. These results also echo our
previous study that rapamycin did not affect phos-
phorylation nor total levels of 4E-BP1 protein in Lmna
−/− mice, especially in heart and muscle tissues [15].
Thus, all these results further suggest that rapamycin
extends survival of Lmna−/− mice at least in part by
mediating the mTORC1-S6K1 branch of the pathway,
but not the mTORC1-4E-BP1 branch.

Discussion

Rapamycin-mediated mTORC1 inhibition rescues
cardiac, skeletal muscle and adipose function and
robustly enhances survival in Lmna−/− mice [15, 16], a
model for the cardiomyopathy and muscular dystro-
phy associated with human mutations in LMNA [8].
Here, we identified a key molecular mechanism
underlying lifespan extension by rapamycin in Lmna−/−

mice. Specifically, genetically ablation of S6K1, a
downstream of mTORC1, in Lmna−/− mice (Lmna−/−

S6K1+/− mice) resembles the effect of rapamycin in
Lmna−/− mice. This improved survival in long-lived
Lmna−/− S6K1+/− mice is not due to improved function
in cardiac nor adipose tissues, but likely skeletal muscle
given the fact that genetic ablation of S6K1 specifically
in muscle tissues (Lmna−/− S6K1f/f Ckmm mice) also
improved survival of Lmna−/− mice. Lifespan extension
by contrast is not observed in Lmna−/− mice over-
expressing 4E-BP1, the other canonical downstream of
mTORC1. Thus, rapamycin extends survival of
Lmna−/− mice at least by suppressing S6K1 pathway in
muscle (Supplementary Figure S10).

We found that reducing S6K1 activity improved
the survival of Lmna−/− mice, likely by improving
muscle function and possibly by rescuing PGC-1α
protein levels in skeletal muscle. Given that PGC-1α is
a master co-transcriptional factor regulator of mito-
chondrial biogenesis and mitochondrial function,
[22, 30]. which declines with age [31], this is likely a
critical factor underlying muscle-specific defects in
Lmna−/− mice. Increased PGC-1α expression in long-
lived Lmna−/− mice (Lmna−/− S6K1+/− and Lmna−/−

S6K1f/f Ckmmmice) presumably induces mitochondrial
subunits Cox IV and drives more ATP generation.
Consistently, PGC-1α expression and ATP production
are reduced in fibroblasts derived from Hutchinson-
Gilford progeria syndrome, a lethal genetic disease
caused by point mutation in LMNA, and both can be
rescued by methylene blue, a mitochondrial-targeting
antioxidant [32]. Of note, long-lived S6K1−/− mice
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Figure 5 Overexpression of 4E-BP1 shortened survival of Lmna−/− mice. Genetically overexpressing 4E-BP1 shortens/impairs
survival in Lmna−/− mice. (a) Kaplan–Meier survival plot of Lmna−/− (n = 29, black) and Lmna−/− 4E-BP1 (n = 15, green) mice.
Survival is significantly decreased in Lmna−/− 4E-BP1 mice (P = 0.0174 by log-rank test), resulting in a 19% decrease in mean
lifespan (50.5 vs 42.5 days). Data from males and females are combined. Symbols represent individual mice. (b) Body weight
(BW) of Lmna−/− (started with n = 24, black) and Lmna−/− 4E-BP1 (started with n = 13, green) mice were measured every other day
started at 4 weeks of age. (c) Adiposity (percent body fat) was measured weekly ((fat mass/BW) × 100) from Lmna−/− (started with
n = 17, black) and Lmna−/− 4E-BP1 (started with n = 12, green) mice. (d) Activity of lipolysis, indicated by ATGL and MGL, in white
adipose tissue (WAT) of Lmna−/− (n = 6) and Lmna−/− 4E-BP1 (n = 3) mice. Relative ATGL and MGL levels (normalized to
GAPDH) were quantified. (e) Western blots of UCP1 levels in brown adipose tissue (BAT) derived from Lmna−/− (n = 5) and
Lmna−/− 4E-BP1 (n = 6) mice. Relative UCP1 levels (normalized to GAPDH) were quantified. Each value is mean± s.e.m. for
replicate numbers indicated in parentheses, and statistical significance was determined by unpaired two-tailed Student’s t-test.
ns, no significance.
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display improved rotarod performance [18] as well as
elevated PGC-1α expression in both muscle and adi-
pose tissues [33]. Life extension by dietary restriction,
which also suppresses S6K1 signaling, improves
rotarod performance in mice [34] and increases both
PGC-1α and Cox IV expression in skeletal muscle [35].
Furthermore, PGC-1α is also required for the dietary
restriction-induced increases in mitochondrial gene
expression and mitochondrial density in skeletal mus-
cle [36]. These independent studies, coupled with our
findings, further demonstrate the conserved roles of
mTORC1-S6K1 signaling in normal aging and Lmna
gene-derived laminopathies, particularly with respect
to muscle function.

