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Targeted apoptosis in ovarian cancer cells through
mitochondrial dysfunction in response to Sambucus
nigra agglutinin

Shreya Roy Chowdhury1, Upasana Ray1, Bishnu P Chatterjee2 and Sib S Roy*,1

Ovarian carcinoma (OC) patients encounter the severe challenge of clinical management owing to lack of screening measures,
chemoresistance and finally dearth of non-toxic therapeutics. Cancer cells deploy various defense strategies to sustain the tumor
microenvironment, among which deregulated apoptosis remains a versatile promoter of cancer progression. Although recent
research has focused on identifying agents capable of inducing apoptosis in cancer cells, yet molecules efficiently breaching their
survival advantage are yet to be classified. Here we identify lectin, Sambucus nigra agglutinin (SNA) to exhibit selectivity towards
identifying OC by virtue of its specific recognition of α-2, 6-linked sialic acids. Superficial binding of SNA to the OC cells confirm
the hyper-sialylated status of the disease. Further, SNA activates the signaling pathways of AKT and ERK1/2, which eventually
promotes de-phosphorylation of dynamin-related protein-1 (Drp-1). Upon its translocation to the mitochondrial fission loci Drp-1
mediates the central role of switch in the mitochondrial phenotype to attain fragmented morphology. We confirmed mitochondrial
outer membrane permeabilization resulting in ROS generation and cytochrome-c release into the cytosol. SNA response resulted
in an allied shift of the bioenergetics profile from Warburg phenotype to elevated mitochondrial oxidative phosphorylation,
altogether highlighting the involvement of mitochondrial dysfunction in restraining cancer progression. Inability to replenish the
SNA-induced energy crunch of the proliferating cancer cells on the event of perturbed respiratory outcome resulted in cell cycle
arrest before G2/M phase. Our findings position SNA at a crucial juncture where it proves to be a promising candidate for impeding
progression of OC. Altogether we unveil the novel aspect of identifying natural molecules harboring the inherent capability of
targeting mitochondrial structural dynamics, to hold the future for developing non-toxic therapeutics for treating OC.
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The ever-climbing incidence rate of ovarian carcinoma (OC)
makes it the most lethal female reproductive disorder. The
disease is crippled by severe hurdles including lack of specific
symptoms, no screening procedures and chemoresistance.1,2

Majority of the cases are detected at stages when the disease
has already metastasized. The worst prognosis associated
can be attributed to its spread to the vital organs.3 Metastasis
encompasses a series of well-concerted eventswhere change
in cell–cell and cell–extracellular matrix (ECM) interaction has
a very crucial role. Complex network of sugar residues
(glycocalyx) comprises a major part of the ECM, mediating
various social events like cellular adhesion, motility and
signaling.4 Although recent advancement of glycomics report-
edly link aberrant glycosylation with cancer progression4–9

albeit necessary insights emphasizing its importance in the
perspective of progression of OC are still not available.
Among the various glycosylation types available in nature,

sialylation needs a special mention pertaining to its correlation
with metastatic transformation.10–13 Sialic acids (Sias) or
N-acetyl neuraminic acids comprise a diverse lineage of nine-
carbon monosaccharide family executing a wide variety of
biological functions.14,15 They are predominantly positioned at
the terminal ends of the oligosaccharide side chains through

α2,3-, α2,6- or α2,8-linkages.9 Sialylated glycans helps to
evade apoptosis, gain metastatic advantage and develop
chemoresistance. Lectins constitute a well-known ubiquitous
group of multivalent proteins and glycoproteins, performing a
plethora of biological functions by binding to specific sugar
moieties.16,17 They grabbed the attention of the scientific
community owing to their role in inducing apoptosis in various
cancer cells and suppressing tumor growth in vivo.17–19 A
major rationale for developing cancer therapeutics resides in
targeting apoptosis. Too little apoptosis results in a scenario
whereby cells fail to die20 and generate malignancy. Although
targeting apoptosis provides a feasible option to restore the
damage associated with cancer yet not many insights on the
application of such strategies in OC is available. Residing at
the cross-road where Lectins serve as anticancer agents,
hyper-sialylation provides a strategy for cancer cell survival11

and the development of non-toxic, antitumor agents lies as an
urgent need, we were prompted to investigate the potency of
Lectins in enhancing the sensitivity of OC toward apoptosis.
Speculating the immense impact that Sias may impart upon

the spread of OC, we selected the lectin Sambucus nigra
agglutinin (SNA) to study the status of sialylation of the disease.
This lectin exhibits specificity toward binding α2,6-linked
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sias.21,22 The strong binding of SNA to the OC cells was
imperative of the heightened expression of surface Sias, which
led to triggering of the AKT/ERK pathways. We demonstrated
the involvement of the aforementioned signaling axes in the de-
phosphorylation of dynamin-related protein-1 (Drp-1) and its
subsequent translocation to mitochondria resulting in their
fission. This phenomenon induces a shift in the cellular
bioenergetics, which finally terminates into the activation of
the caspase cascade resulting in apoptosis and cellular
demise. Our evidences notably come up with a novel strategy
whereby molecules of natural origin can be exploited for their
role in curbing the lethality associated with OC.

Results

Hyper-sialylation associated with ovarian cancer drives
the specificity of SNA. As OC is associated with enhanced
sialylation, we checked the status of Sias on the surface of
high-grade serous carcinoma (HGSC) cells SKOV3 and
normal ovarian epithelial cells, IOSE-364. Intense fluores-
cence signal observed along the membrane of SKOV3 as
compared with IOSE-364 (Figure 1a) was imperative of the
high expression of Sias on the HGSC cells. Non-malignant
controls, NIH3T3 and A549 cell lines showed insignificant
surface binding (Supplementary Figure 1a). Immunohisto-
chemical studies performed on healthy and OC tissues
corroborated with the in vitro result (Figure 1b). The binding
when quantitated by flow cytometric analysis in SKOV3
(Figure 1c), OAW-42 and IOSE-364 (Supplementary
Figure 1b) cells, the former two exhibited enhanced surface
binding. To further assess the effect of SNA on cellular
viability, SKOV3 cells were treated with serial concentrations
of SNA (0, 6, 12 and 25 μg/ml) for 24 h. Minimum dose of
6 μg/ml was sufficient to cause 50% growth inhibition. The
comparative dose profile (Figure 1d) of IOSE-364 treated with
SNA with indicated doses, showed insignificant effect
manifesting the selectivity of SNA. To ascertain the effect of
SNA on the cellular proliferation, SKOV3 and IOSE-364 cells
were subjected to BrdU proliferation assay in presence of
different doses of SNA (Figure 1e). The proliferation rate of
IOSE-364 was unperturbed in response to SNA treatment,
whereas SKOV3 exhibited a consistent decrease in prolifera-
tion. These results together indicated enhanced α-2, 6
sialylation occurring in OC cells drive the binding of SNA
onto their surface eventually reducing their viability.

