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Critical B-lymphoid cell intrinsic role of endogenous
MCL-1 in c-MYC-induced lymphomagenesis

S Grabow*,1,2, GL Kelly1,2, ARD Delbridge1,2, PN Kelly1,2,3, P Bouillet1,2, JM Adams1,2 and A Strasser*,1,2

Evasion of apoptosis is critical for tumorigenesis, and sustained survival of nascent neoplastic cells may depend upon the
endogenous levels of pro-survival BCL-2 family members. Indeed, previous studies using gene-targeted mice revealed that BCL-
XL, but surprisingly not BCL-2, is critical for the development of c-MYC-induced pre-B/B lymphomas. However, it remains unclear
whether another pro-survival BCL-2 relative contributes to their development. MCL-1 is an intriguing candidate, because it is
required for cell survival during early B-lymphocyte differentiation. It is expressed abnormally high in several types of human B-cell
lymphomas and is implicated in their resistance to chemotherapy. To test the B-cell intrinsic requirement for endogenous MCL-1 in
lymphoma development, we conditionally deleted Mcl-1 in B-lymphoid cells of Eμ-Myc transgenic mice. We found that MCL-1 loss
in early B-lymphoid progenitors delayed MYC-driven lymphomagenesis. Moreover, the lymphomas that arose when MCL-1 levels
were diminished appeared to have been selected for reduced levels of BIM and/or increased levels of BCL-XL. These results
underscore the importance of MCL-1 in lymphoma development and show that alterations in the levels of other cell death
regulators can compensate for deficiencies in MCL-1 expression.
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Apoptosis is a genetically programmed process for eliminating
unwanted cells and is critical for normal development and
tissue homeostasis in multi-cellular organisms.1 Defects in
apoptosis are implicated in several disease states, particularly
cancer2 and autoimmunity.3 Proteins of the BCL-2 family are
major regulators of apoptosis.4,5 The essential triggers are
its BH3-only sub-family members (for example, BIM, PUMA
and NOXA), which are activated transcriptionally and/or
post-transcriptionally in response to diverse intracellular
stresses.6,7 The pro-apoptotic multi-BCL-2 homology (BH)
domain proteins BAX, BAK (and possibly BOK8) have the
essential role of permeabilizing the mitochondrial outer
membrane, which constitutes the ‘point-of-no-return’ in apop-
tosis signaling and unleashes the caspase cascade that
mediates cell demolition.4,5,9 The pro-survival BCL-2 family
members, including BCL-2, BCL-XL, MCL-1, BCL-W and
A1/BFL1, counter the members of both these pro-apoptotic
sub-families; they function in a cell type specific but frequently
also overlapping manner. For example, MCL-1 is essential for
early embryonic development10 and studies with conditional
knockout mice revealed that it is critical for the survival of
diverse cell types, including hematopoietic stem cells,11

immature as well as mature B- and T-lymphoid cells12 and
certain myeloid cell populations.13

Many cancers display abnormalities in the levels of pro-
survival and/or pro-apoptotic BCL-2 family members and

evasion of apoptosis is widely thought to be essential to
sustain the survival of nascent neoplastic cells and hence
critical for tumorigenesis.14,15 However, the mechanisms that
protect cells undergoing neoplastic transformation from
apoptosis remain incompletely understood.2,16 Abnormalities
in the BCL-2-governed apoptotic pathway or its regulators
have been implicated in B-cell lymphoma development. For
example, BCL-2 is overexpressed due to the t[14;18]
chromosomal translocation in human follicular center B-cell
lymphoma, whereas both alleles of BIM are frequently lost in
mantle cell lymphoma.17–20 Accordingly, transgenic over-
expression of BCL-2 (or its relatives BCL-XL or MCL-1), or
engineered loss of BIM, PUMA or BAX, can accelerate
lymphomagenesis, particularly if cell cycle control is impaired,
for example by enforced expression of c-MYC21–25 or v-Abl.26

