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Mitochondrial DNA haplotypes induce differential patterns of
DNA methylation that result in differential chromosomal gene
expression patterns
William T Lee1,2,6, Xin Sun1,2,6, Te-Sha Tsai1,2,6, Jacqueline L Johnson1,2,6, Jodee A Gould3, Daniel J Garama2,4, Daniel J Gough2,4,
Matthew McKenzie1,2, Ian A Trounce5 and Justin C St. John1,2

Mitochondrial DNA copy number is strictly regulated during development as naive cells differentiate into mature cells to ensure
that specific cell types have sufficient copies of mitochondrial DNA to perform their specialised functions. Mitochondrial DNA
haplotypes are defined as specific regions of mitochondrial DNA that cluster with other mitochondrial sequences to show the
phylogenetic origins of maternal lineages. Mitochondrial DNA haplotypes are associated with a range of phenotypes and disease.
To understand how mitochondrial DNA haplotypes induce these characteristics, we used four embryonic stem cell lines that have
the same set of chromosomes but possess different mitochondrial DNA haplotypes. We show that mitochondrial DNA haplotypes
influence changes in chromosomal gene expression and affinity for nuclear-encoded mitochondrial DNA replication factors to
modulate mitochondrial DNA copy number, two events that act synchronously during differentiation. Global DNA methylation
analysis showed that each haplotype induces distinct DNA methylation patterns, which, when modulated by DNA demethylation
agents, resulted in skewed gene expression patterns that highlight the effectiveness of the new DNA methylation patterns
established by each haplotype. The haplotypes differentially regulate α-ketoglutarate, a metabolite from the TCA cycle that
modulates the TET family of proteins, which catalyse the transition from 5-methylcytosine, indicative of DNA methylation, to
5-hydroxymethylcytosine, indicative of DNA demethylation. Our outcomes show that mitochondrial DNA haplotypes differentially
modulate chromosomal gene expression patterns of naive and differentiating cells by establishing mitochondrial DNA haplotype-
specific DNA methylation patterns.
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INTRODUCTION
The murine mitochondrial genome (mtDNA) is a double-stranded,
~ 16.3 kb, circular genome.1 It encodes 13 proteins of the electron
transfer chain, which generates the vast majority of cellular energy
through oxidative phosphorylation (OXPHOS). Whilst the majority
of the subunits of the electron transfer chain are encoded by the
nuclear genome, each of the complexes, except for complex II, has
one or more of its proteins encoded by mtDNA.2 mtDNA also
encodes two rRNAs and 22 tRNAs and has one major non-coding
region, the D-loop. The D-loop possesses two hypervariable
regions that identify maternal relatives,3 and is the site of
interaction for the nuclear-encoded transcription and replication
factors.4

mtDNA copy number is strictly regulated during development
and differentiation.5 The primordial germ cells possess ~ 200
copies of mtDNA,6 which exponentially increase during oogenesis
until the mature, fertilisable oocyte has 4150 000 copies.7,8

Following fertilisation, there is active reduction of mtDNA copy
number until the blastocyst stage, the final stage of preimplanta-
tion development.6,8 Whilst the blastocyst’s outer ring of cells, the
trophectodermal cells, replicate mtDNA as they differentiate into
the trophectoderm,8 the inner cell mass cells, which form the

embryo proper and are the source of embryonic stem (ES) cells,
further reduce mtDNA copy number to establish the mtDNA set
point.8,9

The mtDNA set point ensures that all naive (undifferentiated,
pluripotent) cells maintain low mtDNA copy number, and, thus,
use glycolysis to generate ATP.10 This promotes cellular prolifera-
tion to enable the embryo to generate a critical mass of cells for
post-gastrulation development. Once differentiation is initiated,
cells replicate their mtDNA in a cell-specific manner,11 which is
mediated by the cell-specific DNA methylation of a CpG island in
exon 2 of the catalytic subunit of the mtDNA-specific replication
factor, DNA polymerase gamma (PolgA).12 Therefore, cells with a
high requirement for ATP through OXPHOS, such as heart, muscle
and neuronal cells, acquire high numbers of mtDNA copy, whilst
cells with a lower requirement for ATP possess fewer copies of
mtDNA and use glycolysis.13

mtDNA copy number is important to cellular fate. Altering
mtDNA copy number in tumour cells can modulate chromosomal
gene expression patterns, and promote differentiation.11,14 Like-
wise, mtDNA haplotypes can influence chromosomal gene
expression patterns in ES cells15 and tumours.14 mtDNA haplo-
types are defined by specific regions of mtDNA that identify the
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phylogenetic origins of maternal lineages.16 In a range of species,
mtDNA haplotypes are associated with adaptation to warm and
cold environments,17 predisposition to diseases of aging such as
cancer,18 diabetes,19 Alzheimer’s20 and Parkinson’s,21 and
fertility.22,23

We have investigated whether chromosomal gene expression
patterns can be altered in a haplotype-specific manner due to
modulation of global DNA methylation patterns. We assessed
global patterns of hypo- and hypermethylation in four ES cell lines
each possessing the same chromosomal genotype but different
mtDNA genotypes, namely mtDNA divergent ES cell lines. We
assessed their mtDNA replicative efficiency during differentiation
and, using DNA demethylation agents, determined whether their
DNA methylation patterns could be altered to modulate
chromosomal gene expression patterns.

