
OPEN

Starvation at birth impairs germ cell cyst breakdown
and increases autophagy and apoptosis in mouse
oocytes

Yong-Yong Wang1,2, Yuan-Chao Sun2, Xiao-Feng Sun1,2, Shun-Feng Cheng2, Bo Li3, Xi-Feng Zhang2, Massimo De Felici4 and
Wei Shen*,2

The female reproductive lifespan is largely determined by the size of primordial follicle pool, which is established following germ
cell cyst breakdown around birth. Almost two-third of oocytes are lost during germ cell cysts breakdown, following autophagic and
apoptosis mechanisms. To investigate a possible relationship between germ cell cyst breakdown and nutrition supply, we
established a starvation model in mouse pups at birth and evaluated the dynamics of cyst breakdown during nutrient deprivation.
Our results showed that after 36 h of starvation between 1.5 and 3 d.p.p., indicators of metabolism both at systemic and ovarian
level were significantly altered and the germ cell cyst breakdown markedly decreased. We also found that markers of oxidative
stress, autophagy and apoptosis were increased and higher number of oocytes in cyst showing autophagic markers and of
TUNEL-positive oocytes and somatic cells were present in the ovaries of starved pups. Moreover, the proliferation of pre-granulosa
cells and the expression of the oocyte-specific transcription factor Nobox were decreased in such ovaries. Finally, we observed
that the ovaries of the starved pups could recover a normal number of follicles after about 3 weeks from re-feeding. In conclusion,
these data indicate that nutrient deficiency at birth can generate a number of adaptive metabolic and oxidative responses in the
ovaries causing increased apoptosis both in the somatic cells and oocyte and autophagy mainly in these latter and leading to a
delay of germ cell cyst breakdown and follicle assembly.
Cell Death and Disease (2017) 8, e2613; doi:10.1038/cddis.2017.3; published online 9 February 2017

Germ cell cysts refer to a cluster of interconnected germ cells
resulting from incomplete mitotic cytokinesis.1–3 In the mouse,
germ cells form cysts from 10.5 to 13.5 days post coitum
(d.p.c.) during the period of the primordial germ cell (PGC)
proliferation in both sexes.4,5 In female mice, cysts partially
fragment prior to meiosis and gradually decrease in oocyte
number throughout 17.5 d.p.c. to 4.0 days post partum
(d.p.p.).6 In Drosophila, the mechanisms of germ cell cyst
formation and its role in oogenesis have been elucidated. At
first, one germline stem cell undergoes four times mitosis to
form a 16-cell cyst, only one of these develops into an oocyte
while the other 15 cells act as nurse cells. Such cells provide
nutrients, proteins, mRNAs and organelles for the developing
oocyte, transport their contents into the oocyte and undergo
programmed cell death (PCD).7,8

Likewise in the mouse, some oocytes within a cyst appear to
receive nutrients and organelles from neighboring oocytes
fated to undergo death.9,10 It is not clear, however, whether
oocytes in cysts die during or after cyst breakdown. In one
model, one oocyte of a cyst dies following apoptosis and the
large cyst breaks into two smaller cysts; this is repeated until a
few individual oocytes remain.11 However, another study
showed that cyst breakdown and apoptosis do not precisely
coincide indicating that apoptosis is unlikely to be the major
cause of cyst breakdown and that most of the oocytes actually

die after cyst breakdown.6 Oocyte death during the fetal and
early postnatal period has been described to occur by multiple
causes and processes including apoptosis and autophagy.12–15

Several lines of evidence demonstrate that inducers of oxidative
stress may act as signaling molecules in the pathway of
apoptosis in several, if not all, cells and tissues.16,17 Oxidative
stress occurs when the normal cellular redox balance is
disturbed, resulting in dysregulation of redox-regulated pro-
cesses and/or oxidative damage to cellular structures.18,19 As a
matter of fact, oxidative stress can impair the ovary’s function
and normal development of follicles and has been associated
with polycystic ovary syndrome (PCOS).20,21 Actually, in rodent
models, increased ROS levels induce rapid primordial follicle
loss and apoptosis in antral follicles.22 Whatever the exact
mechanisms of oocyte apoptosis, in the mouse, more than two-
third of oocytes die before and a few days after birth. At this time,
cyst disappearance is concomitant with the formation of the
primordial follicles (PFs). Processes extending from somatic
cells have been observed between oocytes suggesting that
somatic cells may physically separate oocytes.11 Physiologi-
cally, the size of the PF pool will largely determine the
reproductive lifespan of female mammals.
The processes of cyst breakdown and follicle assembly likely