Although lymphomas elicited by combined overexpression of
c-MYC and BCL-2 are ‘addicted to’ sustained BCL-2 over-
expression for continued expansion,27 endogenous BCL-2 is
dispensable for c-MYC-induced lymphomagenesis.28 In con-
trast, BCL-XL proved essential for the survival of both normal
and pre-leukemic B cells undergoing neoplastic transforma-
tion and its loss greatly impaired lymphoma development in
Eμ-Myc transgenic mice.29 Notably, the impaired tumor
development could be overcome by concomitant loss of pro-
apoptotic BIM.30
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However, it is still unclear whether BCL-XL is the sole pro-
survival BCL-2 family member required for MYC-induced pre-
B/B-lymphoma development. MCL-1 is of particular interest.
Increases in MCL-1 gene copy number and concomitantly
elevated MCL-1 protein are found in a substantial fraction of
diverse cancer types.31 For a few cell lines derived from such
cancers, MCL-1 knockdown by RNA interference was shown
to cause apoptosis, demonstrating that MCL-1 is critical for
their sustained survival.31 Similarly, acute myeloid leukemia
(AML) cells driven by enforced expression of c-MYC or the
MLL-ENL and MLL-AF9 fusion onco-proteins and c-MYC- or
BCR-ABL-driven pre-B/B lymphomas were rapidly killed upon
inducible genetic deletion or blockade of MCL-1.32–35

MCL-1 is critical for the survival of rapidly proliferating
hematopoietic progenitors36 and non-transformed pro-B/pre-
B cells,12 the cells thought to be the origin of Eμ-Myc
lymphoma.37,38 Therefore, we examined the role of MCL-1 in
pre-B/B cell lymphoma development in Eμ-Myc transgenic
mice by incorporating CD19-Cre or Rag1-Cre alleles to
impose Mcl-1 gene deletion exclusively in the B-lymphoid
compartment. We report that there was marked selection
against Mcl-1 gene loss during c-MYC-driven lymphoma
development and a delay in tumor onset. Moreover, the
lymphomas that arose despite successful Mcl-1fl recombina-
tion exhibited abnormally low levels of pro-apoptotic BIM and/
or increased levels of pro-survival BCL-XL. These results
show that MCL-1 is critical for c-MYC-driven pre-B/B-
lymphoma development, and suggest that alterations in other

core components of the apoptotic machinery can compensate
for a reduction in MCL-1 levels.

Results

Impact of B-cell lineage-restricted deletion of Mcl-1 on
MYC-driven lymphomagenesis. To explore the impact of B
cell-restricted deletion of one or both allele(s) of Mcl-1 on
c-MYC-driven lymphoma development, we generated
Eμ-Myc mice with one or both Mcl-1 alleles flanked by loxP
sites (hereafter called Mcl-1fl/+ or Mcl-1fl/fl, respectively).
Some cohorts also expressed the Cre recombinase selec-
tively either from the common lymphoid progenitor stage
(CLP), using a Rag-1-Cre transgene, or from the late pro-B
cell stage onwards, using a CD19-Cre transgene.39 In our
Mcl-1 gene-targeted mice, recombination of the Mcl-1fl allele
subjugates a human CD4 reporter transgene to the Mcl-1
promoter/enhancer elements. Hence, human CD4 (hCD4)
expression, which is readily detectable by flow cytometric
analysis using fluorochrome-labeled anti-human-CD4 anti-
bodies, serves as a reporter of Mcl-1fl deletion.33,40,41

We first compared the incidence and rate of pre-B/B-cell
lymphoma development in Eμ-Myc, Eμ-Myc;CD19-Cre,
Eμ-Myc;CD19-Cre;Mcl-1fl/+ and Eμ-Myc;CD19-Cre;Mcl-1fl/fl

mice (Figure 1a). The lymphoma-free survival of the control
mice without Mcl-1 deletion (Eμ-Myc and Eμ-Myc;CD19-Cre)
was similar: median survivals of 91 days and 117 days,
respectively (Mantle–Cox Log-rank test P=0.069, Figure 1a).
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Figure 1 Minor impact of CD19-Cre-mediated loss of one or both alleles of Mcl-1 in B-lymphoid cells on pre-B/B-cell lymphoma development in Eμ-Myc mice. (a) Kaplan–
Meier survival curves comparing survival of Eμ-Myc (median 91 days), Eμ-Myc;CD19-Cre (117 days), Eμ-Myc;CD19-Cre;Mcl-1fl/+ (130 days) and Eμ-Myc;CD19-Cre;Mcl-1fl/fl