Although reducing mTORC1-S6K1 activity
improves muscle function and extends lifespan in both
normal and Lmna−/− mice, many studies show that
intact mTORC1-S6K1 signaling is required for muscle
function. For instance, muscle-specific inactivation of
mTOR leads to severe myopathy, resulting in pre-
mature death [37]. Skeletal muscle-specific ablation of
raptor (mTORC1) can cause metabolic changes,
reduces mitochondrial biogenesis and results in muscle
dystrophy [38]. During muscle hypertrophy, S6K1 is
required for skeletal muscle force production [39].
Furthermore, mice deficient in ribosomal protein S6
phosphorylation (rpS6P− /− mice), a downstream target
of S6K1, suffer from muscle weakness that reflects a
growth defect and energy deficit [40]. These studies
based on genetic mouse models indicate that mTORC1
pathway is a crucial regulator of skeletal muscle growth
and function. Notably, mTORC1 signaling is aber-
rantly elevated in skeletal muscle in Lmna−/− mice [15],
and the reduced mTORC1 activity in Lmna−/− S6K1+/−

mice may compensate for this aberrant elevation.
Double knockout (Lmna−/− S6K1−/−) mice may not be
long-lived because of effects in other tissues. For
instance, these mice exhibit an even greater reduction
in BW (Supplementary Figure S2H, I), which is likely
deleterious to survival in an already cachexic back-
ground (Supplementary Figure S2G). Together, these
findings suggest that the levels of mTORC1 activity
must be well-balanced—too much contributes to
pathology in disease states (and possibly normal
aging), whereas too little impairs the ability of tissues to
respond to stress and/or regenerate.

The role of mTORC1-S6K1 in cardiovascular aging is
well documented [41, 42]. Specifically, suppression of
mTORC1-S6K1 signaling, either by rapamycin or diet-
ary restriction, improves cardiac functions in normal
mice [43–45]. Previously, we also found that suppression
of S6K1 signaling by rapamycin improves cardiac

function in Lmna−/− mice [15]. Intriguingly, improved
cardiac function was not observed in long-lived Lmna−/−

S6K1+/− mice (Supplementary Figure S5). Although it
may be possible that complete inhibition of S6 kinase
activity is required for restoration of cardiac function, it
is also possible that the pathology evoked by aberrant
mTORC1 signaling in this tissue occurs through phos-
phorylation of other mTORC1 substrates. We have
previously shown that autophagy is impaired in heart
tissue of Lmna−/− mice and speculate that this may be
mediated through phosphorylation of ULK1, or other
autophagy-related substrates [15].