involve communication between oocytes and pre-granulosa
cells that is mediated and regulated by several factors. As a
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matter of fact, a number of compounds can influence cyst
breakdown and consequently the pool of PFs. In vivo and in vitro
exposure of neonatal mouse ovaries to E2, progesterone or
phytoestrogens (i.e., genistein), inhibits cyst breakdown and PF
assembly.23,24 Synthetic forms of estrogens, such as diethyl-
stilbestrol (DES), bisphenol-A (BPA) and ethinyl estradiol (EE),
also block cyst breakdown and alter PF formation.25–27 Disrup-
tion of Notch signaling by pharmacological inhibition, global
deletion of Notch2 or Hes1 (a downstream mediator of Notch
signaling) or conditional knockout of Lfng (a negative modulator
of Notch) or Hes1 in somatic cells, result in abnormal oocyte
maturation and multi-oocyte follicles (MOFs).28–31 Other signal-
ingmolecules and several growth factors appear to have a role in
follicle assembly. Among these, the stem cell factor (SCF, also
known as Kit ligand, KL)32–35 and neurotrophins36–38 favor such
process. Mutants for either bone morphogenetic protein 15
(BMP15) or growth differentiation factor 9 (GDF9), have ovaries
with a significant proportion of MOFs.39 Both BMP15 and GDF9

are secreted by the oocyte early in ovarian differentiation,
supporting the notion that signals from the oocyte to the
granulosa cells are important for cyst breakdown and follicle
formation. Mouse ovaries exposed to another TGFβ family
member, activin A, showed an increased number of PFs.40

Sustaining a positive role of activin in PF formation, more MOFs
were observed in mice overexpressing the activin antagonist,
inhibin B.41 In addition, activin subunit expression is reduced in
neonatal mice treated with E2, which blocks cyst breakdown.42

Mutants of another activin antagonist, follistatin, also have
defects in oocyte development including a delay in cyst
breakdown and follicle formation,43 while FST288, the strongest
activin-neutralizing isoform, impaired germ cell nest breakdown
and primordial follicle assembly by inhibiting pre-granulosa cell
proliferation.44 The last TGFβ family member that has been
implicated in follicle assembly is anti-Mullerian hormone (AMH).
PFassembly is reduced in newborn rat ovaries treatedwith AMH
while oocyte number is greater than controls.45 A study using
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Figure 1 Dynamics of germ cell cyst breakdown. (a) Representative IF for oocytes with MVH (green) in tissue sections of ovaries at 0–4 d.p.p. Plenty of oocytes remaining
within cysts (arrowheads) at 0–1 d.p.p., and quantification of oocytes were surrounded by pre-granulosa cells and formed primordial follicles (arrows) at 3–4 d.p.p. Scale bars:
50 μm. (b) Percent of oocytes in follicles through 0 to 4 d.p.p.; note acceleration of cyst breakdown between 1 and 3 d.p.p., and quantification of oocyte number at 0–4 d.p.p.; note
a marked decrease of the oocyte number between 1 and 3 d.p.p. (c) Number of oocytes per section in mouse ovaries of 0 to 4 d.p.p. Results are presented as mean±S.D. All the
experiments were repeated at least three times
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mouse ovary organ culture implicates FSH in promoting cyst
breakdown and PF formation.46 Finally, a study in the mouse
ovary showed that cyst breakdown requires the activity of c-Jun
N-terminal kinases (JNKs) that are likely necessary to down-
regulate E-cadherin expression in oocytes.47