Apoptosis was induced by SNA in OC cells. The
seemingly evident interrelation between decreased cellular
viability and apoptosis, urged us to investigate the associa-
tion of SNA with apoptosis. The apoptotic potential of SNA
was quantified using Annexin-V and propidium iodide (PI)
staining (Figure 2a) in SKOV3 cells. We observed significant
increase in the Annexin-V-positive population from 19.9% in
untreated to 62.7% after 24 h of SNA treatment. The
appearance of apoptotic population in IOSE-364 could be
attributed to its basal SNA binding, which was insignificant in
comparison with SKOV3. The increased expression of pro-
apoptotic Bax and the decrease in anti-apoptotic Bcl-2 after
SNA treatment (Figures 2b and c), shifted the ratio of pro- and

anti-apoptotic signal toward apoptosis. This was also
accompanied by the elevated levels of cleaved caspase-3
and caspase-9 emphasizing the activation of apoptotic
pathway in a time-dependent manner in OAW-42 and SKOV3
cells. The appearance of TUNEL-positive cells after SNA
treatment was also an indication of the apoptotic nuclei
(Figure 2d). Collectively, these data conclude that the
decrease in viability of the cancer cells is attributed to the
induction of apoptosis by SNA.

SNA administration led to mitochondrial dysfunction
through enhanced ROS generation and cytochrome-c
release. Induction of apoptosis necessitates several ATP-
requiring processes.23,24 As mitochondria are involved in the
cellular bioenergetics and regulation of apoptosis,25–27 we
focused on their involvement in SNA-induced apoptosis. To
visualize the effect of SNA on mitochondrial morphology, we
stained SKOV3 (Figure 3a) and OAW-42 (Supplementary
Figure 2) cells with mitochondria-specific probe MitoTracker
Red CMXROS. Increase in the mitochondrial length and
perimeter (Figures 3b and c) was an indication of fragmented
mitochondria.
We examined the status of mitochondrial outer membrane

potential (MOMP) in SNA-treatedOAW-42 and IOSE-364 cells
for 12 and 24 h time point by flow cytometry (Figure 3d). A
decrease in theMOMPwas observed by the switch in the JC-1
fluorescence from red to green in response to SNA. As ROS
generation and cytochrome-c production are associated with
apoptotic induction,28,29 we checked their status in SNA-
treated OAW-42 and SKOV3 cells. SNA enhanced ROS
generation (Figure 3e) in both the cell lines. Heightened
release of cytochrome-c was observed in the cytosolic fraction
of OAW-42 cells but SNA failed to induce similar effects in
IOSE-364 cells (Figure 3f). SKOV3 also showed similar
increase in cytochrome-c release (Figure 3g). Our findings
thus suggested that SNA-induced apoptosis in OC cells was
intimately associated with mitochondrial dysfunction.

SNA induces a shift of cellular respiration toward
oxidative phosphorylation. Mitochondria have a pivotal
role in determining whether a cell proceeds toward survival or
apoptosis.30 Metastatic potential is reflected by the depen-
dency of cancer cells on anaerobic glycolysis for energy
production often termed as the Warburg effect.31,32 Oxidative
phosphorylation (OXPHOS) was quantitated by the oxygen
consumption rate (OCR). The bioenergetics of mitochondria
in SNA-treated SKOV3 cells were studied by XF-flux
analyzer. SNA increased the basal OCR values (Figure 4a),
which was indicative of a shift in the cellular respiration
toward mitochondrial OXPHOS thereby leading to an
increase in the ATP production. An increase in the proton
leak, represented loss of mitochondrial membrane integrity.
Associated decrease in the reserve respiratory capacity
dictates the vulnerability to oxidative stress. IOSE-364
administered with SNA showed a decrease in basal OCR
(Figure 4b). The results in OAW-42 (Supplementary Figure 3)
were in agreement with SKOV3 data. These results identify
the potential of SNA in restoring the cellular bioenergetics in
favor of decreasing the metastatic potential.
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Mitochondrial fission promoted by translocation of Drp-1
results in decrease of cellular viability. Mitochondrion has
a crucial function in influencing the dynamicity of cancer cell
metabolism. These organelles are in a continuous flux
undergoing fusion and fission processes, changing their
morphology, which is related to the energy metabolism.33–35

We hypothesized that the shift in bioenergetics may be a
downstream effect of SNA-induced morphological changes in
mitochondria. The real-time PCR data indicated increase in
expression of the fission genes, Drp-1 and mitochondrial
fission-1 protein (Fis-1) with a parallel decrease in the fusion
gene Mitofusin-1 (Mfn-1) in SKOV3 cells. However, the
expression levels merely changed in IOSE-364 (Figure 5a).
The results were corroborated in the protein levels, where
SNA-induced the expression of Drp-1 in a time-dependent
manner with an associated decrease in Mfn-1 in SKOV3
cells. The expression level of Drp-1 remained unchanged in
IOSE-364 cells at different time of SNA treatment (Figure 5b).
Mitochondrial fission necessitates the translocation of Drp-1

to mitochondria from cytosol36,37 after being de-
phosphorylated at Ser-637. SNA treatment showed
mitochondria-specific localization of Drp-1 both in SKOV3

and OAW-42 (Figures 5c and d). The colocalization was
confirmed qualitatively by PDM analysis (Figure 5e) and
quantitatively by Intensity Correlation Analysis (ICA;
Figure 5f). The ICA statistical data (Figure 5g) showed that
the increase in the Pearson’s correlation coefficient (Rr) values
from 0.215 to 0.437 and 0.336 after 4 and 8 h of SNA
treatment, respectively, along with an associated enhance-
ment of overlap coefficient (R) and the number of pairs of
pixels having a positive PDM values (N+ve). Altogether these
data are a definite indication of the translocation of Drp-1 to
mitochondria in response to SNA.
Mitochondrial dynamicity is related to cell cycle

progression.38We speculated whether halting the progression
through the cell cycle may result in reduction in proliferation.
We found that SNA inhibits completion of cell cycle by
restricting the cells at G2/M phase (Figure 5h). The cells in
each phase of the cell cycle were quantitated and represented
as bar diagram (Figure 5i).

