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Long noncoding RNAs in the progression, metastasis,
and prognosis of osteosarcoma

Zuozhang Yang*,1,2, Xiaojuan Li1,2, Yihao Yang1,2, Zewei He1, Xin Qu1 and Ya Zhang1

Long noncoding RNAs (lncRNAs) are a class of non-protein-coding molecules longer than 200 nucleotides that are involved in the
development and progression of many types of tumors. Numerous lncRNAs regulate cell proliferation, metastasis, and
chemotherapeutic drug resistance. Osteosarcoma is one of the main bone tumor subtypes that poses a serious threat to
adolescent health. We summarized how lncRNAs regulate osteosarcoma progression, invasion, and drug resistance, as well as
how lncRNAs can function as biomarkers or independent prognostic indicators with respect to osteosarcoma therapy.
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Facts

� Long noncoding RNAs (lncRNAs) regulate cell proliferation
in osteosarcoma.

� LncRNAs regulate cell invasion and chemotherapeutic drug
resistance in human osteosarcoma.

� LncRNAs function as biomarkers and independent prog-
nostic indicators with respect to osteosarcoma therapy.

Open Questions

� How do lncRNAs regulate osteosarcoma progression and
invasion?

� How do lncRNAs regulate osteosarcoma chemothera-
peutic drug resistance?

� Can lncRNAs be used as biomarkers or prognostic
indicators with respect to human osteosarcoma treatment?

Osteosarcoma is the most common malignant bone tumor in
children and adolescents. It is a genetically unstable and
highly malignant mesenchymal tumor of bone characterized
by structural chromosomal alterations.1,2 Malignant osteosar-
coma cells produce osteoid matrix and fibrillary stroma.3 The
most common osteosarcoma subtypes are osteoblastic
osteosarcoma, chondroblastic osteosarcoma, and fibroblastic
sarcoma.4,5 Osteosarcoma occurs predominantly in adoles-
cents and young adults and accounts for ~ 5% of childhood
cancers. Most osteosarcoma patients are diagnosed under

the age of 25 years, and the disease occurs more often in
males than in females.6 Osteosarcoma often exhibits locally
invasive growth. Pulmonary metastases are often seen in
patients with aggressive tumors. Both biopsy findings and
classic X-ray findings contribute to the diagnosis of osteosar-
coma and yield important information that can be used to
select appropriate therapies.7,8 In most osteosarcoma
patients, chemotherapy and/or radiation therapy are usually
administered before or after surgery to prevent tumors from
spreading throughout the body. However, patients with distant
metastases still fare poorly, as the 5-year survival rate in these
patients is ~ 20%.9,10 Thus, developing comprehensive and
multidimensional treatments for osteosarcoma is necessary,
and gene therapies using viral vectors, immune therapies,
antiangiogenic therapies, and proapoptotic therapies have
been investigated regarding their application in patients with
osteosarcoma.
To date, the molecular mechanism underlying osteo-

sarcoma development remains unclear. The majority of
previous studies have focused on protein-coding genes as
crucial components involved in the progression and metas-
tasis of osteosarcoma and have overlooked the vast land-
scape of noncoding genes.
Since the invention of DNA sequencing methods and the

completion of the draft human genome sequence, researchers
have found that only 1.5% of 3.2 billion nucleotide pairs code
for proteins and that the other 98.5% of DNA sequences do not
code for proteins. These sequences are recognized as junk
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sequences that have accumulated because of the process of
evolution.11,12 ENCODE (Encyclopedia of DNA Elements)
projects postulate that 80% of genome sequences are
transcribed into primary transcripts and have biochemical
functions.13,14 The concept of ‘junk DNA’ has rapidly attracted
the attention of researchers. According to their biological
functions, noncoding RNAs can be divided into housekeeping
noncoding RNAs and regulatory noncoding RNAs.15–17

Housekeeping noncoding RNAs comprise ribosomal
RNAs,18–20 transfer RNAs,21,22 small nuclear RNAs,23–25

small nucleolar RNAs,26–28 guide RNAs,29–32 and telomerase
RNAs.33,34 Regulatory noncoding RNAs comprise small inter-
fering RNAs (siRNAs),35–37 micro RNAs (microRNA),38–40