A number of transcription factors appear also to be important
for PF formation. Mutant mice for the gene encoding the aryl
hydrocarbon receptor (AHR), a basic helix loop helix (bHLH)
transcription factor, form follicles at a faster rate than
normal.48,49 Mice lacking the factor in germline alpha (Figla),
also encoding a bHLHprotein, begin to lose oocytes at birth and
oocytes still present are not enclosed in PFs.50 Disruption of
Nobox (an oocyte-specific homeobox gene), results in
increased mouse oocyte loss and a delay in cyst
breakdown.51,52 Mice mutant for Foxl2, (a winged-helix fork-
head transcription factor), are sterilewith germ cell cysts that do
not breakdown.53 Finally, siRNA knockdown of heterogeneous
nuclear ribonucleoprotein K in rat ovary organ culture caused a
block in cyst breakdown and follicle formation.54 Recent data
showed that PCNA (proliferating cell nuclear antigen) can
regulate primordial follicle assembly by promoting apoptosis of
oocytes in fetal and neonatal mouse ovaries.55

Many animals alter their reproductive strategies in response
to environmental stress. For example, in female Drosophila
and Caenorhabditis elegans, starvation activates apoptotic
checkpoints and autophagy in oogenesis and reduces the

production of mature oocytes.56,57 In the perilous hours
immediately after birth, a newborn mammal must survive the
sudden loss of food supply from its mother. Under normal
circumstances, newborns increase a metabolic response to
ward off starvation until feeding occurs. Under these condi-
tions, autophagy may become essential for viability of various
tissues.58 The observation that in mouse the most part of the
cyst breakdown occurring from 2 to 5 d.p.p., parallels the time
when fully nutrient supply is restored by milk feeding,
prompted us to investigate the influence of starvation on this
process and PF assembly.

Results

Oocytes in cysts show morphological and molecular
markers of autophagy. In a first series of experiments, we
characterize the dynamics of germ cell cyst breakdown in
mouse ovaries from 0 to 4 d.p.p. Immunolocalization of the
oocytes with the germ cell specific marker MVH (mouse Vasa
homolog) in tissue sections, revealed that while almost all
oocytes were located in germ cell cysts (indicated by
arrowheads) at 0 d.p.p., more than half of them were
individually enclosed into follicles (indicated by arrows) at 4
d.p.p. (Figures 1a and b). Between 1 and 3 d.p.p., germ cell
cyst breakdown was intense and associated with a major loss
of oocytes (Figures 1b and c).
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TEM observations showed a frequent presence of autopha-
gosomes, recognized for their characteristic spherical vesicle
with double-layer membranes, suggesting macroautophagy, in
the oocyte cytoplasm and of large number of mitochondria in
some oocytes within cysts at 3 d.p.p. (Figure 2a, Suppl-
ementary Figures S1A and B). On the other hand, the somatic
cells surrounding the oocytes showed less numerous mito-
chondria and smaller size lipid droplets often closely sur-
rounded by mitochondria (Figure 2b). The expression of the
autophagosome membrane-associated light chain 3-2 protein
(LC3-2), in protein extracts from 0 to 4 d.p.p. ovaries was
indicative of ongoing autophagy, while the relatively rapid
decrease of the value of the ratio LC3-2/LC3-1 (the LC3
cytosolic form) from 0 to 3–4 d.p.p. suggested higher level of
autophagy at the beginning of cyst breakdown (Figure 2c).
Moreover, double IF staining for LC3B and the oocyte marker
STAT3 of tissue sections of 3 d.p.p. ovaries revealed that most
of the autophagic protein was localized in oocytes within cysts,
primordial follicles and the granular cells of primary follicles
(Figure 2d, Supplementary Figures S1C and D).

Pup starvation for 36 h impairs primordial follicle
assembly. To investigate whether nutrient supply can affect
germ cell cyst breakdown and PF assembly, we first
established a starvation model by depriving pups of nutrients
for 36 h from 1.5 d.p.p. to 3 d.p.p. We observed that besides
the overall physical appearance of emaciation (Figure 3a),
the weight and length of the body of starved mice were
significantly decreased in comparison with controls (Po0.01;
Figures 3b and c). Furthermore, in mice of the experimental
group, the concentration of glucose in the blood sharply
lowered (Po0.01), while the amino acid metabolism
appeared altered (Figures 3d and e).
In the ovaries of the starved pups, the size and the transcript