mice (123 days). Eμ-Myc versus Eμ-Myc;CD19-Cre P= 0.069; Eμ-Myc;CD19-Cre versus Eμ-Myc;CD19-Cre;Mcl-1fl/+ P= 0.16; Eμ-Myc;CD19-Cre versus Eμ-Myc;CD19-Cre;
Mcl-1fl/fl P= 0.16). (b) Lymphoma burden in sick Eμ-Myc, Eμ-Myc;CD19-Cre, Eμ-Myc;CD19-Cre;Mcl-1fl/+and Eμ-Myc;CD19-Cre;Mcl-1fl/flmice. No significant differences were
observed, compared with sick Eμ-Myc;CD19-Cre mice, in the weights of the spleen or lymph nodes, respectively. (c) Peripheral blood analysis of sick, lymphoma-burdened
compound mutant mice using an ADVIA counter. Eμ-Myc;CD19-Cre versus Eμ-Myc;CD19-Cre;Mcl-1fl/+ display no significant changes; Eμ-Myc;CD19-Cre versus Eμ-Myc;CD19-
Cre;Mcl-1fl/fl: P*lymphocytes= 0.0172)
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With one or two floxedMcl-1 alleles, therewas amodest (albeit
not statistically significant) delay in lymphomagenesis com-
pared with the Eμ-Myc;CD19-Cre animals: 130 and 123 days,
respectively (P=0.16 for both).
Autopsy on the sick, lymphoma-burdened mice revealed

that the Eμ-Myc;CD19-Cre;Mcl-1fl/fl mice (P*= 0.0172) had
significantly less lymphoma cells in the blood than Eμ-Myc;
CD19-Cre mice, but no such drop was found for the sick
Eμ-Myc;CD19-Cre;Mcl-1fl/+mice. No significant differences
between the genotypes appeared for spleen and lymph node
weights (Figure 1b), or the numbers of erythrocytes and
thrombocytes in the blood (Figure 1c).

Selection against MCL-1 loss. As constitutive or inducible
loss of MCL-1 impairs the development as well as sustained
expansion of many tumors,33,34,41 we tested whether the
Mcl-1fl allele(s) had been recombined in the lymphomas that
arose in the Eμ-Myc;CD19-Cre;Mcl-1fl/+and Eμ-Myc;CD19-
Cre;Mcl-1fl/fl mice, or whether selection against Mcl-1 gene
loss had occurred during their malignant transformation.
Western blot analysis revealed that many lymphomas from
Eμ-Myc;CD19-Cre;Mcl-1fl/+(3/3 tested) and Eμ-Myc;CD19-
Cre;Mcl-1fl/fl mice (2/3 tested) retained MCL-1 expression,
but its levels were significantly lower than in lymphomas from
Eμ-Myc control mice (Figure 2a). The reduced MCL-1 protein
expression appeared to be accompanied by a significant
decrease in BIM protein expression in the Eμ-Myc;CD19-Cre;
Mcl-1fl/+and Eμ-Myc;CD19-Cre;Mcl-1fl/fl lymphomas tested.

Also, BCL-XL appeared to be upregulated in the Eμ-Myc;
CD19-Cre;Mcl-1fl/+ lymphomas, in which Mcl-1fl deletion was
efficient (Figure 2a). Compared with Eμ-Myc;CD19-Cre
control lymphomas, BCL-2 protein expression was
comparable in the Eμ-Myc;CD19-Cre;Mcl-1fl/+ lymphomas
or, curiously, was lower in the Eμ-Myc;CD19-Cre;Mcl-1fl/fl

lymphomas that had retained their Mcl-1fl alleles (Figure 2a).
Consistent with the Western blot results, PCR analysis of
FACS-sorted primary lymphoma cells confirmed that some of
the lymphoma cells arising in Eμ-Myc;CD19-Cre;Mcl-1fl/+ and
Eμ-Myc;CD19-Cre;Mcl-1fl/fl mice had not excised or only
partially excised their Mcl-1fl alleles (Figure 2b).
Flow cytometric analysis for the human CD4 reporter

confirmed that most tumors arising in Eμ-Myc;CD19-Cre;
Mcl-1fl/+ mice had efficiently excised their Mcl-1fl allele.
However, only ~ 50–60% of the two floxed Mcl-1 alleles had
been recombined in the lymphomas from the Eμ-Myc;CD19-
Cre;Mcl-1fl/fl mice (Figure 2c). This suggests that the remain-
ing wild-type (wt) Mcl-1 allele in Eμ-Myc;CD19-Cre;Mcl-1fl/+