It has been suggested that the regulation of
mTORC1-mediated fat metabolism involves signaling
through S6K1 and 4E-BP1 [46–48]. More direct evi-
dence of mTORC1-S6K1 pathway’s role in fat meta-
bolism has been obtained from S6K1−/− mice [18, 33],
where a lean phenotype and resistance to obesity in
part owing to increased lipolysis [33]. Furthermore,
mice with adipose-specific deficiency of raptor, an
mTORC1 component, show a lean phenotype, which is
related to increased energy expenditure and increased
mitochondrial uncoupling [49]. However, we did not
observe a significant difference in the adiposity of long-
lived Lmna−/− S6K1+/− and Lmna−/− S6K1f/f Ckmmmice
compared with controls. Thus, altered adiposity may
not be linked to enhanced survival in Lmna−/− S6K1+/−

and Lmna−/− S6K1f/f Ckmm mice [16].
To our surprise, overexpression of 4E-BP1 shor-

tened the survival of Lmna−/− mice, especially in
females (Figure 5, Supplementary Figure S9). The
results are unexpected, considering the beneficial
effects of 4E-BP1 in metabolism of wild-type mice. For
instance, wild-type mice with increased 4E-BP1
expression are resistant to high-fat diet-induced obe-
sity [29]. Conversely, the amount of WAT is sig-
nificantly decreased in male 4E-BP1−/− mice [50].
Combined genetic ablation of 4E-BP1 and 4E-BP2,
that is, hyperactivation of mTORC1 signaling
throughout body (4E-BP1 and 2−/− mice), also led to
decreased lipolysis, increased TGA accumulation, and
increased insulin resistance [51]. A follow-up study
showed that mouse embryonic fibroblasts derived from
mice lacking 4E-BPs accumulate more fat by suppres-
sing ATGL, the enzyme involved in the first step of
triglyceride hydrolase activity in lipolysis [52]. In line
with this regulatory mechanism, short-lived Lmna−/−

4E-BP1mice also experienced elevated ATGL inWAT
(although only a trend) as well as decreased UCP1 in
BAT (Figure 5). Thus, we speculate that the deleterious
effect of 4E-BP1 overexpression in Lmna−/− mice might
be a result of further increased energy expenditure,
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causing a reduction in adiposity and a shorter lifespan
[16]. In sum, these findings indicate that altered
mTORC1-4E-BP1 signaling cannot explain
rapamycin-mediated life extension in Lmna−/− mice.

Based on results from our genetic interventions, the
life extension by rapamycin in Lmna−/− mice is likely
mediated by suppressing mTORC1-S6K1 signaling,
which improves mitochondrial activity by rescuing the
suppressed PGC-1α expression in skeletal muscle.
However, mTORC1-4E-BP1 signaling may not be
involved in lifespan extension. It appears that 4E-BP1
overexpression may reduce the adiposity in already
lipoatrophic Lmna−/− mice. Although a reduction in
S6K1 activity leads to a 20 ~ 30% lifespan extension in
Lmna−/− mice, modulation of S6K1 cannot recapitulate
all the beneficial effects by rapamycin, which doubles
their survival [15, 16]. This suggests that mTORC1
phosphorylation of multiple substrates may account
for different aspects of toxicity. As stated the cardiac
toxicity may reflect mTORC1-mediated control of
autophagy [15] and the adipose phenotypes may be
mediated through inhibition of UCPs in BAT [46].
Therefore, to recapitulate the effects of rapamycin, it
may be necessary to target multiple downstream sub-
strates. We posit that from a therapeutic perspective,
with respect to laminopathies, other disease and pos-
sibly aging itself, it may be necessary for full efficacy to
target mTORC1 directly, or perhaps upstream com-
ponents of the signaling pathway. Furthermore,
human diseases mimicking Lmna−/− mice—muscular
dystrophy and progeroid syndromes—targeted inhibi-
tion of S6K1 might be an effective therapeutic
approach, whereas not as powerful as rapamycin but
might limit associated immunosuppressive side effects.

Materials and Methods

Mice husbandry
Mice were bred and maintained under specific pathogen-free

conditions. A tail biopsy was performed in weaning mice at
3 weeks of age for genotyping by polymerase chain reaction with
specific primers. All the animals had food and water ad libitum
and were kept in standard temperature conditions (22 °C) and
12:12-h light–dark cycles. All animal care and experimental
procedures were approved by the Institutional Animal Care and
Use Committee at the Buck Institute for Research on Aging.