RESULTS
Next-generation sequencing of mitochondrial genomes
We sequenced the mitochondrial genomes of four mtDNA
divergent mouse ES cell lines (CC9mus, CC9spretus, CC9dunni and
CC9pahari) generated from the fusion of enucleated cytoplasts of
Mus musculus, Mus spretus, Mus dunni and Mus pahari cells to
mitochondrial depleted M. musculus (CC9.3.1) ES cells; and the
parental CC9.3.1 ES cell line to determine their genetic diversity.
Figure 1a shows the phylogenetic representation of the four lines
relative to the parental line. As the CC9mus line possessed the
same mtDNA genotype as the parental line, it was used to exclude
bias resulting from generation of the cells. The degree of
divergence between the CC9mus and the CC9spretus lines is
1.82 Mya, CC9dunni is 3.88 Mya and CC9pahari is 6.44 Mya
(Figure 1b). Supplementary Table S1 shows the single-nucleotide
polymorphisms amongst the haplotypes and Supplementary
Table S2 the respective changes in amino-acid codons.

Gene expression analysis
To determine whether mitochondrial haplotypes influence the
differentiation potential of the four mtDNA divergent ES cell lines,
each line was induced to undergo neural differentiation. We
analysed cells by real-time PCR for expression of master regulators
and endpoint markers of differentiation at 3, 12 and 21 days of
differentiation. The nine genes included Musashi1, a neural
precursor marker; Nestin, a primitive neuroepithelial marker;
Ncam1, an immature neuronal committed progenitor marker;
Sox1, a neuroectodermal marker; Pax6, an advanced neuronal
precursor cell marker; Tubb3, indicative of newly differentiated
neurons; Map2a, indicative of mature neurons; Gfap, indicative of
mature astrocytes; and Syp, indicative of mature neurons with
synaptic vesicles.
Apart from Musashi1, on day 3, the lines showed discordant

patterns of expression of the master regulators of neural
differentiation (Figure 2a). Whilst there was the anticipated
upregulation of Pax6 with CC9spretus and CC9pahari cells being
significantly different, Ncam1 and Tubb3 were significantly higher
in each of the lines apart from CC9mus cells. Both Nestin and Sox1
also showed upregulation in CC9pahari cells. For the endpoint
markers, there was precocious expression of Syp in CC9spretus cells
and less so in CC9dunni and CC9pahari cells with a similar pattern for
Gfap in CC9spretus and CC9pahari cells whilst only CC9spretus was
upregulated for Map2a. On day 12, CC9pahari cells had very high
levels of expression for each of the genes, including precocious
expression of the endpoint markers Map2a, Gfap and Syp
(Figure 2b). On day 21, CC9mus and CC9spretus cells regulated
expression at similar levels but there were significant increases in
CC9dunni and CC9pahari cells for Sox1, and nonsignificant increases
for Map2a, Nestin, Ncam1, Gfap (CC9pahari only), Tubb3 (CC9dunni

only) and Sox1. Consequently, there were discordant patterns of
neural gene expression during differentiation and at endpoint

Figure 1. The phylogenetic relationship between the divergent mtDNA ES cell lines. (a) Phylogenetic clustering of mtDNA haplotypes from
CC9mus, CC9spretus, CC9pahari and CC9dunni whole mitochondrial genome sequences. A Maximum Likelihood phylogenetic tree was constructed
with the GTR model and Neighbor-Joining method with 1000 bootstrap replicates. Bootstrap values are expressed as a percentage;
(b) Molecular Phylogenetic analysis by the Maximum Likelihood method. Time of divergence was estimated using the RelTime method. The
estimated divergence time for M. musculus and M. spretus was 1.82 Mya; M. musculus and M. dunni was 3.88 Mya; and M. musculus and
M. pahari was 6.44 Mya.
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based on a cell’s mtDNA haplotype, which were exaggerated as
divergence increased (Figure 2c).

mtDNA replicative efficiency
As the divergent ES cell lines showed discordant patterns of
expression during neural differentiation, we determined their
capacity to regulate mtDNA copy number. We assessed mtDNA
copy number per cell for each line and expressed this value as a
function of the ratio of 5-methylcytosine (5mC—DNA methylation)
to 5-hydroxymethylcytosine (5hmC—DNA demethylation) within
exon 2 of PolgA, that is, their mtDNA replicative efficiencies.
Undifferentiated CC9mus cells exhibited low mtDNA replicative
efficiency (Figure 3a), as expected for undifferentiated murine ES
cells.9,12 However, efficiencies were significantly higher for the
other lines. On day 3 of differentiation (Figure 3b), there was a
slight increase in mtDNA replicative efficiency for CC9mus cells,
indicative of increased mtDNA copy number and the onset of
differentiation,9 whilst CC9spretus cells returned to very low levels.
However, CC9dunni and CC9pahari cells maintained significantly high
efficiencies.
On day 12 (Figure 3c), CC9mus cells further increased their

replicative efficiency in synchrony with a more differentiated state.
However, CC9spretus and CC9dunni cells had significantly lower and
CC9pahari cells significantly higher efficiencies. On day 21
(Figure 3d), CC9mus cells increased their mtDNA replicative
efficiency, whilst the other lines had significantly lower

efficiencies. Consequently, only CC9mus cells exhibited the
potential to replicate mtDNA copy synchronously during
differentiation.