B-lymphoid cells is sufficient to sustain their survival during
neoplastic transformation. In contrast, deletion of both Mcl-1fl

alleles must impose a stress from which lymphoma-initiating
B-lymphoid progenitors are unable to recover. Thus, lympho-
mas that arise in Eμ-Myc;CD19-Cre;Mcl-1fl/fl mice have
potently selected against loss of both Mcl-1fl alleles and
the stress caused by loss of one Mcl-1fl allele is partially
relieved by adjustments in the levels of the BCL-XL and BIM
proteins.
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Figure 2 Expression of BCL-2 family members, p53, MDM2 and p19-ARF in lymphomas from Eμ-Myc mice with CD19-Cre-mediated deletion of Mcl-1. (a) The levels of the
indicated proteins were determined byWestern blot analysis in three lymphomas from each of the indicated genotypes. The protein from theMcl-1fl allele is slightly larger than the
wt MCL-1 protein indicated by arrows.53 Probing for HSP70 was used as a loading control. (b) Genotype analysis of FACS-sorted B220+ pre-B/B-lymphoma cells from mice of
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Overexpression of c-MYC causes selection bias against
deletion of Mcl-1fl genes in pre-leukemic B-lymphoid
cells. c-MYC promotes cell growth and cell proliferation, but
under conditions of stress, such as nutrient or growth factor
deprivation, high c-MYC levels predispose cells to undergo
apoptosis.42–44 Pre-leukemic Eμ-Myc mice exhibit increased
numbers of pre-B cells in their bone marrow, spleen, lymph
nodes and blood, but these cells are not transformed and
consequently do not form tumors when transplanted into
congenic recipient mice.37

Given that loss of one allele of Mcl-1 suffices to potently
induce cell death in malignant Eμ-Myc lymphomas,35 we
hypothesized that loss of one Mcl-1fl allele might also reduce
the numbers of pre-leukemic pro-B, pre-B and/or sIg+-B cells
(at 3–4 weeks of age) in Eμ-Myc;CD19-Cre;Mcl-1fl/+mice
compared with Eμ-Myc and Eμ-Myc;CD19-Cre control ani-
mals. The total bone marrow and lymph node cellularities of
pre-leukemic Eμ-Myc, Eμ-Myc;CD19-Cre and Eμ-Myc;CD19-
Cre;Mcl-1fl/+ mice were comparable to each other and to wt
mice, but there was a notable increase, although not
statistically significant, in the overall leukocyte numbers in
the spleens of Eμ-Myc and Eμ-Myc;CD19-Cremice compared
with the Eμ-Myc;CD19-Cre;Mcl-1fl/+ animals and the wt

controls (Figure 3a). As reported,37 Eμ-Myc mice had more
pre-B cells in their bone marrow than wt controls (Figure 3b).
Interestingly, Eμ-Myc;CD19-Cre mice had significantly fewer
pre-B cells than Eμ-Myc mice (Figure 3b; P*= 0.0452),
suggesting that the Cre recombinase imposes a cytotoxic
stress on these cells. Eμ-Myc;CD19-Cre;Mcl-1fl/+ animals had
even fewer pre-leukemic pre-B cells than the Eμ-Myc;CD19-
Cre animals, but this difference was not statistically significant
(P= 0.10; Figure 3b), although the difference to the Eμ-Myc
mice was significant. There were no significant differences in
the numbers of pro-B cells or sIg+-B cells in the bone marrow
between mice of any of the genotypes examined (Figure 3b).
As some lymphomas that arose inEμ-Myc;CD19-Cre;Mcl-1fl/+