level of genes involved in metabolic pathways resulted also
clearly altered. As a matter of fact, the ovaries of these pups
were smaller and weighted significantly lesser than control
(Figure 4a). Moreover, the lack of alteration of the mRNA level
of Glut1, a gene encoding a major glucose transporter
(Figure 4b), the decreased levels of transcripts of three genes
encoding proteins of fatty acid synthesis such as Fabp5, Cpt2
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and Acsl3, although not of Plin2 (Po0.05 or Po0.01;
Figure 4b, Supplementary Figure S4), and the increased level
of mRNA of Slc7a5, encoding a transporter of large neutral
amino acids (Po0.01; Figure 4b), suggested compensatory
changes in critical physiologies and defects in energy
allocation, storage or utilization.
By counting the number of oocytes in cysts or enveloped

individually into follicles in tissue sections of ovaries at 3 d.p.p.,
we found that the normal dynamics of cyst breakdown and PF
formation was significantly impaired in starved pups
(Figure 5a). Actually, in the ovaries of such group, the number
of oocytes in cysts was higher and that in follicles lower in
comparison with control, although the total number of oocyte
did not change (Figure 5b).

Markers of oxidative stress, autophagy and apoptosis are
increased in ovaries of starved pups. To determine
whether the defects in cyst breakdown and follicle assembly
occurring in the ovaries of starved animals were associated to
changes in processes such as oxidative stress, autophagy and
apoptosis, we analyzed the mRNA level and/or proteins of the
anti-oxidative enzymes GPX1, SOD1, CLRX1 and TXNRD1,
of apoptotic Bax and major proteins such as BCL2 and BAX
and of the autophagic proteins LC3-2 and BECLIN1.
Quantitative real-time PCR showed significant (Po0.05)
increased transcripts of Sod1, Clrx1 and Txnrd1 and of the
Bax/Bcl2 mRNA ratio in starved ovaries (Figure 6a,
Supplementary Figure S2). This later was confirmed also at
protein level (Figure 6b). About the autophagic proteins, the
number of oocytes in cysts showing spots of IF LC3-2 positivity
was higher in starved than in control ovaries (Supplementary

Figure S3A). Moreover, the level of BECLIN1 protein,
evaluated by western blot (WB), decreased in ovaries after
12 h but returned to the control level after 24–36 h of starvation
(Supplementary Figure S3B). Compared with control group,
the ratio of Bax/Bcl2 in starvation group was increased in both
the gene and protein levels. Surprisingly, number of TUNEL-
positive cells was really small, there were rare cells found to be
positive for apoptotic markers in both the starvation group and
control group, especially in the control group (Figures 6c and d;
Supplementary Figure S3C). And similar results could be
found in previous publications.11,14

At the same time, the number of pre-granulosa cells positive
for the nuclear PCNA staining, generally associated to cell
proliferation, was significantly reduced in starved in compar-
ison with normal ovaries (Po0.05; Figures 6a and b).
Moreover, among four oocyte-specific transcription factors
analyzed such as Lhx8, Sohlh2, Figlα and Nobox, only the
latter one resulted significantly reduced at protein level
(Figures 5c–f and Supplementary Figure S2).

Reversibility of the starvation effect on the ovarian
follicle pool. We finally verified whether the ovaries of pups
re-feeding after starvation were able to recover a normal PF
pool. In this regard, we observed that after re-feeding,
pups regained body weight and length, and at 21 d.p.p.
(18 days from starvation), no significant difference remained
between the control and starved animals (Figures 7a
and b). At this time, the number of PF and of other stages
as well, in the starved and normal ovaries were comparable
(Figures 7c and d).
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Discussion