Levels of enrichment for POLGA, ESRRB and TFAM
To determine the degree of POLGA affinity for each of the mtDNA
haplotypes, using a chromatin immunoprecipitation (ChIP) assay,
we assessed its levels of enrichment at its primary binding site in
the origin of replication of the heavy strand (OH) in the D-loop
where mtDNA replication is initiated. In undifferentiated cells, the
levels of POLGA enrichment were greater in the CC9mus cells
(Figure 4a). There was a similar outcome for the enrichment of
EsRRB (Figure 4b), a key regulator of pluripotency that binds just
upstream of the DNA methylated CpG island in exon 2 of PolgA.
This suggests that the interaction of a key regulator of
pluripotency and the mtDNA-specific replication factor are more
tightly regulated in undifferentiated CC9mus ES cells, and more
efficient at maintaining the mtDNA set point and restricting
precocious differentiation than for the other haplotypes. When we
assessed the levels of DNA methylation in the CpG island at exon 2
of PolgA by pyrosequencing, undifferentiated CC9mus cells
exhibited higher levels of DNA methylation at each of the 11
sites compared with the other divergent lines (Figure 4c). Again,
using a ChIP assay, there was discordant binding affinity for TFAM,
the mitochondrial transcription factor that initiates mtDNA
replication (Figure 4d). Likewise, there was discordant binding

Figure 2. Gene expression during neural differentiation of divergent mtDNA ES lines. CC9mus, CC9spretus, CC9dunni and CC9pahari ES cells were
induced to differentiate into neural lineages over 21 days and were assessed at days 3 (a), 12 (b) and 21 (c) for expression of Musashi1,
Synaptophysin, Pax6, Map2, Nestin, NCAM1, Gfap, Tubb3 and Sox1 by real-time PCR. *Po0.05; **Po0.01; ***Po0.001.
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affinity in the coding genes, namely the ATPase6 (Supplementary
Figure S1A), cytochrome B (Supplementary Figure S1B), Cox1
(Supplementary Figure S1C) and Nd1 (Supplementary Figure S1D)
genes, where TFAM likely acts as a packaging protein.24

DNA methylation induced by the divergent mtDNA haplotypes in
the CC9 chromosomal genome
As there were different patterns of neural gene expression and
discordant patterns of binding affinity for POLGA and TFAM for
each mtDNA haplotype, we assessed DNA methylation patterns
amongst the ES cell lines using the 2 × 105K CpG microarray. We
identified 8351 probes, which were assigned to 4243 loci of which
3552 were known genes. The CC9mus ES cells were the most
distinctive with 513 hypermethylated (Figure 5a) and 590
hypomethylated (Figure 5b) genes specific to this line. The
CC9spretus cells had 11 hypermethylated (Figure 5a) and 92
hypomethylated (Figure 5b) genes, the CC9dunni line 24 hyper-
methylated (Figure 5a) and 79 hypomethylated (Figure 5b) genes,
and the CC9pahari line 14 hypermethylated (Figure 5a) and 7
hypomethylated (Figure 5b) genes.
Following assignment to DAVID for functional annotation

clustering,25 5 of the 513 hypermethylated CC9mus genes
(Supplementary Table S3) were associated with the mitochon-
drion, 122 with transcriptional regulation and 40 with neuronal

differentiation and development. Of the hypomethylated CC9mus

genes, 53 genes were associated with the mitochondrion
(Supplementary Table S4), 91 with transcriptional regulation and
12 with neuronal differentiation. These DNA methylation patterns
are likely to influence mitochondrial respiration, cellular function and
differentiation. The 11 hypermethylated CC9spretus genes mostly
affected zinc finger proteins, which regulate DNA- and protein-
binding functions whilst the 92 hypomethylated genes affected
nuclear function and DNA binding. Most of the hypermethylated
CC9dunni genes affected the regulation of transcription and RNA
metabolic processing. Amongst the 79 hypomethylated CC9dunni

genes, 19 were associated with microtubules and cytoskeleton, 8
with cell cycle and 7 with RNA processing.