mice had been selected for retention of their Mcl-1fl allele, we
hypothesized that there may be potent selection against loss of
the Mcl-1fl allele already in the pre-leukemic state. To
examine this, we stained spleen cells from pre-leukemic
Eμ-Myc;CD19-Cre;Mcl-1fl/+ mice as well as those from
Eμ-Myc, CD19-Cre;Mcl-1fl/+ and wt animals with antibodies
against B220 (B-cell marker) and hCD4 (reporter for Mcl-1fl

deletion; Figure 3c). As expected, the B-lymphoid cells from
Eμ-Myc and wt mice did not express hCD4. The B-lymphoid
cells from CD19-Cre;Mcl-1fl/+mice were composed of two
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distinct populations, one negative (~60%) and the other positive
(~40%) for hCD4 (Figure 3c). This demonstrates that some
B-lymphoid cells in these animals were able to delete theMcl-1fl

allele, although the efficiency was not very high. This is
consistent with the previously reported45 relatively poor recom-
bination efficiency of the CD19-Cre deletion strain that we
used in our experiments. Interestingly, in the Eμ-Myc;CD19-
Cre;Mcl-1fl/+ mice only ~ 20% of the pre-leukemic B-lymphoid
cells were hCD4+ (Figure 3c).
These findings reveal that deregulated c-MYC expression

exerts potent selection against loss of one Mcl-1fl allele in
B-lymphoid cells, whereas loss of one Mcl-1 allele is more
readily tolerated in normal B-lymphoid cells.

Efficient deletion of Mcl-1fl allele(s) in B-lymphoid
progenitors using the Rag-1-Cre transgene substantially
delays lymphomagenesis in Eμ-Myc mice. As CD19-Cre-
mediated deletion of Mcl-1fl alleles was rather inefficient, we
wanted to test whether deleting Mcl-1fl allele(s) more
efficiently and at an earlier stage in B-cell development
would have a greater impact in our lymphoma model. For this
we employed the Rag-1-Cre knockin allele, which was
reported to recombine floxed genes with very high efficiency
at the CLP stage.46,47 Lymphoma onset was slightly delayed
in the Eμ-Myc;Rag-1-Cre mice compared with the Eμ-Myc
control animals. Although this difference was not significant
(P= 0.06), this indicates that the Rag-1-Cre transgene exerts
some toxicity on B-lymphoid cells undergoing neoplastic

transformation. Remarkably, the median lymphoma-free
survival of Eμ-Myc;Rag-1-Cre;Mcl-1fl/+ mice (346 days) was
far longer than in control Eμ-Myc (91 days) and Eμ-Myc;Rag-
1-Cre mice (129 days, P**=0.003, Figure 4a), clearly
demonstrating the importance of MCL-1 in c-MYC-induced
lymphomagenesis.
The lymphoma-burdened, sick Eμ-Myc;Rag-1-Cre;Mcl-1fl/+

mice showed significantly lower lymph node weights
(*P= 0.031) and lymphocyte numbers in the peripheral blood
(*P= 0.046) than sick Eμ-Myc;Rag-1-Cre mice (Figures 4b
and c). No significant differences were found in the spleen
weights or in the numbers of erythrocytes and thrombocytes in
the blood.
The marked delay in lymphoma development seen in the