The results of our first analyses concerning the dynamics of
germ cell cyst breakdown, showed that a peak in this process
occurred between 1 and 3 d.p.p. and was associated to a

marked decrease of the oocyte number. Moreover, morpho-
logical and molecular markers of autophagy were found in
some oocytes inside cysts. All together, these data support the
existence of a relationship between cyst breakdown and
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oocyte degeneration but do not clarify whether oocyte death
precedes, is concomitant or occurs after such process. At the
same time, the presence of autophagic markers in oocytes
within cysts, primordial follicles and the granulosa cells of
primary follicles, but not inside primary follicles, suggests that,
under normal condition, activation in one or a few cystic
oocytes of autophagy perhaps related to a large number of
mitochondria observed at TEM, can be a prerequisite for their
survival after cyst breakdown. In line with our observations,
some of the mouse oocytes in cysts have been reported to
acquire many organelles, including mitochondria, and other
cytoplasmic components before primordial follicle formation.10

These materials, derived by transfer from interconnected
oocytes, could be used as material for autophagy. Under
starvation condition, autophagy could be exacerbated and
ultimately lead to apoptosis. Actually, several evidences are
accumulating that autophagy and apoptosis may be triggered
by common upstream signals, sometimes converging in

combined autophagy and apoptosis. The alteration of meta-
bolic parameters and the increased expression of a number of
enzymes involved in oxidative stress alongside with enhance
of both autophagic and apoptosis markers in the ovaries from
starved pups, testify a general cellular stress induced by the
nutrient deprivation as the trigger of the cell death processes.
Under such conditions, both pre-granulosa cell proliferation
and expression of some oocyte transcription factors (i.e.,
Nobox), crucial for follicle assembly, appeared also to be
impaired. This might explain the reduced rate of cyst break-
down. As Nobox is expressed mostly in primary (growing)
oocytes and no change in transcripts level of other
oocyte-specific genes such as Lhx8, Sohlh2, Figlα occur,
oocyte growth could be also impaired in starved ovaries.
Interestingly, the adverse effects of starvation on the ovaries
appeared reversible. Actually, after about 3 weeks from pup re-
feeding, the ovaries regained a normal number of follicles. This
could indicate that cyst breakdown was only delayed and
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markers of oxidative stress, autophagy and apoptosis,
increased in the starved ovaries. Despite these, the numbers
of the remaining pre-granulosa cells and oocytes in such
ovaries were apparently still sufficient to sustain the assembly
of a normal number of follicles. Alternatively, this finding can be
explained by the presence of ovarian or extra-ovarian stem
cells able to sustain the ovary recovery.59,60

Dehydration might be a non-negligible factor in ovary
molecular changes even though the starved pups rejected to
suck water and the starvation time was not so long. The main
objective of this investigation was to explore the effects of
starvation and the influence of dehydration onmouse primordial
follicles formation would be the next phase study.58,61

In conclusion, the present data indicate that nutrient
deficiency at birth can generate a number of adaptive
metabolic and oxidative responses in the ovaries causing
increased apoptosis both in the somatic cells and oocyte and
autophagy mainly in these latter and leading to impaired
formation of the PF pool. Under the relatively short starvation
time used by us (36 h), possibly thanks to such adaptive
response, the ovary maintains the capability of regaining a
normal follicle pool.

Materials and Methods
Animals. CD1 mice were obtained from Vital River Laboratory Animal Technology
Co. LTD (Beijing, China) and maintained in the animal room of Qingdao Agriculture
University, ad libitum. Females were mated with males and the presence of the vaginal
plug the morning after breeding, was considered as 0.5 day of pregnancy. For
starvation protocols, pups were separated from mother at 1.5 d.p.p. for 36 h. To make
sure to use pups that have received the same nutrition level before starvation, only
animals with the same body weight (2.2± 0.1 g) were selected. All procedures
involving animals were approved by the Institutional Animal Care and Use
Committees of Qingdao Agricultural University.

Immunofluorescence. Ovaries were dissected and immediately fixed in 4%
paraformaldehyde overnight. The samples were processed following standard
histological procedures for paraffin embedding and serially sectioned at 5 μm. The
sections were heated at 60 °C in an air oven for 2 h, then immediately washed in
xylene and rehydrated through a graded series of ethanol and soaked in PBS.
Finally, they were transferred in 0.01 M sodium citrate buffer at high temperature
(95 °C) for 10 min. After 1 h blocking with BDT (3% BSA, 10% normal goat serum in
TBS), the sections were incubated with primary antibodies (Supplementary Table
S2) in a humidified atmosphere overnight at 4 °C. Cy3-labeled goat anti-rabbit or
FITC-conjugated goat anti-mouse secondary antibodies were used at dilution of
1 : 150 (Beyotime, A0516, A0568, Nantong, China) for 30 min at 37 °C in the dark.
Counterstaining was performed with Hoechst33342 (Beyotime, C1022) or PI
(Abcam, Cambridge, UK, ab14083). Oocytes in cysts or into primordial follicles were
scored in every third section as previously described.62,63