AKT-ERK1/2 pathway has a crucial role in SNA-induced
apoptosis in ovarian cancer cells. To explore the signaling
pathways associated, SKOV3 cells were treated with SNA for

Figure 1 Hyper-sialylation associated with ovarian cancer drives the specificity of SNA. (a) Binding of FITC-SNA to the surface of SKOV3 and IOSE-364 was seen through
confocal imaging. Scale bar = 10 μm (b) Immunohistochemical analysis showing binding of FITC-SNA (green, shown by arrow marks) to ovarian tissue sections. The nuclei
were stained with DAPI. Bar= 100 μm. (c) Surface binding of SNA was quantitated by flow cytometry in SKOV3 cells. (d) Quantitation of cellular viability was performed using
MTTreagent in SKOV3 and WST-1 reagent in IOSE-364 cell lines. (e) BrdU proliferation assay was performed in SKOV3 and IOSE-364 cell lines with different doses of SNA as
indicated
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0, 15 and 30 min. Enhanced phosphorylation of AKTand p44
in response to SNA suggested the activation of these
pathways (Figure 6a). In contrast, IOSE-364 exhibited
undetectable amount of p-AKT with marked decrease in
p-p44 level after SNA treatment (Figure 6b). Usage of AKT
inhibitor (AKTi) alone in SKOV3 cells decreased the expres-
sion of pro-apoptotic Bax and increased the expression of
anti-apoptotic Bcl-2. This was associated with decreased
p-AKT level with unaltered T-AKT expression (Figure 6c).
AKTi was capable of inhibiting SNA-mediated apoptosis in
SKOV3 cells as the percent apoptotic cells was decreased
from 62.7 to 20% upon AKTi treatment (Figure 6d). To
validate the relevance of these pathways as it pertains to
mitochondrial dysfunction, we checked the status of p-Drp-1
post treatment of cells with pathway inhibitors. As expected,
AKTi and ERKi abrogated the de-phosphorylation of Drp-1
(Figure 6e). AKTi was able to impede the SNA-mediated
effects on the transcriptional regulation of the mitochondrial
fission and fusion genes, namely Drp-1, Fis-1 and Mfn-1, as
was evident through the real-time PCR data (Figure 6f). All
these results together indicate the involvement of AKT and
p44 pathways in SNA-induced apoptosis mediated by
mitochondrial dysfunction.

Discussion

Cancer is a process of 'microevolution'39 where the fittest cell
gains the survival advantage among a heterogeneous
population. Hence it is logical to speculate that carcinomatous
cells, which modulate their repertoire of defense mechanisms
are bestowedwith the advantage of perpetual proliferation and
survival. Altered glycosylation and evasion of cell death
mechanisms are two such features40,41 by virtue of which
cancer cells gain tissue mass and resistance to clinical
regimens. Exploitation of these defense strategies for ther-
apeutic gain was the primary goal of our study. Our hypothesis
was to translate the mechanistic details underlying the
disease to identify an innocuous therapeutic lead to help
improving clinical interventions. Differential surface expres-
sion of glycans helps cancer cells in gaining invasive
advantage.42,43 Evidences suggest, increase in the endogen-
ous levels of sialylated glycoproteins especially
α2,6-linked Sias, correlate with poor prognosis and survival
rate of carcinoma patients.44,45 This unique profile of
glycan epitopes can thus be used as ideal candidates to be
targeted by specific bait proteins, lectins. In spite of the
association of OC with a number of altered glycosylation

Figure 2 SNA induces apoptosis in OC cells. (a) After 24 h of SNA treatment SKOV3 and IOSE-364 cells were analyzed for apoptosis in a FACS flow cytometer. (b and c)
Western blot analysis for cleaved caspase-3, -7, -9, Bax and Bcl-2 was done in SKOV3 and OAW-42 cells using SNA-treated whole cell proteins. GAPDH was used as loading
control. (d) TUNEL assay was done in SKOV3 cells and then observed by confocal microscopy. Scale bar= 10 μm
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Figure 3 SNA exposure results in mitochondrial dysfunction. (a) SKOV3 cells stained with MitoTracker Red CMXROS were imaged for mitochondrial structure by confocal
microscope. Scale bar represents 10 μm. (b-c) Graphs showing the mitochondrial length and perimeter of SKOV3 cells after indicated time period of SNA exposure. (d)
Membrane potential of OAW-42 and IOSE-364 cells stained with JC-1 dye were measured by flow cytometry. (e) ROS production in OAW-42 and SKOV3 cells stained with
Mitosox was analyzed by flow cytometry. (f) Western blot depicting cytosolic release of cytochrome-c in OAW-42, IOSE-364 cell lines after 24 h of SNA treatment with GAPDH as
loading control. (g) Expression of cytochrome-c after 0, 4 and 8 h of SNA treatment in SKOV3 cells with GAPDH as loading control
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fates46,47 including sialylation, not many mechanistic insights
are available.
Conventional therapeutics lacking specificity, impart severe

damage to the normal cells restricting their clinical efficacy.
Agents harboring the capacity to specifically target cancer
cells, have the potential to be developed as a potent antitumor
drug. To the first of our knowledge, we have shown that SNA
exhibits selective recognition of cancer cells (Figure 1). Tumor
cells resist the available therapeutic challenges by evading
apoptosis. Targeting the cells to induce apoptosis may be a
key strategy to combat cancer progression. Lectins are known
to induce apoptosis in a variety of cancer cells.48–50 That SNA
was successful in doing so was corroborated with our findings
(Figure 2).
Mitochondria being the hub of energetic functions have the

cue to the life and death of a cell.30,51 Cell survival rests on
various critical functions of the mitochondrial membrane,
which undergoes considerable morphological changes in the

initial stages of apoptosis.52,53 To understand the effect of SNA
on OC cells, we noted the active involvement of mitochondria.
A decrease in MOMP and enhanced ROS generation upon
SNA treatment (Figure 3) was an indication of mitochondrial
dysfunction normally seen in activation of the intrinsic
apoptotic pathway.53 Mitochondria switch their shapes in
response to the metabolic demands of the cell.54 Reduction in
the energy supply leads to the mitochondrial fragmentation
releasing cytochrome-c into the cytosol, which then
activates the caspase cascade leading to cell death.30 The
activation of caspases along with the appearance of enhanced
cytochrome-c in the cytosolic fraction indicated SNA-induced
mitochondrial membrane permeabilization (Figure 3). Fission
per se does not necessarily indicate apoptosis although it has
a fundamental role in cell death. The translocation of Drp-1
from cytosol to mitochondrial fission loci remains the crucial
mediator of fission, as was evident by our fluorescence
imaging studies (Figure 5).