Generation of whole-body S6K1 knockdown mice in
Lmna−/− context

Lmna+/− mice (C57BL/6J genetic background) [15] were
crossed with S6K1+/−mice (C57BL/6J genetic background) [17]
to generate heterozygotic (Lmna+/− S6K1+/− ) mice
(Supplementary Figure 1A). Male double heterozygotic
(Lmna+/− S6K1+/− ) mice and female double heterozygotic (Lmna

+/− S6K1+/− ) mice were mated to produce Lmna−/− S6K1+/− ,
Lmna−/− S6K1−/− and wild-type mice (Lmna+/+ S6K1+/+) for the
present experiment.

Generation of muscle-specific S6K1 knockdown mice in
Lmna−/− context

Lmna+/− mice (C57BL/6J genetic background) [15] were
crossed with mice bearing one floxed S6K1 allele mice (S6K1flox/+

or S6K1f/+) (C57BL/6J genetic background) [27] to generate
Lmna+/− S6K1f/+ mice (Supplementary Figure 1B). Meanwhile,
S6K1f/+ mice were crossed with mice expressing Cre recombinase
under the control of the muscle creatine kinase promoter
(Ckmm-Cre) (C57BL/6J genetic background) [28], yielding
S6K1f/+ Ckmm mice. Lmna+/− S6K1f/+ Ckmm mice were then
generated by crossing Lmna+/− mice with S6K1f/+ Ckmm mice.
Lmna+/− S6K1f/+ mice and Lmna+/− S6K1f/+ Ckmm mice were
subsequently crossed to generate the following genotypes:
Lmna−/− S6K1+/+, Lmna−/− S6K1f/+ Ckmm and Lmna−/− S6K1f/f

Ckmm mice.

Generation of Lmna−/− mice overexpressing 4E-BP1
Lmna+/− mice (C57BL/6J genetic background) [15] were

crossed with mice overexpressing one copy of 4E-BP1 (C57BL/
6J genetic background), which is described in our previous study
[29]. (Supplementary Figure 1C). Then, Lmna+/− mice were
crossed with Lmna+/− 4E-BP1 mice to generate Lmna−/− mice as
well as Lmna−/− 4E-BP1 mice for the present experiment.

Lifespan study
All mice on the lifespan studies were monitored everyday

from 4-week of age until the end of life. BW was measured every
other day in all mice. No mice used for the lifespan study were
used for any other biochemical or metabolic tests.

Body composition
Whole-body composition (fat mass, lean mass and free

water) analysis was conducted weekly using quantitative nuclear
magnetic resonance machine (EchoMRI-2012; Echo Medical
Systems, Houston, TX, USA) starting at 4 weeks of age.

Rapamycin injection
Mice were injected intraperitoneally with 8 mg kg− 1 BW

rapamycin (LC Laboratories, Woburn, MA, USA) or vehicle
every other day according to our previous study [16]. A stock
solution of 50 mg ml− 1 rapamycin was prepared in 100% ethanol
and stored at − 20 °C. Rapamycin was then diluted in vehicle
(5% polyethylene glycol and 5% Tween 80) before injection. The
vehicle control consisted of the same volume ethanol.

GTT
GTT performed on non-anesthetized animals. Mice were

fasted with access to water for 16 h (overnight) before being
given a single injection intraperitoneally with 20% glucose at a
dose of 2 g kg− 1of BW. The tail prick was used for blood glucose
measurement at time points 0, 30, 60, 90, 120 and 180 min with
an ACCU-CHEK Aviva glucometer (Roche Diagnostics, Dal-
las, TX, USA) and the test strips. The mice for rapamycin study
were on 129Sv-C57BL/6J genetic background [16].
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Transthoracic echocardiography
Mouse cardiac structure and contractility were imaged using