TUNEL assay. TUNEL-positive cells were detected in paraffin sections of
ovaries using the Bright Red Apoptosis Detect Kit (Vazyme, A113-02, Nanjing,
China). Briefly, the sections were heated at the 60 °C in an air oven for 2 h, then
immediately washed in xylene and rehydration through a graded series of ethanol,
and soaked in PBS. The samples were then treated with proteinase K for 15 min at
room temperature, rinsed twice with PBS and incubated for 60 min at 37 °C in the
dark in 100 μl of the TUNEL reaction mixture. Counterstaining was performed with
Hoechst33342 (Beyotime, C1022).

Transmission electron microscopy. The ovaries were dissected and
immediately fixed in 2.5% glutaraldehyde in 0.2 M PBS (pH= 7.2) overnight at 4 °C.
The samples were processed and included in epoxypropane resin following
standard transmission electron microscopy (TEM) procedures. Serial sections were
cut at 50 nm using the EM UC7 ultramicrotome (Leica, Germany), stained with lead
citrate and uranium and observed under HT7700 transmission electron microscope.

WB analysis. Protein extracts were obtained from six ovaries and using the Cell
Lysis Buffer for WB (Beyotime, P0013). The proteins were separated on 10% SDS-
PAGE gel and transferred onto Immobilon-PSQ Transfer Membrane (Millipore MA,
USA). After blocking, the membranes were incubated with the appropriate primary
antibody (Supplementary Table S2) overnight at 4 °C. After washing three times in
Tris-buffered saline and Tween 20 (TBST), the membranes were incubated at 37 °C
for 2 h with horseradish peroxidase (HRP)-conjugated goat anti-rabbit (Beyotime,
A0258) IgG or goat anti-mouse (Beyotime, A0216) IgG at 1 : 2000 dilution in TBST.
Finally, the membranes were reacted with BeyoECL Plus Kit (Beyotime, P0018).
β-Actin was used as housekeeping protein control.

RNA extraction and quantitative real-time PCR. The mRNA was
retrieved from two ovaries using the RNA Prep Pure Micro Kit (Aidlab RN07, Beijing,
China), according to the manufacturer’s descriptions and then reverse-transcribed
into cDNA using TransScript One-Step gDNA Removal and cDNA Synthesis
SuperMix (TransGen Biotech AT311-03, Beijing, China). Thermal cycler program was
set as 50 min at 42 °C, 65 °C for 15 min, and finally a cooling step at 4 °C.
Quantitative PCR (Supplementary Table S1) was carried out with Light Cycler real-
time PCR instrument (Roche, Basel, Switzerland, LC480) using a Light Cycler SYBR
Green I Master (Roche, 04887352001). Gene expression changes were analyzed by
the 2−△△Ct method and normalized to β-actin.

Dosage of blood amino acids and glucose. Samples of blood were
collected from the mouse tail vein. For amino acid dosage, serum was separated from
blood and de-proteinized with sulfosalicylic acid. Free amino acids in the supernatants
were measured using an automated amino acid analyser (Hitachi L8900, Tokyo,
Japan). Glucose concentrations were determined by dropping blood samples onto an
Accu-Chek Active test strips (Roche, Mannheim, Germany) and measuring by Accu-
Chek Active Blood Glucose Meter (Roche GC0612179, Basel, Switzerland).

Statistical analyses. T-test was used to assess the difference between two
groups (normal distribution)40,47,64,65 and one-way analysis of variance (ANOVA) for
multiple comparison tests to analyze the effects of starvation on BECLIN1 protein level
in Supplementary Figure S3B in the ovary. Statistical analysis of follicle number counts
was performed using Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA).
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