Figure 4 A shift in cellular respiration towards. OXPHOS occurs under SNA exposure. OCR was measured by extracellular flux analyzer (Seahorse Bioscience). The basal
OCR ATP production, proton leak and reserve respiratory capacity of untreated and SNA administered SKOV3 (a) and IOSE-364 (b) cells were measured by XF24 flux analyzer.
The data shown here are mean ±S.E.M. for three experiments performed independently

Figure 5 Mitochondrial fission promoted by mitochondrial translocation of Drp-1 upon SNA exposure, results in decrease of cellular viability. (a) Q-PCR of mitochondrial
fission and fusion genes after 4 h of SNA treatment in SKOV3 and IOSE-364 cells. (b) Western blots of Mfn-1 and Drp-1 in SKOV3 cells with GAPDH as loading control and Drp-1
in IOSE-364 cells with tubulin as loading control. (c) Confocal microscopy depicting colocalization of Drp-1(green) with mitochondria (red) in SKOV3 after SNA treatment for 8 h.
Nuclei were stained with DAPI. Scale bar= 10 μm. (d) Microscopic images of colocalization of Drp-1 (green) with mitochondria (red) in OAW-42 cells treated with SNA for the
mentioned time points. ROI indicates merged region of interest. Scale bar= 10 μm. (e) Qualitative analysis by PDM imaging. (f) ICA plots generated. (g) Statistics of
colocalization study done by ICA. (h) Cell cycle analysis of SKOV3 treated with SNA for longer time periods (24 and 36 h) as observed by flow cytometry. (i) Cells quantitated in
each phase of cell-cycle represented as bar diagram
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Metabolic alterations remain the key step that helps in the
transformation of a normal cell into a tumor phenotype.55

Cancer cells rely mostly on anaerobic glycolysis for energy

supply.31,56 To restrict the excess energy flow needed to
support growth of tumor cells, a shift of cellular respiration from
glycolysis to OXPHOS stands inevitable. Application of
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agents that inhibit or perturb the bio-energetic profile of cancer
cells would be helpful in the treatment of the disease. Our
results indicate SNA was successful in inducing this shift
leading to increased basal OCR and ATP production
(Figure 4). This confirms the efficiency of SNA in
decreasing the metastatic potential of OC cells. Prolonged
inadequacy to meet the energy demands of the cell
leads to cell cycle arrest. We sought to determine whether
the perturbed cellular bioenergetics imparted similar
effects or not. The fall in the reserve respiratory capacity
(Figure 4) purely indicates the inability of cellular energy
pool to meet the sudden burst of energy crisis experienced by
the cellular environment, which may also drive the
cells to senescence or death. SNA restricts the completion
of the cell cycle by arresting the cells before the G2/M phase
(Figure 5).

Various signaling pathways have a decisive role in
modulating the course of cell survival.57 But unlike mitogen-
mediated activation, these pathways are also known to be
involved in apoptosis induction under the stimulus of specific
lectins.58 Our observations were in agreement, showing
phosphorylation of AKT/ERK pathways in response to SNA
(Figure 6). Abrogation of Drp-1 de-phosphorylation on
application of the pathway inhibitor suggested active involve-
ment of these signaling axes in SNA-induced cell death
(Figure 6).
The primary rationale for developing cancer therapeutics

lies in designing agents selectively targeting cancer cells. Our
objective was to exploit strategies evolved by tumor cells to
escape cellular demise. The key finding here remains the
identification of the selectivity exhibited by SNA toward
binding cancer cells and promoting apoptosis (Figure 7).

Figure 5 Continued
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Implementation of SNA for targeted delivery to the cancer cells
can be exceedingly promising in reducing the heavy damage
incurred by the normal cells during conventional clinical

interventions. Notably our findings encourage identification of
SNA-like natural molecules to exploit their efficacy as
antitumor drugs resulting in minimal toxicity to the normal

Figure 6 SNA induces apoptosis through activation of the AKT-ERK1/2 pathways. Cells were stimulated with 12 μg/ml of SNA for indicated time periods. (a and c) Lysates
prepared from the SKOV3 cells were analyzed for p-AKT, p-ERK1, T-AKT, T-ERK1, Bax, Bcl-2 with GAPDH as loading control. (b) Lysates from IOSE-364 were checked for the
expression of p-ERK1 after 30-min incubation and T-ERK1 after 24-h incubation with GAPDH as loading control. (d) Apoptotic induction in SKOV3 cells were quantified by flow
cytometry after 24 h of SNA treatment in presence or absence of 10 μM AKTi by Flow cytometry. (e) OAW-42 cell lysates were analyzed for p-Drp-1 and Drp-1 after 30-min and
24- h incubation with SNA, respectively. GAPDH was used as loading control. (f) The Q-PCR of Mfn-1, Drp-1 and Fis-1 after 4 h of SNA treatment was observed in IOSE-364 and
SKOV3 cells
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cells. This study strongly reckons the relatively nascent arena
of targeting mitochondria as an elegant therapeutic approach
to reduce the mortality rate of OC patients.