Modulation of the regulators of DNA methylation in divergent ES
cell lines
To determine whether the extensive hypermethylation patterns
observed in the divergent ES cells could be modulated by DNA
demethylation agents, we cultured CC9mus, CC9dunni and CC9pahari

ES cells in the presence of 5-Azacytidine (5-Aza) and vitamin C
(VitC) for 48 and 72 h, respectively. 5-Aza modulates DNA
methyltransferase 1 (DNMT1) and, therefore, inhibits DNA
methylation during cell division,26 whilst VitC acts on TET1 to
promote the conversion of 5mC to 5hmC to demethylate DNA.27

Figure 3. Replicative efficiency of divergent mtDNA ES lines. CC9mus, CC9spretus, CC9dunni and CC9pahari ES cells were induced to differentiate
into neural lineages over 21 days and were assessed at days 0 (a), 3 (b), 12 (c) and 21 (d) of differentiation for mtDNA copy number and ratios
of 5mC and 5hmC. MtDNA copy number was assessed by real-time PCR. Levels of enrichment for 5mC and 5hmC were assessed by MeDIP
using antibodies against 5mC and 5hmC, and real-time PCR across exon 2 of PolgA. The data are expressed as a ratio of mtDNA copy against
5mC/5hmC, where 5mC and 5hmC are indicative of DNA methylation and DNA demethylation, respectively. **Po0.01; ***Po0.001;
****Po0.0001.
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The addition of VitC greatly increased the expression of TET1 in
each of the lines (range =~ 20- to 460-fold) whilst 5-Aza
marginally affected TET1 activity (Figures 6a and b). Addition of
5-Aza upregulated DNMT1 expression slightly in the three lines
though there were also increases with VitC (Figures 6a and c). This
is likely to be a response to the inhibition of DNMT1 from
interacting within promoter regions by 5-Aza and VitC being
unable to inhibit DNMT1 activity. α-Ketoglutarate (α-KG) is a
product of the tricarboxylic acid (TCA) cycle and is a cofactor in the
conversion of 5mC to 5hmC to demethylate DNA.28 VitC increased
levels of α-KG (Figure 6d) whilst 5-Aza reduced levels in CC9dunni

and CC9pahari cells (Figure 6e). We also examined mitochondrial
malate dehydrogenase 2 (MDH2) activity, as MDH2 occurs before
α-KG in the TCA cycle, and observed a corresponding fold change
decrease in CC9dunni and CC9pahari cells with VitC treatment
(Figure 6f) but there was no change for 5-Aza (Figure 6g). These
results suggest that mtDNA haplotypes modulate the TCA cycle to
regulate global DNA methylation patterns.

Modulation of chromosomal gene expression by addition of VitC
and 5-Aza to divergent ES cells
To determine whether the changes to the modulators of DNA
methylation induced by 5-Aza and VitC affected chromosomal
gene expression patterns, we induced cells cultured with 5-Aza
and VitC to undergo neural differentiation. Using a Fluidigm array,
we analysed undifferentiated, and days 3 and 21 differentiated
cells for neural-specific markers associated with neurogenesis,
neuronal differentiation, endpoint neural differentiation, neuronal
ion channels and neuronal signal transduction that had exhibited
either hypermethylation or hypomethylation. We also analysed
regulators of DNA methylation, and mtDNA transcription and
replication (Supplementary Tables S5; Figure 7).
For the regulators of DNA methylation following VitC treatment,

there were overall decreases in gene expression on day 0 except
for the CC9dunni population, increases on day 3 and decreases on
day 21 (Supplementary Table S5; Figure 7). Similar patterns were
observed for 5-Aza (Supplementary Table S6), although day 21

Figure 4. The levels of enrichment for POLGA, ESRRB and TFAM and DNA methylation at exon 2 of PolgA. (a) Levels of enrichment for PolgA in
the OH in the D-loop region of the mitochondrial genome following ChIP using antibodies specific to POLGA and real-time PCR across the OH
region; (b) levels of enrichment for ESRRB within the CpG island of PolgA as determined by ChIP using an anti-ESRRB antibody and real-time
PCR across the region of interest in PolgA. (c) % Methylation of PolgA at exon 2 for CC9mus, CC9spretus, CC9pahari and CC9dunni cells.
Pyrosequencing was performed for 11 CpGs found on mouse PolgA exon 2 (chr7: 79 464 669–79 464 845). Primers were designed using the
mouse reference sequence from UCSC Genome Browser Dec. 2011 (GRCm38/mm10) Assembly. (d) Levels of enrichment for TFAM in the
D-loop region of the mitochondrial genome following ChIP using an anti-TFAM antibody and real-time PCR. Data are expressed as mean± S.E.
M. Statistical analysis was performed using two-way ANOVA followed by Tukey’s multiple comparisons test. *Po0.05; **Po0.01; ***Po0.001;
****Po0.0001.
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CC9mus cells did not survive. These outcomes reflect the
translation of the transcripts into protein (cf Figure 6;
Supplementary Tables S5 and S6). For the mtDNA transcription
and replication factors, each of the lines behaved differently with
no clear patterns. For the markers of neurogenesis, overall, VitC
induced decreases in expression levels in undifferentiated cells
and increases on day 3 whilst, on day 21, levels were down-
regulated in CC9mus and CC9pahari cells but were equally up- and
downregulated in CC9dunni cells. 5-Aza treatment only induced an
overall change (downregulation) in CC9mus and CC9pahari cells for
the neurogenesis markers on day 0, whilst, on day 3, all three lines
upregulated expression. On day 21, there was overall down-
regulation. Consequently, there appears to be effective regulation
of the neurogenesis markers with anticipated upregulation on day
3 and downregulation on day 21. For neuronal differentiation,
both treatments induced upregulation of gene expression on day
3 but variable outcomes for day 21 with CC9mus and CC9pahari cells
downregulating expression after VitC with similar outcomes for
CC9pahari and CC9dunni cells after 5-Aza treatment, which is
anticipated for genes associated with differentiation. However,
neither treatment induced overall increased levels of expression
for genes of endpoint markers, neuronal ion channels or neuronal
signal transduction. Consequently, resetting DNA methylation