piwi-interacting RNAs,41–43 and long noncoding RNAs
(lncRNAs).44,45

lncRNAs are a large and diverse class of non-protein-coding
transcripts longer than 200 nucleotides.46,47 lncRNAs have
recently gained widespread attention and have been shown to
have crucial roles in various biological regulatory processes.
lncRNA sequences are conserved, and lncRNA expression
profiles in adult tissues are broad. lncRNA messenger RNAs
(mRNAs) are generally less abundant than protein-coding
mRNAs but exhibit stronger tissue- and cell-specific lncRNA
expression patterns.48,49 Most lncRNAs are transcribed by
RNA polymerase II enzymes that lack open-reading frames
and are expressed in specific tissues and/or during specific
developmental stages, demonstrating that the genes encod-
ing thesemolecules are strictly regulated with respect to tissue
development. Previous research has mainly focused on
microRNAs and siRNAs. lncRNAs have recently been found
to be involved in development, differentiation, and prolif-
eration, as well as cell cycle regulation and programmed cell
death.50–53 They also have important roles in the progression
and metastasis of various tumors, such as colon cancer,
liver cancer, breast cancer, bladder cancer, and cervical
cancer51,54–59 (Figure 1). In this paper, we reviewed the
biological functions of lncRNAs and the molecular mechan-
isms underlying these functions with respect to osteosarcoma
progression. Chemotherapy drug resistance remains an
obstacle affecting osteosarcoma treatment. We therefore also
summarized the lncRNAs that are correlated with chemother-
apeutic drug resistance in osteosarcoma therapy. Further-
more, we summarized several lncRNAs that can function as
independent prognostic indicators of overall survival and can
serve as useful biomarkers of osteosarcoma progression and
prognosis. An overview of the lncRNAs that are associated
with osteosarcoma is shown in Table 1.

LncRNA Regulates Signaling Pathways in Osteosarcoma

Developing effective and targeted therapies for osteosarcoma
is dependent on gaining an improved understanding of the
molecular mechanisms underlying osteosarcomagenesis,
proliferation, invasion, and metastasis.60 To date, the mole-
cular mechanism underlying osteosarcoma development has
not been elucidated. It is known that Wnt signaling is involved
in osteosarcoma development, metastasis, and drug resis-
tance. For example, inhibiting Wnt signaling by targeting
c-Met, a Wnt-regulated proto-oncogene, was shown to be
useful for treating osteosarcoma, suggesting that the Wnt

signaling pathway is involved in osteosarcoma development
and metastasis.61 Chemotherapeutic drug resistance
represents a major obstacle with respect to osteosarcoma
treatment, due in part to phenotypic cell transitions toward
stem-like phenotypes caused by exposure to conventional
chemotherapeutics.62,63 However, the combination of aWnt/β-
catenin signaling pathway inhibitor and doxorubicin prevented
the upregulation of factors linked to these types of transitions
and was thus envisaged as a means of overcoming adaptive
resistance.64 Aberrant hedgehog (Hh) signaling pathway
activity has been observed in osteosarcoma cell lines, as well
as in primary human osteosarcoma tissue specimens, and
exerts promigratory effects leading to the development of
osteoblastic osteosarcoma.65 Other studies have also
demonstrated that dysregulated Hh signaling contributes to
poor clinical outcomes in osteosarcoma therapy.66,67 Bone
morphogenetic protein (BMP) signaling pathways have been
reported to induce mesenchymal stem cell osteogenic
commitments and terminal differentiation, which is initiated
by BMP ligand heterodimer (BMPR I and II) binding and signal
transduction through the Smad pathway, as well as mitogen-
activated protein kinase (MAPK) phosphorylation.68–71 In
particular, of the 31 different types of known BMP ligands,
BMP-2, -4, -6, -7, and -9 have significant roles in osteogenesis
induction in osteosarcoma.72–74 Moreover, the Notch
pathway has been described as an oncogene that is involved
in osteosarcoma proliferation, migration, invasiveness, and
oxidative stress resistance, as well as the expression of
markers associated with stemness or tumor-initiating
cells.75–78 Moreover, this pathway has a vital role in regulating
tumor angiogenesis and vasculogenesis in osteosarcoma.79

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is also

Figure 1 Biological processes are regulated by lncRNAs, and several regulatory
mechanisms are shown
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thought to be one of themost important oncogenic pathways in
human osteosarcoma.80,81 A large number of regulatory
factors regulate osteosarcoma cell proliferation, apoptosis,
angiogenesis, metastasis, and chemotherapy drug sensitivity
by regulating PI3K/Akt signaling, including p53,82,83 VEGF,84