Materials and Methods
Cell culture. The epithelial ovarian adenocarcinoma cell line (OAW-42), p53 null
OC cell line (SKOV3), normal epithelial ovarian cell line (IOSE-364), mouse
fibroblast cell line (NIH3T3) and lung carcinoma cell line (A549) were used in this
study. OAW-42 and SKOV3 were purchased from Sigma Aldrich, St. Louis, MO,
USA and maintained in DMEM (Invitrogen, Carlsbad, CA, USA) and RPMI (Gibco,
Waltham, MA, USA), respectively, supplemented with 10% heat inactivated fetal
bovine serum (FBS; Invitrogen), 100 mg/ml streptomycin and 100 u/ml penicillin
(Invitrogen), at 37 °C in 5% CO2 and 95% humidified air. Human immortalized
ovarian surface epithelial cells IOSE-364 (a kind gift from Dr. N Aueresperg and
Clara Salamanca, Vancouver, Canada) was maintained in MCDB-105 (Sigma
Aldrich, St. Louis, MO, USA) and Medium-199 (Invitrogen) in 1 : 1 ratio and
supplemented as stated earlier. NIH3T3 (a kind gift from Dr. Debabrata Biswas,
IICB, Kolkata, India) and A549 (a kind gift from Dr. Arun Bandopadhyay, IICB True
Campus, Kolkata, India) were maintained in DMEM (Invitrogen) with supplementa-
tion as mentioned earlier.
SNA (Sigma Aldrich) was directly added into the cells in incomplete medium,

initially at 6, 12 and 25 μg/ml. Finally, the optimized concentration of 12 μg/ml was
used for time periods as mentioned in the figure legends. The AKT and ERK1/2
inhibitor were purchased from Calbiochem (San Diego, CA, USA) and used at 10 μM
final concentration. Before each treatment, cells were transferred to incomplete
medium containing 0.5% FBS.

Confocal microscopy. Immunofluorescence microscopy was done by
staining cells grown on cover-slips with FITC-conjugated SNA (12 μg/ml) for 1 h
at room temperature followed by standard protocol as depicted previously.59

Unbound lectin was washed away with PBS and cells were then stained with 4, 6-
diamidino-2-phenylindole DAPI (1 mg/ml) for 5 min before mounting, using mounting
medium. Stained cells were visualized by Andor spinning disk confocal microscope
(Andor Technology PLC, Belfast, Ireland) using Andor iXON3 ultra EMCCD camera.
For mitochondrial fission analysis, cells were stained with MitoTracker Red CMXRos
(50 nM, Molecular Probes, Waltham, MA, USA) for 30 mins at 37°C to stain the

mitochondria. Immunostaining was done using Drp-1 antibody (1:50, Santa Cruz
Biotechnology, Dallas, TX, USA) followed by Alexa Fluor 488 conjugated secondary
antibody as mentioned earlier59 and images were acquired by Leica STED confocal
microscope (TCS SP8, Buffalo Grove, IL, USA) with 60 × magnification.

Image analysis. ImageJ 'Mitophagy' pluggin and WCIF ImageJ software (Wright
Cell Imaging Facility) were used to study mitochondrial morphology and the
mitochondrial localization of drp-1. Before analysis, images were converted to 16-bit
grayscales. The lengths of the mitochondria were measured by the 'Mitophagy'
application. For each time frame, approximately 100 mitochondria from at least 10
different cells were analyzed for the different morphological parameters. ICA method
was used to compare the subcellular localization of Drp-1 upon different time intervals
of SNA treatment. It depicts the synchrony of intensity between the two channels used
here – red and green. Image of (PDM): the product of the differences from the mean,
that is, for each pixel: (red intensity─red mean intensity) × (green intensity─green
mean intensity) defined colocalization qualitatively. The orange pixels showed
colocalization of Drp-1 with mitochondria and blue color illustrates segregation. On
the ICA plots, X axis indicated PDM values and y axis denotes red or green intensity. A
merged ICA plot of the individual red and green ICA plots quantitatively demonstrates
the levels of colocalization. Pearson’s correlation coefficient (Rr), overlap coefficient (R),
red:green pixel ratio (Ch1:Ch2) and the number of pixel pairs that have a positive PDM
value (N+ve), were generated by the intensive correlation analysis program (http://www.
uhnresearch.ca/ facilities/wcif/imagej).

Immunohistochemistry. Tissue samples were provided by Department of
Pathology, Institute of Post Graduate Medical Education and Research, Kolkata,
India. Tissues were sectioned as mentioned earlier.60 Sectioned tissues were
blocked in 3% BSA in 1X PBS-T for 1.5 h and incubated overnight with FITC-SNA
(12 μg/ml) at 4 °C. The slides were washed with 1X PBS-T in succession with DAPI
staining (1 mg/ml) for 5 min finally followed by mounting on to glass slides. Images
were captured using Andor spinning disk confocal microscope (Andor
Technology PLC, Belfast, Ireland).

Fluorescence-assisted cell sorting. Treated cells were fixed with 4%
formaldehyde for 10 min at 37 °C and kept on ice for 5 min. In all, 1 × 106 cells were
washed, re-suspended and blocked in incubation buffer (0.5 gm BSA in 100 ml

Figure 7 Schematic representation of SNA-mediated induction of apoptosis in OAW-42 cells. Hyper-sialylation associated with OC drives SNA binding to these cells leading
to the activation of AKTand ERK1/2 pathways. Meanwhile in response to SNA administration, mitochondrial membrane permeabilization occurs in association with cytochrome-c
release into the cytosol and ROS generation leading to mitochondrial dysfunction. The resulting shift in the cellular bioenergetics promotes cell cycle arrest finally culminating into
apoptosis via caspase activation
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PBS) for 10 min. FITC-SNA (12 μg/ml) was used to incubate the cells for 1 h at
room temperature and the binding of SNA was quantitated by LSRFortessa cell
analyzer (Becton-Dickinson, San Jose, CA, USA).
FITC-Annexin-V staining was used to determine lectin-induced phosphatidylserine

externalization of ovarian cancer cells by 'Apoptosis kit' (Molecular Probes) as per
manufacturer’s protocol. Percentages of cells positive for Annexin-V and PI
individually or in combination were detected by flow cytometry and the dot blot
analysis was done using Cell Quest Pro software (BD Biosciences, San Jose, CA,
USA). Cells were treated in presence or absence of SNA for 12 and 24 h. MOMP was
estimated by staining the cells with the fluorescent dye JC-1 (5μg/ml, ) at 37 °C for 15
min. Cells were washed with PBS and analyzed on a flow cytometer for red and green
fluorescence.