patterns in undifferentiated mtDNA divergent ES cells did not
enhance differentiation potential.

DISCUSSION
Whilst mtDNA haplotypes are associated with predisposition to
disease,18,19,20,21 adaptation to environments16,17 and fertility,23,29

it has not been apparent how these outcomes are induced.
Previously, we had shown that mtDNA haplotypes can modulate
neural gene expression patterns in ES cells and their propensity to
form beating cardiomyocytes.15 Here, we show a mechanistic
approach where mtDNA haplotypes modulate key regulators of
DNA methylation, DNMT1 and TET1. We further show the release
of α-KG from the TCA cycle, which is a cofactor in the conversion
of 5mC to 5hmC by TET1.28 Nuclear–mitochondrial compatibility is
important for establishing functional electron transfer chains.30

However, alternate metabolic pathways, such as the TCA cycle,
appear to be more affected when challenged by VitC-induced
DNA demethylation. To this extent, whilst each of the lines
produced greater levels of α-KG and TET1, the more divergent
combination of CC9pahari cells produced twofold more α-KG.
The mtDNA set point is important for establishing and

maintaining pluripotency in undifferentiated cells and for
regulating mtDNA copy number during differentiation.9,12,14,31

The interactions between the nucleus and the mitochondrial
genome likely modulate the mtDNA set point to accommodate
the requirements of both genetic compartments of the cell,14

which suggests that the potential to differentiate into certain
lineages is regulated by this interaction. Indeed, CC9mus cells were
the most efficient at regulating pluripotency through the
increased affinity of ESRRB for PolgA in undifferentiated cells
and synchronising increases in mtDNA copy number with stage-
specific changes in gene expression during differentiation.
Nevertheless, the use of DNA demethylation agents prevented
the cells from completing differentiation, suggesting that having
already established the set point had enabled the two genomes to
establish their mechanisms of interaction.
During postimplantation development when cells retain their

undifferentiated status, mtDNA replication is restricted to replen-
ishing copy number, as is the case in ES cells.9 However, mtDNA
replication is tested between E7.5 and E10.5 when PolgA32 and
Tfam33 homozygous knockout mice die in utero, which is
equivalent to the key mtDNA turnover events identified in ES
cells.9 Not only is this likely to be important for testing whether
the mtDNA set point has been adequately established, but it
enables the mitochondrial and chromosomal genomes to
determine how they will collectively function. This involves the
chromosomal genome-regulating levels of mtDNA copy number
to maintain the mtDNA set point to mediate pluripotency and to
respond to cues to differentiate, as shown by the differing
affinities for the enrichment of M. musculus-encoded TFAM,
POLGA and ESRRB. In turn, the mitochondrial genome influences
the chromosomal genome by regulating OXPHOS activity through
the degree of compatibility of the proteins that is encodes for the
electron transfer chain. If cells build less functional electron
transfer chains, negative feedback could result in reduced TCA
cycle activity, as indicated by decreased MDH2 activity following
VitC, that would result in increased levels of α-KG and promote the
conversion of 5mC to 5hmC,28 as modulated by VitC.27 Similarly,
mtDNA-depleted cells have been shown to modulate histone
acetylation marks through the TCA cycle as they restore mtDNA
copy number.34 Consequently, the initial stages of development
involve a genomic ‘tug-of-war’ that establishes the most
advantageous genomic conditions for cells to function effectively,
which will affect their ability to complete differentiation as
evidenced by the varying degrees of success for the mtDNA
divergent ES cells.

Figure 5. Analysis of hyper- and hypomethylated genes for each of
the divergent mtDNA ES cell lines. The methylation status for each
of the lines was determined by MeDIP array using an antibody to
5mC, and data were collected using the Agilent CytoGenomics
Analytic software (v2.9). (a) Hypermethylated genes; (b)
hypomethylated genes.