Eμ-Myc;Rag-1-Cre;Mcl-1fl/+ mice suggested that Rag-1-Cre
was considerably more efficient inMcl-1fl deletion than CD19-
Cre. To test this hypothesis, we analyzed lymphoma cells from
Eμ-Myc;Rag-1-Cre and Eμ-Myc;Rag-1-Cre;Mcl-1fl/+ mice for
hCD4 expression (Figure 5a). Strikingly, the selection against
cells expressing the hCD4 reporter (i.e. selection against cells
that had deleted the Mcl-1fl allele) was clearly more potent in
Eμ-Myc;Rag-1-Cre;Mcl-1fl/+ lymphoma cells than in those
from the Eμ-Myc;CD19-Cre;Mcl-1fl/+ mice (compare data in
Figures 2c and 5a). In the absence of oncogenic stress,
Rag-1-Cre;Mcl-1fl/+mice efficiently deleted one Mcl-1 allele in
B-lymphoid cells, but interestingly, there was potent selection
against loss of both Mcl-1 alleles even without c-MYC
overexpression (Figure 5b). These results reveal that non-
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Figure 4 Rag1-Cre-mediated deletion of one allele of Mcl-1 greatly delays lymphoma development in Eμ-Mycmice. (a) Kaplan–Meier animal survival curves comparing Eμ-
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autopsy in sick mice of indicated genotypes. A significant difference was observed in lymph node weights (P*= 0.0307) between sick Eμ-Myc;Rag1-Cre and Eμ-Myc;Rag1-Cre;
Mcl-1fl/+mice. (c) The numbers of lymphoid cells, erythrocytes and thrombocytes in the peripheral blood of lymphoma-burdened mice of the indicated genotypes were determined
at autopsy using the ADVIA counter. Eμ-MycRag-1-Cre versus Eμ-Myc;Rag-1-Cre;Mcl-1fl/+: P*lymph= 0.0464)
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transformed B-lymphoid cells can tolerate loss of one but not
loss of both Mcl-1 alleles, whereas cells with deregulated
c-MYC expression (both pre-leukemic cells undergoing
transformation as well as malignant lymphomas) cannot
tolerate even loss of a single allele. Unfortunately we were
unable to generate Eμ-Myc;Rag-1-Cre;Mcl-1fl/fl mice due to
issues with infertility.
Collectively, these data show that Mcl-1 is essential for the

survival of MYC overexpressing pre-leukemic B-lymphoid
cells undergoing neoplastic transformation. Therefore, B-lym-
phoid-restricted loss of one allele of Mcl-1 can substantially
delay pre-B/B-lymphoma development in Eμ-Myc mice.

Discussion

Evasion of cell death is considered an essential requirement
for the development of cancer.2 Impaired apoptosis in cancer
cells (particularly in hematological malignancies) often results
from deregulated expression of pro-survival or pro-apoptotic
members of the BCL-2 protein family.48 In cells undergoing
neoplastic transformation, apoptosis can be triggered by
stress conditions induced by newly acquired oncogenic
mutations (e.g. deregulated c-MYC expression) or by limiting
availability of nutrients or growth factors from the tumor micro-
environment. Regardless of the trigger that activates apopto-
sis signaling, evasion of cell death is essential for a population
of nascent neoplastic cells to expand and sub-clones to
acquire additional oncogenic lesions that cooperate with the
initiating oncogenic mutation(s) to promote emergence of
malignant cells.16

Although BCL-2 overexpression greatly accelerates
lymphomagenesis in Eμ-Myc transgenic mice,25 endogenous
BCL-2 is dispensable for MYC-driven lymphoma
development.28 In contrast, BCL-XL was found to be essential
for the survival of both normal as well as c-MYC over-
expressing B-cell progenitors and its loss therefore inhibited
lymphoma development in Eμ-Myc mice.29 Here we show

that MCL-1 is also critical for c-MYC-driven lymphoma
development.
We employed two Cre transgenic strains to delete Mcl-1

either at the late pro-B cell (CD19-Cre39) or the CLP stage
(Rag-1-Cre46,47). Surprisingly, we found that lymphoma
development in the Eμ-Myc;CD19-Cre;Mcl-1fl/+ and Eμ-Myc;
CD19-Cre;Mcl-1fl/fl mice was only slightly slower than in the
control Eμ-Myc and Eμ-Myc;CD19-Cremice. The difference to
the Eμ-Mycmice was statistically significant but the difference
to the Eμ-Myc;CD19-Cre mice was not, probably because
constitutive Cre activity imposes a slight toxicity in B-lymphoid
cells, as previously observed in other cell types.49 Interest-
ingly, in young, pre-leukemic Eμ-Myc;CD19-Cre;Mcl-1fl/+ mice
considerably fewer B-lymphoid cells had deleted their Mcl-1fl

allele (detected as human CD4+) than in the CD19-Cre;
Mcl-1fl/+ animals. This demonstrates that deregulated c-MYC
expression renders nascent neoplastic cells exquisitely
dependent on an adequate MCL-1 protein level (i.e., provided
by both Mcl-1 alleles) for their survival. This selection against
pre-leukemic B-lymphoid cells that had deleted their
Mcl-1fl allele(s) explainswhy some pre-B/B lymphomas arising
in Eμ-Myc;CD19-Cre;Mcl-1fl/+ and Eμ-Myc;CD19-Cre;Mcl-1fl/fl