Growth inhibitory studies. In all, 5 × 104 cells were seeded in 96-well plates
and grown in complete medium allowing 80% confluency. Cells were transferred in
incomplete medium with 0.5% FBS and treated with SNA at different concentrations
(6, 12 and 25 μg/ml) for different time points (24 and 48 h), maintained in humidified
atmosphere (37 °C, 5% CO2). After each time point, 10 μl of MTT (5 mg/ml) was
added to each well followed by dissolution in 100 μl of DMSO. Finally, absorbance
was measured at 550 nm using ELISA plate readers (Winooski, VT, USA). Cell
proliferation reagent WST-1 (Roche Diagnostics, Indianapolis, IN, USA) was also
used for viable cell detection by following the manufacturer’s protocol and
measuring absorbance at 440 nm. Percentages of viable cell were calculated, with
respect to controls considered as 100%.

BrdU proliferation assay. In total, 1 × 105cells/ml were plated onto 96-well
culture dish. Cells were then treated with 0, 3, 6 and 12 μg/ml of SNA for 24 h. The
assay was performed using BrdU proliferation kit (Sigma, St. Louis, MO, USA)
following the manufacturer’s protocol. The final absorbance was measured at
450 nm in a plate reader.

Western blotting. Cells were treated with SNA for different time intervals, lysed
using RIPA lysis buffer. Western blot was performed as previously described.60 Bax,
Bcl-2, Mfn-1, p-Drp-1(serine 637), Drp-1, GAPDH, p-ERK1 and ERK antibodies
were purchased from Santa Cruz Biotechnologies (Dallas, TX, USA) and used at
dilution 1:1000. Cleaved caspase-3, cleaved caspase-7, cleaved caspase-9, AKT
and p-AKT antibodies were from Cell Signaling Technologies (Danvers, MA, USA)
used at dilution 1:2000. Treated cells were extracted for their nuclear and
cytoplasmic protein fractions using ProteoJET cytoplasmic and nuclear protein
extraction kit (Fermentas, Cleveland, OH, USA) and then blotted using Cytochrome-c
and GAPDH antibodies from Santa Cruz biotechnologies.

TUNEL assay. Seeded cells were allowed to reach 70% confluency and then
treated with vehicle control and SNA (12 μg/ml) for 24 h. The TUNEL reaction was
carried out using 'In situ cell death detection kit, fluorescein' (Roche Diagnostics,
Mumbai, India) according to the manufacturer's instruction. The images were taken
by the confocal microscopy as mentioned above.

Mitochondrial ROS generation. Flow cytometric analysis of mitochondrial
ROS generation was performed by staining control and SNA (12 μg/ml) treated cells
with the intra-vital dye Mitosox using gating criteria based on forward scatter, an
indicator of size by LSRFortessa cell analyzer (Becton-Dickinson, San Jose, CA,
USA). Cells were incubated with the MitoTracker Red CMXROS (Molecular Probes,
Waltham, MA, USA, concentration 300 nM) for 40 min at room temperature.

Measurement of mitochondrial respiration by XF-flux analyzer.
Cells were counted with TC-10 cell counter (Bio-Rad, Hercules, CA, USA) and
plated at 20 000 cells per well density on XF24 plates. Cells were grown for 24 h in
a CO2 incubator at 37 °C. One hour before the measurements on an XF24
extracellular flux analyzer (Seahorse Bioscience, Billerica, MA, USA), cells were
removed from the CO2 incubator and placed at 37 °C in a non-CO2 incubator, and
media was replaced with 500 μl XF assay media composed of 143 mM NaCl,
5.4 mM KCl, 0.8 mM MgSO4, 0.91 mM Na2HPO4, 2 mM glutamine, 2 mg/ml BSA
and 15 mg/l phenol red, pH 7.4. Stock solutions (×10) of oligomycin, FCCP and
rotenone were prepared in XF assay media and loaded into injection ports A, B and
C, respectively. Measurements were obtained at 37 °C. The calculations were done
as follows: basal OCR= (measurement before oligomycin addition)–non-mitochon-
drial; proton leak= (first measurement after oligomycin injection through

measurement before FCCP)–non-mitochondrial; ATP production= basal respira-
tion–proton leak; and reserve respiratory capacity=maximal respiration–basal
respiration.

Quantitative real-time PCR. Total RNA was isolated from cell lines using
TRI-reagent (Sigma) following the standard protocol succeeded by cDNA synthesis
from 1 μg RNA using iScript (Fermentas, Cleveland, OH, USA). Q-PCR was
performed with fluorescent Power SYBR Green-I on the ABI 7500 Real-Time PCR
system (Applied Biosystems, Foster City, CA). 18s levels were used as loading
control. The primers used were as follows: human 18s forward – 5ʹ-GATTCCGTGG
GTGGTGGTGC-3ʹ and reverse 5ʹ-AAGAAGTTGGGGGACGCCGA-3ʹ, human Drp-1
forward – 5ʹ-AGCGGCAAATCAAACGTCTAG-3ʹ and reverse – 5ʹ-TTGCATTTCCT
CA-TGAACCAGTT-3ʹ, human Fis-1 forward – 5ʹ-TACGTCCGCGGGTTGCT-3ʹ and
reverse – 5ʹ-CCAGTTCCTTGGCCTGGTT-3ʹ and human Mfn-1 forward – 5ʹ-GCAAC
TGAAAAACTGAGGATGATTG-3ʹ and reverse – 5ʹ-CACAGGCGAGCAAAAGTG
GTA-3ʹ.

Cell cycle analysis. Cells were seeded in six-well plates at a density of
2 × 106 cells per well and treated with SNA for 24 h. Adherent cells were trypsinized
and washed, followed by fixation in 70% ethanol overnight at − 20 °C. After
centrifugation, pellets were re-suspended in 500 μl 1X PBS containing PI (Sigma)
working stock (50 μg/ml PI, 0.1 mg/ml RNase A added to PBS) and incubated for
10–15 min before being analyzed by FACS (BD Biosciences, San Jose, CA, USA).

Statistical analysis. Statistical analysis was performed using Microsoft excel.
Data are shown as mean±S.D. of at least three independent experiments.
Significant difference between groups with equal numbers was analyzed by two-
sided Student's t-test. Correlation between groups of variables was analyzed with
Pearson’s correlation. P-values o0.05 were considered statistically significant.
*Po0.05, **Po0.05, and ***Po0.0005.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements. Research was funded by Council of Scientific and
Industrial Research (CSIR, Project no. BSC-0101, BSC-0206), Govt. of India. We
thank Dr. N Aueresperg and Clara Salamanca for gifting us the IOSE-364 cell lines.
The technical assistance of Prabir Kumar Dey (CSIR-IICB) is gratefully acknowl-
edged. Other lab members of SSR laboratory are thankfully acknowledged for their
co-operation. Mr. Diptadip Sarkar, Mr. Shounak Bhattacharya, Mr Binayak Pal and
Mr. Tanmoy Dalui are thankfully acknowledged for assisting in confocal microscopy
and FACS analysis.