MtDNA haplotypes, DNA methylation and gene expression
WT Lee et al

6

Cell Death Discovery (2017) 17062 Official journal of the Cell Death Differentiation Association



Figure 6. VitC increases TET1 expression and modulates α-KG levels and MDH2 activity. (a) CC9mus, CC9dunni and CC9pahari ES cells were treated
with VitC and 5-Aza, and TET1 and DNMT1 protein levels were measured by western blot. Actin protein levels were used to confirm equivalent
loading and the precision plus all blue protein marker (Biorad, Gladesville, NSW, Australia) was used used to determine protein size. TET1 (b)
and DNMT1 (c) expression was normalised to actin and expressed as the fold change in expression compared to vehicle-treated cells. α-KG
levels increased as a result of VitC treatment (d) but not 5-Aza (e) whilst MDH2 activity decreased as a result of VitC treatment (f) but 5-Aza had
no effect (g) when compared to non-treated cells from the same line with values represented as fold change to non-treated cells. *Po0.05;
**Po0.01.
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In establishing the appropriate interactions between the
mitochondrial and nuclear genomes, it is likely that a trade-off
takes place to promote phenotype.35 Evolutionary trade-offs exist
between reproductive capacity and energetic expense in birds,36

where females who invest in larger oocytes exhibit larger
reproductive organs, a larger body mass and higher resting
metabolic rate,36 which makes them less fit for other activities. In
commercial pigs, mtDNA haplotypes influence litter size and
reproductive efficiencies over multiple generations23 but those
with low fertility are maintained as they offer other benefits such
as better meat quality. Likewise, cows that have enhanced growth
and carcase traits often have poor fertility.37,38,39

Adaptation to an oocyte’s mtDNA background has important
implications for assisted reproductive technologies such as

somatic cell nuclear transfer (transfer of a donor cell into an
enucleated recipient oocyte),40 pronuclear transfer (transfer of
pronuclei from a fertilised oocyte)41 and metaphase II spindle
transfer (transfer of the spindle from a mature oocyte).42 Somatic
cell nuclear transfer can result in perturbed DNA methylation
patterns,43 initially thought to arise from incomplete reprogram-
ming. However, our work suggests that the divergence between
the donor cell, carrying chromosomal DNA, and the recipient
oocyte, harbouring mtDNA, may be too great. This has important
implications for the use of somatic cell nuclear transfer for the
generation of new super breeds of livestock where, for example,
chromosomes carrying specific genetic markers for sought-after
phenotypic traits, such as enhanced milk or meat quality, could be
introduced into oocytes with mitochondrial haplotypes associated

Figure 7. Heatmap of gene expression profiles across divergent mtDNA ES lines. CC9mus, CC9dunni and CC9pahari ES cells, both untreated and
post DNA demethylation treatment (VitC and 5-Aza), were induced to differentiate into neural lineages over 21 days and the differentiation
status was compared at days 0, 3 and 21. n= 3 for all undifferentiated samples and 4 for all differentiated samples. Samples were clustered in
columns and gene targets were clustered in rows with the euclidean distance clustering method. The heatmap was plotted based on the Ct
values normalised to the Ct value of the housekeeping gene 18S rRNA. The plot was generated using the HTqPCR package.
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with increased fertility.44 Similar problems arise when metaphase
II spindle transfer or pronuclear transfer are used to prevent the
transmission of mutant mtDNA. Appropriate mtDNA matching
would ensure that the resultant cells, tissues and organs had
compatible mitochondrial and chromosomal genomes, especially
as key imprinting events take place very early during
development.45

In conclusion, using an ES cell model that tests one set of
chromosomes against several divergent mtDNA haplotypes, we
have shown that mtDNA haplotypes influence chromosomal gene
expression by modulating DNA methylation. Each mtDNA
divergent ES cell line established its own DNA methylation profile
that could be altered by DNA demethylation agents, which
resulted in fold changes in levels of α-KG and perturbed
chromosomal gene expression profiles. Furthermore, each of the
lines differentially replicated its mtDNA in a specific manner,
which was associated with precocious gene expression profiles in
the more divergent haplotypes during differentiation. These
outcomes could have serious implications for those using nuclear
transfer to prevent the transmission of mtDNA disease and
account for the disorders associated with somatic cell nuclear
transfer.

MATERIALS AND METHODS
Additional materials and methods appear in Supplementary Information.

Mouse ES cell culture and differentiation
M. musculus CC9.3.1 ES cells that were previously reconstructed to
harbour M. musculus mtDNA (CC9mus) and mtDNA from more divergent
subspecies M. spretus (CC9spretus), M. terricolor (CC9dunni) and M. pahari
(CC9pahari) were cultured and differentiated, with minor modifications, as
previously described15 (Supplementary Information). For DNA demethyla-
tion experiments, undifferentiated ES cells cultured in feeder-free
conditions were treated with VitC (Sigma-Aldrich, Castle Hill, NSW,
Australia) at a final concentration of 100 μg/ml or 5-Aza (Sigma-Aldrich)
at a final concentration of 0.5 μM for 72 and 48 h, respectively.

DNA and RNA extraction and cDNA synthesis
Total DNA and RNA were extracted using the DNeasy Blood and Tissue Kit
and RNeasy Mini Kit (both Qiagen, Valencia, CA, USA), respectively,
according to the manufacturer’s protocol. DNA samples were treated with
RNase solution (Qiagen) and Proteinase K solution (Qiagen) at 65 °C for
10 min while RNA samples were treated with DNase I (Qiagen) for 20 min.
cDNA was synthesised from 1 μg of total RNA using oligo(dT) primers and
the Superscript III First-Strand synthesis system (Thermo Fisher, Scoresby,
VIC, Australia), according to the manufacturer’s instructions.