mice had been selected against loss of their Mcl-1fl allele(s).
Thus, cells retaining their full MCL-1 complement had an
advantage in progressing through further steps of neoplastic
transformation. Moreover, lymphomas that arose in Eμ-Myc;
CD19-Cre;Mcl-1fl/+ and Eμ-Myc;CD19-Cre;Mcl-1fl/fl mice
despite loss of one Mcl-1 allele appeared to have undergone
selection for upregulation of BCL-XL and/or a reduction in
pro-apoptotic BIM. This in turn suggests that keeping BIM in
check constitutes a major function for MCL-1 in B-lymphoid
cells undergoing transformation.
Lymphoma-free survival was extended to a much greater

extent in Eμ-Myc;Rag-1-Cre;Mcl-1fl/+ mice compared with the
Eμ-Myc;CD19-Cre;Mcl-1fl/+ and Eμ-Myc;CD19-Cre;Mcl-1fl/fl

animals. This may indicate that loss of one Mcl-1 allele at
the earlier CLP stage of lymphoid cell development (i.e., when
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Figure 5 Lymphomas from Eμ-Myc;Rag-1-Cre;Mcl-1fl/+ mice are selected against loss of their Mcl-1fl allele. (a) Flow cytometric analysis of hCD4 reporter expression
(reflecting Mcl-1fl recombination) on lymphoma cells from Eμ-Myc (control), Eμ-Myc;Rag-1-Cre and Eμ-Myc;Rag-1-Cre;Mcl-1fl/+ mice. (b) Flow cytometric analysis of hCD4
reporter expression on normal B-lymphoid cells (gated as B220+) from 3–4-week-old Rag-1-Cre; Rag1-Cre;Mcl-1fl/+ and Rag1-Cre;Mcl-1fl/fl mice
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Rag1-Cre but not CD19-Cre is expressed) is more efficient in
killing incipient neoplastic cells and therefore more efficient in
delaying lymphoma development compared with Mcl-1fl

deletion at the later pro-B-cell stage (when CD19-Cre
expression commences). Alternatively, the Rag1-Cre trans-
gene may simply be more efficient than the CD19-Cre
transgene; the latter would therefore more readily allow
escape of B-lymphoid cells that had failed to excise Mcl-1fl.
In conclusion, our findings demonstrate that MCL-1 is

critical for the survival of c-MYC overexpressing lymphoma-
initiating cells and hence for development of lymphoma.
MCL-1 appears to be more important than BCL-XL because
loss of one Mcl-1 allele substantially delayed lymphoma
development in Eμ-Myc;Rag-1-Cre;Mcl-1fl/+ mice, whereas
loss of one Bclx allele had only minor impact.29,30 Loss of
BIM-restored lymphoma development in mice with an Eμ-Myc;
Bclx−/− lymphoid system and many pre-B/B lymphomas that
arose in Eμ-Myc;CD19-Cre;Mcl-1fl/+ or Eμ-Myc;CD19-Cre;
Mcl-1fl/flmice despite loss of oneMcl-1 allele appeared to have
undergone selection for low levels of BIM. This suggests that
BIM is the critical pro-apoptotic BH3-only protein activated in
response to oncogenic stress to kill Eμ-Myc pre-leukemic
B-lymphoid cells to suppress progression to malignant
lymphoma. These results and the observation that loss of
even a single allele of Mcl-1 efficiently kills malignant Eμ-Myc
lymphoma cells41 provide further impetus to develop MCL-1
specific inhibitors (e.g. BH3 mimetics) for cancer therapy.50,51

Materials and methods
Experimental mice. All experiments with mice were conducted according to
the guidelines of The Walter and Eliza Hall Institute of Medical Research Animal
Ethics Committee. Eμ-Myc transgenic mice (generated on a mixed C57BL/6xSJL
background and then backcrossed for 430 generations onto a C57BL/6
background) expressing the c-Myc transgene under control of the immunoglobulin
heavy chain gene enhancer Eμ have been previously reported.52 The Mcl-1fl mice
were generated on a C57BL/6 background using C57BL/6-derived ES cells.40

The Rag-1-CreKi/+46 and CD19-CreKi/+39 mice were generated on a mixed
C57BL/6x129SV genetic background using 129SV-derived ES cells and then
backcrossed onto a C57BL/6 background for 420 generations before commence-
ment of our studies.