1. Tan M, Zhu L, Zhuang H, Hao Y, Gao S, Liu S et al. Lewis Y antigen modified CD47 is an
independent risk factor for poor prognosis and promotes early ovarian cancer metastasis.
Am J Cancer Res 2015; 5: 2777–2787.

2. Ali AY, Farrand L, Kim JY, Byun S, Suh JY, Lee HJ et al. Molecular determinants of ovarian
cancer chemoresistance: new insights into an old conundrum. Ann N YAcad Sci 2012; 271:
58–67.

3. Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol
2014; 4: 28.

4. Tuccillo FM, de Laurentiis A, Palmieri C, Fiume G, Bonelli P, Borrelli A et al. Aberrant
glycosylation as biomarker for cancer: focus on CD43. Biomed Res Int 2014; 2014: 742831.

5. Reticker-Flynn NE, Bhatia SN. Aberrant glycosylation promotes lung cancer metastasis
through adhesion to galectins in the metastatic niche. Cancer Discov 2015; 5: 168–181.

6. Arnal-Estapé A, Nguyen DX. Sweets for a bitter end: lung cancer cell surface protein
glycosylation mediates metastatic colonization. Cancer Discov 2015; 5: 109–111.

7. Anugraham M, Jacob F, Nixdorf S, Everest-Dass AV, Heinzelmann-Schwarz V, Packer NH.
Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan
structures reflect gene expression and DNA methylation status. Mol Cell Proteomics 2014;
13: 2213–2232.

8. Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets.
Nat Rev Cancer 2005; 5: 526–542.

9. Peng-Hui Wang. Altered glycosylation in cancer: sialic acids and sialyltransferases.
J Cancer Mol 2005; 1: 73–81.

10. Büll C, Boltje TJ, Wassink M, de Graaf AM, van Delft FL, den Brok MH et al. Targeting
aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion,
migration, and in vivo tumor growth. Mol Cancer Ther 2013; 12: 1935–1946.

SNA mediates apoptosis through mitochondrial dysfunction
SR Chowdhury et al

11

Cell Death and Disease



11. Almaraz RT, Tian Y, Bhattarcharya R, Tan E, Chen SH, Dallas MR et al. Metabolic Flux
increases glycoprotein sialylation: implications for cell adhesion and cancer metastasis. Mol
Cell Proteomics 2012; 11: M112.

12. Shetty V, Hafner J, Shah P, Nickens Z, Philip R. Investigation of ovarian cancer associated sialylation
changes in N-linked glycopeptides by quantitative proteomics. Clin Proteomics 2012; 9: 10.

13. Schultz MJ, Swindall AF, Wright JW, Sztul ES, Landen CN, Bellis SL. ST6Gal-I
sialyltransferase confers cisplatin resistance in ovarian tumor cells. J Ovarian Res 2013;
6: 25.

14. Varki NM, Varki A. Diversity in cell surface sialic acid presentations:implications for biology
and disease. Lab Invest 2007; 87: 851–857.

15. Meesmann HM, Fehr EM, Kierschke S, Herrmann M, Bilyy R, Heyder P et al. Decrease of
sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J Cell Sci
2010; 123: 3347–3356.

16. Eligar SM, Pujari R, Savanur MA, Nagre NN, Barkeer S, Ingle A et al. Rhizoctonia Bataticola
lectin (RBL) induces apoptosis in human ovarian cancer PA-1 cells and suppresses tumor
growth in vivo. Glycobiology 2013; doi:10.4172/2168-958X.S1-001.

17. Eligar SM, Pujari R, Swamy BM, Shastry P, Inamdar SR. Sclerotium rolfsii lectin inhibits
proliferation and induces apoptosis in human ovarian cancer cell line PA-1. Cell Prolif 2012;
45: 397–403.

18. Choi SH, Lyu SY, Park WB. Mistletoe lectin induces apoptosis and telomerase inhibition in
human A253 cancer cells through dephosphorylation of Akt. Arch Pharm Res 2004; 27: 68–76.

19. Li W, Yu J, Xu H, Bao J, Concanavalin A. A potential anti-neoplastic agent targeting
apoptosis, autophagy and anti-angiogenesis for cancer therapeutics. Biochem Biophys Res
Commun 2011; 414: 282–286.

20. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res
2011; 30: 87.

21. Lin S, Kemmner W, Grigull S, Schlag PM. Cell surface alpha 2,6 sialylation affects adhesion
of breast carcinoma cells. Exp Cell Res 2002; 276: 101–110.

22. Varki NM, Varki A. Diversity in cell surface sialic acid presentations: implications for biology
and disease. Lab Invest 2007; 87: 851–857.

23. ZamaraevaMV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y. Cells die
with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular
luciferase. Cell Death Differ 2005; 12: 1390–1397.

24. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35: 495–516.
25. Indran IR, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and

drug resistance in cancer cells. Biochim Biophys Acta 2011; 1807: 735–745.
26. Kwong JQ, Henning MS, Starkov AA, Manfredi G. The mitochondrial respiratory chain is a

modulator of apoptosis. J Cell Biol 2007; 179: 1163–1177.
27. Ziegler DV, Wiley CD, Velarde MC. Mitochondrial effectors of cellular senescence: beyond

the free radical theory of aging. Aging Cell 2015; 14: 1–7.
28. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems and apoptosis. Free

Radic Biol Med 2010; 48: 749–762.
29. Gao W, Pu Y, Luo KQ, Chang DC. Temporal relationship between cytochrome c release and

mitochondrial swelling during UV-induced apoptosis in living HeLa cells. J Cell Sci 2001; 114:
2855–2862.

30. Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 2005; 6:
657–663.

31. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the
metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

32. Kim JW, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res
2006; 66: 8927–8930.

33. Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol
Cell Biol 2007; 8: 870–879.

34. Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during
apoptosis. Cell Death Differ 2003; 10: 870–880.

35. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol
2010; 11: 872–884.

36. Wang P, Wang P, Liu B, Zhao J, Pang Q, Agrawal SG et al. Dynamin-related protein Drp1 is
required for Bax translocation to mitochondria in response to irradiation-induced apoptosis.
Oncotarget 2015; 6: 22598–22612.