Next-generation sequencing of mitochondrial genomes
Next-generation sequencing of complete mitochondrial genomes was
performed on amplified long PCR products. Long PCR reactions were
prepared, as described in ref. 46 (Supplementary Information) and PCR
products purified using the QIAquick PCR Purification Kit (Qiagen),
according to the manufacturer’s protocol. Purified amplicon pairs were
combined at equal concentrations, and amplicon libraries were generated
using the recommended workflow procedures from the Ion Fragment
Library Kit and Ion Xpress Template kit using 318 chips and run on an Ion
Torrent PGM (all Thermo Fisher).
DNA fragments were mapped to a mouse mtDNA reference genome

(accession: AP013031), using the CLC Genomics Workbench v7.5.1
(Qiagen), to assemble each mtDNA sequence. The voting strategy was
used for base-pair calling. The accession numbers for the mtDNA
sequences are KY018919 (M. musculus), KY018920 (M. dunni), KY018921
(M. spretus) and KY038052 (M. pahari).

Phylogenetic analysis
Model testing was performed using CLC Genomics Workbench, as
described in Tsai et al.23 Using the GTR model,47,48 a Maximum Likelihood
tree was created with 1000 bootstrap replicates to show the relationship

between the different mtDNA haplotypes. Further details are available in
the Supplementary Information.

Evolutionary analyses
Evolutionary analyses were conducted in MEGA6.49 The complete mtDNA
sequences for each Mus species and Rattus norvegicus (NC_001662.2) were
aligned using ClustalW followed by model testing. The General Time
Reversible model47 had the lowest Bayesian Information Criterion scores,
and was, therefore, selected.48 A Maximum Likelihood phylogenetic tree
was constructed by applying the Neighbor-Joining method to a matrix of
pairwise distances estimated using the Maximum Composite Likelihood
approach. A discrete Gamma distribution was used to model evolutionary
rate differences amongst sites (five categories (+G, parameter = 0.3734)).
The tree was drawn to scale, with branch lengths measured by the number
of substitutions per site. The tree was supported by 1000 bootstrap
replicates. Estimation of divergence time was performed using the RelTime
method.50 Calibration constraints were based on the R. norvegicus and
M. musculus split of 8–12 Mya.51

Pyrosequencing of exon 2 of PolgA
Pyrosequencing assays were designed using the PyroMark Assay Design
Software (Version 2.0.1, Qiagen). A unit of 500 ng DNA samples were
converted using the Epitect Bisulphite Conversion Kit (Qiagen), as per the
manufacturer’s protocol. The region of interest was amplified by PCR using
PyroMark PCR Kit (Qiagen) and prepared for pyrosequencing, as described
in Supplementary Table S7. Pyrosequencing was performed on a PyroMark
24 Pyrosequencing System (Qiagen), as per the manufacturer’s instruc-
tions. Data were analysed on the PyroMark Q24 software to determine the
% methylation values for each CpG site in the sample.

Immunoprecipitation of methylated DNA
Immunoprecipitation of methylated DNA (MeDIP) was performed, as
previously described.14,31 Briefly, 3 μg of the sonicated DNA was
immunoprecipitated with 2 μg of either 5mC (Active Motif, Carlsbad, CA,
USA) or 5hmC (Active Motif) at 4 °C overnight, and the immunoprecipi-
tated DNA was purified using the Qiagen PCR Purification Kit (Qiagen).
Further details are available in the Supplementary Information.

Chromatin immunoprecipitation
ChIP was performed as previously described.15 Cells were crosslinked then
sonicated to fragment chromatin to an average size of 200–800 bp.
Chromatin from 1× 106 cells was immunoprecipitated with Protein G
Dynabeads and an anti-POLGA antibody (G-6, Santa Cruz Biotechnology,
Inc., Dallas, TX, USA), or anti-TFAM antibody (Santa Cruz Biotechnology,
Inc.), or anti-ESRRB antibody (H6705, R&D Systems, Minneapolis, MN, USA).
Crosslinks in immunoprecipitated samples were reversed and pulled-down
samples purified using the QIAquick PCR Purification Kit (Qiagen). Further
details are available in the Supplementary Information.