Genotyping. Genotyping was performed as previously reported.36 Oligonucleo-
tide sequences for genotyping of these alleles will be provided on request.

Analysis of lymphoma-burdened mice. Eμ-Myc transgenic mice were
examined daily by animal technicians for signs of malignant disease. Mice were
sacrificed when declared unwell by the animal technicians. Signs of disease
included splenomegaly, lymphadenopathy, hind-limb paralysis, hunched stature,
weight loss and labored breathing (indicative of lymphoma growth in the thymus).
Sick mice were euthanized, tissues removed, weighed and then used for flow
cytometric as well as histological analyses and tissue culture.

Western blot analysis. Cells were lysed in RIPA buffer supplemented with a
protease inhibitor cocktail (Roche, Basel, Switzerland). Protein lysates (30 μg
protein) mixed with 4x Laemmli buffer were loaded onto a 10% Bis/Tris gel
(Life Technologies, Scoresby, VIC, Australia) and electrophoresis was conducted
according to the manufacturer’s instructions. Proteins were transferred onto
nitrocellulose membranes using the iBlot system (Life Technologies, Scoresby, VIC,
Australia). Nitrocellulose membranes were blocked for 2 h using 5% skim milk
powder dissolved in phosphate-buffered saline supplemented with 0.5% Tween-20.
Western blots were probed with the following monoclonal or polyclonal antibodies:
rabbit anti-mouse MCL-1 (19C4-15), hamster anti-mouse BCL-2 (3F11), mouse
anti-mouse BCL-XL (BD Pharmingen, BD BioSciences, San Jose, CA, USA; 2F12),
rabbit anti-mouse BIM (Stressgen, 9292), rabbit anti-mouse PUMA (Ab-27669,

Abcam, Melbourne, Victoria, Australia), mouse anti-HSP70 (R Anderson, Peter
McCallum Cancer Centre; loading control), rabbit anti-mouse p53 (Leica
Biosystems, Mount Waverley, Victoria, Australia; CM5) and rat anti-mouse p19-
ARF (Rockland Immunochemicals, Pottstown, PA, USA; 5.C3.1), overnight at 4 °C.
Blots were washed three times in phosphate-buffered saline supplemented
with 0.5% Tween-20. The blots were then incubated for 1 h at room temperature
with secondary HRP-conjugated antibodies against mouse, rat, hamster or rabbit
IgG and again washed before exposure to the Amersham ECL reaction and
developing on an autoradiograph Hyperfilm (GE Healthcare, Parramatta, NSW,
Australia).

Lymphoma and pre-leukemic analysis by flow cytometry.
Lymphoid organs were harvested from lymphoma-burdened mice and single-cell
suspensions prepared using forceps. Cells (5 × 106) were resuspended in buffered
saline supplemented with 10% FCS and 2% normal rat serum and stained for
30 min at 4 °C with rat monoclonal antibodies to B220 (RA3-6B2, The Walter
and Eliza Hall Institute (WEHI)), cKIT (ACK4, WEHI), IgM (5.1, WEHI) and IgD
(11-26, WEHI; all produced and conjugated with fluorochromes in our laboratory)
and mouse monoclonal antibody to human CD4 (BD Pharmingen #555347,
RPA-T4).

Statistical analysis. Kaplan–Meier mouse survival curves were generated
and analyzed with GraphPad Prism (GraphPad Software Inc, La Jolla, CA, USA).
Mouse cohorts were compared using the log-rank Mantel–Cox test. P-values of
o0.05 were considered significant. In vitro cell survival, blood cell counts, organ
weights and RNA levels were plotted and analyzed with GraphPad Prism using two-
tailed student’s t-test comparing two groups with each other. Error bars are
presented as standard error of mean (± s.e.m.).
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