37. Li G, Zhou J, Budhraja A, Hu X, Chen Y, Cheng Q et al. Mitochondrial translocation and
interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and
apoptosis. Oncotarget 2015; 6: 1834–1849.

38. Westrate LM, Sayfie AD, Burgenske DM, MacKeigan JP. Persistent mitochondrial
hyperfusion promotes G2/M accumulation and caspase-dependent cell death. PLoS ONE
2014; 9: e91911.

39. Alberts B, Johnson A, Lewis J. Molecular biology of the cell, 4th edn. Cancer as a
Microevolutionary Process. Garland Science: New York, NY, USA, 2002.

40. Fulda S. Tumor resistance to apoptosis. Int J Cancer 2009; 124: 511–515.
41. Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol

2014; 4: 28.

42. Arnal-Estapé A, Nguyen DX. Sweets for a bitter end: lung cancer cell surface protein
glycosylation mediates metastatic colonization. Cancer Discov 2015; 5: 109–111.

43. Reticker-Flynn NE, Bhatia SN. Aberrant glycosylation promotes lung cancer
metastasis through adhesion to galectins in the metastatic niche. Cancer Discov 2015; 5:
168–181.

44. dos-Santos PB, Zanetti JS, Vieira-de-Mello GS, Rêgo MB, Ribeiro-Silva AA, Beltrão EI.
Lectin histochemistry reveals SNA as a prognostic carbohydrate-dependent probe for
invasive ductal carcinoma of the breast: a clinicopathological and immunohistochemical
auxiliary tool. Int J Clin Exp Pathol 2014; 7: 2337–2349.

45. Keppler OT, Peter ME, Hinderlich S, Moldenhauer G, Stehling P, Schmitz I et al. Differential
sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates
susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a
lymphotropic virus. Glycobiology 1999; 9: 557–569.

46. Saldova R, Wormald MR, Dwek RA, Rudd PM. Glycosylation changes on serum
glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Markers 2008;
25: 219–232.

47. Saldova R, Piccard H, Pérez-Garay M, Harvey DJ, StruweWB, Galligan MC et al. Increase in
sialylation and branching in the mouse serum N-glycome correlates with inflammation and
ovarian tumour progression. PLoS ONE 2013; 8: e71159.

48. Shi Z, An N, Zhao S, Li X, Bao JK, Yue BS. In silico analysis of molecular mechanisms of
legume lectin-induced apoptosis in cancer cells. Cell Prolif 2013; 46: 86–96.

49. Savanur MA, Eligar SM, Pujari R, Chen C, Mahajan P, Borges A et al. Sclerotium
rolfsii lectin induces stronger inhibition of proliferation in human breast cancer cells than
normal human mammary epithelial cells by induction of cell apoptosis. PLoS ONE 2014; 9:
e110107.

50. Tatsuta T, Hosono M, Takahashi K, Omoto T, Kariya Y, Sugawara S et al. Sialic acid-binding
lectin (leczyme) induces apoptosis to malignant mesothelioma and exerts synergistic
antitumor effects with TRAIL. Int J Oncol 2014; 44: 377–384.

51. Kushnareva Y, Newmeyer DD. Bioenergetics and cell death. Ann N YAcad Sci 2010; 1201:
50–57.

52. Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential
regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ
2003; 10: 709–717.

53. Henry-Mowatt J, Dive C, Martinou JC, James D. Role of mitochondrial membrane
permeabilization in apoptosis and cancer. Oncogene 2004; 23: 2850–2860.

54. Westermann B. Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta
2012; 1817: 1833–1838.

55. Pecqueur C, Oliver L, Oizel K, Lalier L, Vallette FM. Targeting metabolism to induce cell death
in cancer cells and cancer stem cells. Int J Cell Biol 2013; 2013: 805975.

56. Sun HY, Liu BB, Hu JY, Xu LJ, Chan SW, Chan CO et al. Novel cycloartane triterpenoid from
Cimicifuga foetida (Sheng ma) induces mitochondrial apoptosis via inhibiting Raf/MEK/ERK
pathway and Akt phosphorylation in human breast carcinoma MCF-7 cells. Chin Med 2016;
11: 1.

57. Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B et al.Molecular switch role of Akt in Polygonatum
odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer
A549 cells. PLoS ONE 2014; 9: e101526.

58. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation.
Oncogene 2004; 23: 2838–2849.

59. Basu M, Roy SS. Wnt/β-catenin pathway is regulated by PITX2 homeodomain protein and
thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol
Chem 2013; 288: 4355–4367.

60. Nandi SS, Ghosh P, Roy SS. Expression of PITX2 homeodomain transcription factor during
rat gonadal development in a sexually dimorphic manner. Cell Physiol Biochem 2011; 27:
159–170.

Cell Death and Disease is an open-access journal
published by Nature Publishing Group. This work is

licensed under a Creative Commons Attribution 4.0 International
License. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from
the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2017

Supplementary Information accompanies this paper on Cell Death and Disease website (http://www.nature.com/cddis)

SNA mediates apoptosis through mitochondrial dysfunction
SR Chowdhury et al

12

Cell Death and Disease

http://creativecommons.org/licenses/by/4.0/

	Targeted apoptosis in ovarian cancer cells through mitochondrial dysfunction in response to Sambucus nigra agglutinin
	Main
	Results
	Hyper-sialylation associated with ovarian cancer drives the specificity of SNA
	Apoptosis was induced by SNA in OC cells
	SNA administration led to mitochondrial dysfunction through enhanced ROS generation and cytochrome-c release
	SNA induces a shift of cellular respiration toward oxidative phosphorylation
	Mitochondrial fission promoted by translocation of Drp-1 results in decrease of cellular viability
	AKT-ERK1/2 pathway has a crucial role in SNA-induced apoptosis in ovarian cancer cells

	Discussion
	Materials and methods
	Cell culture
	Confocal microscopy
	Image analysis
	Immunohistochemistry
	Fluorescence-assisted cell sorting
	Growth inhibitory studies
	BrdU proliferation assay
	Western blotting
	TUNEL assay
	Mitochondrial ROS generation
	Measurement of mitochondrial respiration by XF-flux analyzer
	Quantitative real-time PCR
	Cell cycle analysis
	Statistical analysis

	Acknowledgements
	Notes
	References