VisualSonics Vevo2100 at 5–6 weeks of age. These experimental
approaches were adapted from our previous study [15, 43, 53].
In brief, mice were initially anesthetized with ~ 2.25% iso-
fluorane, placed on a heating pad (37 °C) and maintained under
light anesthesia so as to maintain the highest possible heart rate
during data collection. LV parameters were obtained from
M-mode recordings. LV end diastolic diameter and systolic
diameter were calculated from the mean of at least three sepa-
rate cardiac cycles. To calculate myocardial performance index
and the E/A ratio, pulsed wave Doppler measurements were
taken in the four-chamber view of the heart. All standard car-
diac parameters were calculated off-line using VisualSonics
software (v1.3.0).

Rotarod
In forced motor activity on a rotating rod (rotarod) assays to

assess motor and neurological function was adapted from our
previous study [15]. In brief, the day before the actual rotarod
testing, the mice were placed on the rotarod set to a beginning
speed of 5 r.p.m., with an acceleration rate of 0.1 r.p.m. s− 1. The
max speed was set at 80 r.p.m.. They were allowed to practice
the rotarod five times, one repetition every 5 min. If the animal
did not fall off, each repetition would end at 5 min. The animals
were tested 24 h after the practice day, and the procedure was the
same except scores were recorded. The score for each repetition
was the time in second and the speed in r.p.m. until the animal
fell off the rotarod. The average of five repetitions was used to
score the sessions.

Tissue harvesting and immunoblotting
Tissues were dissected from the mice and immediately frozen

in liquid nitrogen for western blotting analysis. Muscle (gas-
trocnemius), heart, liver, WAT and BAT were harvested and
immediately frozen in liquid nitrogen. Tissue samples were lysed
in cold RIPA buffer supplemented with phosphatase inhibitor
and protease inhibitor cocktail tablets. Tissue sections were
homogenized using the Omni TH homogenizer (Omni Interna-
tional, Kennesaw, GA, USA) on ice in RIPA buffer (300 mM

NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS,
50 mM Tris (pH 8.0), protease inhibitor cocktail (Roche) and
phosphatase inhibitor 2, 3 (Sigma, Atlanta, GA, USA)) and then
centrifuged at 13 200 r.p.m. for 10 min at 4 °C. The supernatants
were collected and protein concentrations were determined
using the DC protein assay (Bio-Rad, Los Angeles, CA, USA).
Equal amounts of protein were resolved by SDS-PAGE (4–12%
Bis-Tris gradient gel, Invitrogen, Swedesboro, NJ, USA),
transferred to membranes and analyzed by western blotting with
protein-specific antibodies. The antibodies against the phos-
phorylated rsS6S240/244 (5364), S6 (2217), ATGL (2439), the
phosphorylated 4E-BP1S65 (9451), 4E-BP1 (9452), the phos-
phorylated HSLS563 (4139), S6K1 (2708), FAS (3180), Cox IV
(4850), NRF1 (46743) and glyceraldehyde 3-phosphate dehy-
drogenase (2118) were purchased from Cell Signaling Technol-
ogy (Danvers, MA, USA). PGC-1α (ab54481),
monoacylglycerol lipase (ab24701) and UCP1 (ab23841) were
purchased from Abcam (Boston, MA, USA). Desmin (sc23879)

and mtTFA (sc166965) were purchased from Santa Cruz Bio-
technology (Santa Cruz, CA, USA). Protein bands were
revealed using the Amersham ECL detection system (GE
Healthcare, Marlborough, MA, USA) and quantified by den-
sitometry using ImageJ software (http://rsb.info.nih.gov/ij/).

Statistical analysis
All statistical analyses were conducted using GraphPad

Prism 6 (GraphPad, La Jolla, CA, USA). The survival curves
were completed using a Kaplan–Meier curve. We used a log-
rank (Mantel–Cox) test to perform the statistical analyses of the
survival curves. All the other data are shown as mean± s.e.m.
The statistical significance of differences between two groups
was determined using unpaired, two-tailed Student’s t-test.
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