Real-time PCR to assess mtDNA copy number, mRNA expression,
ChIP and MeDIP
All real-time PCR (quantitative PCR, qPCR) reactions were performed on a
RotorGene 3000 real-time PCR machine (Corbett Research, Mortlake, NSW,
Australia). The number of mtDNA copies/cell were quantified against
external standards for β-actin and mtDNA, as previously described in Kelly
et al.15 All primers used are listed in Supplementary Table S7. mRNA
expression levels were determined by the ΔΔCt method, as described in
Kelly et al.,15 all primers used are listed in Supplementary Table S7. Real-
time PCR was performed on MeDIP and ChIP samples using primers
amplifying gene regions of interest (Supplementary Table S7) to determine
enrichment against input samples, as described in Kelly et al.15

CpG array (MeDIP array)
A unit of 400 ng of input and 150 ng 5mC-containing DNA samples
purified from MeDIP, as described above, were used for each CpG
microarray (Agilent, Mulgrave, VIC, Australia). Input DNA was Cy3-labelled
and the methylated DNA fraction Cy5-labelled using the Agilent SureTag
DNA labelling kit for 4 h at 37 °C. Samples were column-purified and
combined with Cot-1 DNA, Deionised Formamide, CGH blocking agent and
HI-RPM hybridisation buffer (Agilent). Samples were hybridised on mouse
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(105K) CpG island microarrays (015279- Agilent) for 40 h at 67 °C. Arrays
were washed according to the Agilent CGH protocol, immediately scanned
on an Agilent microarray scanner and processed using Agilent Feature
extraction software version 11.0.1.1.
The data were processed using the Agilent CytoGenomics Analytic

software (v2.9). Once the data were obtained, data filtering was done on
SPSS v24.0 (IBM CORP, St. Leonards, NSW, Australia). To identify the
differentially methylated probes and genes, we analysed the data by using
a cutoff of fourfold differential methylation ratios (log2 ratio 4+2 or
o − 2) between the samples. We then calculated the mean differential
DNA methylation ratios for each of the groups and combined the data with
another cutoff obtained from the Z-scores for each of the probes
identified. As the Z-scores reflect the relative distance of the log ratios of
a probe to the Gaussian distributions of other probes with similar melting
temperatures on the array, we further filtered the data using Z-scores4+5
oro − 5 as cutoffs.

α-KG quantification
α-KG was quantified using the α-Ketoglutarate Assay Kit (Sigma-Aldrich),
according to the manufacturer’s instructions. In all, 2 × 106 cells were
homogenised in α-KG buffer, the samples were mixed with a coupled
enzyme, and the resulting fluorometric product measured using a
FLUOstar Optima plate reader (BMG Labtech, Mornington, VIC, Australia)
at Ex/Em=544/590 nm. The amount of α-KG per sample in nmol (Ay) was
determined from the α-KG standard curve using the equation: Ay =
(corrected absorbance− (y− intercept)/slope). All experimental samples
were run as replicates and all samples and standards measured in
duplicate. Results are expressed as fold change in α-KG levels compared to
untreated cells of each line.

MDH2 assay
MDH2 activity was determined following the manufacturer’s protocol
(Abcam, 119693). Cells were lysed in extraction buffer, 50 μg of protein
were bound to antibody capture plates, enzyme activity buffer containing
a reagent dye was added and absorbance at 450 nm was recorded every
30 s for 30 min on a FLUOStar Optima plate reader (BMG Labtech). Enzyme
activity was calculated by: U= (rA × Vcuvette)/(l× ξ× Vsample × ρ), where
rA = rate of absorbance change; Vcuvette = volume of the solution; l=optical
path length; ξ=extinction coefficient; Vsample = volume sample; ρ=mass
concentration of material. The extinction coefficient of the reagent dye was
37/mM/cm. Results are expressed as fold change in MDH2 activity
compared to untreated cells of each line.

Fluidigm array and analysis
Pre-amplification was performed on cDNA samples, as described in the
Gene Expression Preamp with Fluidigm Preamp MasterMix (Fluidigm, San
Francisco, CA, USA) and Taqman Assays Quick Reference PN 68000133
RevC protocol. In all, 96 Taqman assays were selected, as listed in
Supplementary Table S8, and pooled with C1 DNA suspension buffer to
produce a final concentration for each assay of 180 nM. A volume of 1.25 μl
of each cDNA sample and a non-template control underwent pre-
amplification for 14 cycles with 3.75 μl of pooled assays and Taqman
PreAmp Master Mix (Life Technologies), according to the manufacturer’s
instructions.
Assays and samples were combined in a 96.96 Dynamic array Integrated

Fluidic Circuit (IFC) plate, according to the Fluidigm 96.96 Real-Time PCR
Workflow Quick Reference PN 6800088 protocol. Using the IFC controller
HX, 5 μl of each pre-amplified sample was loaded as duplicates into each
sample inlet and 5 μl of each Taqman assay (10 × ) was loaded into the
assay inlet of the plate. Gene expression was performed according to the
Biomark GE 96.96 Standard v2 Protocol. Data were exported using the
Fluidigm Real-Time PCR analysis software (v4.1.1). Differentially expressed
genes were analysed using the HTqPCR package (version 1.26). The
normalisation of ‘deltaCt’ and the Limma method were used.

Genomic data sets
The accession numbers for the MeDIP array data sets reported in this paper
are deposited as NCBI GEO: GSE94918 (http://www.ncbi.nlm.nih.gov/geo/).
The mtDNA next-generation sequencing data are deposited at GenBank
(https://www.ncbi.nlm.nih.gov/genbank/). The respective accession num-
bers are KY018919 (M. musculus), KY018920 (M. dunni), KY018921
(M. spretus) and KY038052 (M. pahari).
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