CXCR7,85 Aurora-B,86 microRNA-221,87 cyclooxygenase-2,88

BYL719, a PI3K inhibitor,89 and LY294002.90 All these signaling
pathways are interconnected to regulate osteosarcoma progres-
sion and migration.
To date, few studies have reported the roles of lncRNAs in

osteosarcoma osteogenesis, development, invasion, metas-
tasis or chemotherapy resistance. Alterations in the expres-
sion of several lncRNAs have been observed in
osteosarcoma. Li et al.91 detected the expression profiles of
numerous lncRNAs via microarray analysis and observed
several differentially expressed lncRNAs in osteosarcoma
tissues compared with paired adjacent noncancerous tissues.
In particular, 25 733 lncRNAs were expressed in osteosar-
coma, including 403 consistently over-regulated lncRNAs
involved in 34 pathways and 798 consistently under-regulated
lncRNAs involved in 32 pathways, across all samples (2.0-
fold, Po0.05), suggesting that lncRNAs can function as
therapeutic targets and serve as novel candidate biomarkers
with respect to osteosarcoma diagnosis and prognosis.91 P50-
associated COX-2 extragenic RNA (PACER) was overex-
pressed in clinical osteosarcoma tissues and cell lines
influenced by DNA methylation, activated the COX-2 gene in
an NF-κB-dependent manner and functioned as an onco-
gene in osteosarcoma.92 Metastasis-associated lung adeno-
carcinoma transcript 1 (MALAT1), one of the first cancer-
associated lncRNAs to be identified, is expressed in numerous
tissues, is highly abundant in neurons and is involved in
regulating the recruitment of SR family pre-mRNA-splicing
factors to sites of transcription involved not only in nuclear
processes but also in synapse function.93 Aberrant MALAT1
expression has been observed in many types of tumors,
including hepatocellular carcinoma, cervical cancer, breast
cancer, ovarian cancer, and colorectal cancer. Dong et al.94

found that MALAT1 was highly expressed in human osteo-
sarcoma tissues and that its expression level was closely
correlated with pulmonary metastasis. Moreover, they found
that MALAT1 knockdown suppressed human osteosarcoma
cell proliferation, invasion, and metastasis in vitro and in vivo.
They also explored the molecular mechanisms underlying the
function of MALAT1 in osteosarcoma and observed that
MALAT1 inhibited tumor growth and metastasis via the PI3K/
AKT signaling pathway, as the expression levels of proliferat-
ing cell nuclear antigen, matrix metallopeptidase 9 (MMP-9),
phosphorylated PI3Kp85α, and Akt were significantly
decreased in MALAT1-knockdown cells.94 Cai et al.95

observed similar results in MALAT1 siRNA-treated osteo-
sarcoma cells. They showed that MALAT1 knockdown inhi-
bited osteosarcoma cell proliferation and migration, induced
osteosarcoma cell cycle arrest and cell apoptosis, and
delayed tumor growth in an osteosarcoma xenograft model.
Specifically, they found that MALAT1 siRNA administration
decreased the protein expression levels of RhoA and
its downstream effectors, the Rho-associated coiled-coil
containing protein kinases (ROCKs). Consistent with these
studies, high-dose 17β-estradiol (E2) treatment markedly

downregulated MALAT1-mediated osteosarcoma cell prolife-
ration, migration, invasion, and metastasis by upregulating
miR-9 in E2-dose-dependent and ER-independent manners.
In addition, MALAT1 downregulation promoted the formation
of the SFPQ/PTBP2 complex.96 Moreover, Taniguchi et al.97

found that MALAT1 contains a theoretical Myc-6-target
sequence that includes an E-box-like motif (at positions
−258 to − 251). Interestingly, knockdown of the putative
Myc-6 target MALAT1 obviously impairedMG63 cell growth. In
general, Myc-6 appears to exert its tumor-suppressive effects,
at least in part, through the specific downregulation of
MALAT1. The Hh signaling pathway hass important roles in
vertebrate embryonic development and growth regulation,
functions as a morphogen and mitogen, and is normally
deactivated after embryogenesis. However, Hh signaling is
reactivated and upregulated in various cancers, including
osteosarcoma, resulting in high levels of yes-associated
protein 1 (Yap1) expression. Yap1, a potent oncogene
expressed in both human and mouse tumor tissues, is
amplified in various cancers. Hh signaling inhibition reduces
Yap1 expression, and Yap1 knockdown significantly inhibits
tumor progression. Chan et al.98 found that aberrant Hh
signaling in mature osteoblasts is responsible for the
pathogenesis of osteoblastic osteosarcoma. Moreover, Hh
signaling upregulation and Yap1 overexpression lead to
aberrant lncRNA H19 expression in malignant osteosarcoma.
The lncRNAs involved in osteosarcoma and osteosarcoma-
related signaling pathways are shown in Figure 2.

LncRNA Regulates Osteosarcoma Metastasis

Distant metastases are commonly observed in patients with
osteosarcoma after surgery. It is estimated that metastases
have been found in 85% of patients with osteosarcoma. The
most common site of osteosarcoma metastasis is the lung.
Metastatic osteosarcoma is difficult to control, and respiratory
symptoms appear only in the setting of extensive involvement.
Osteosarcoma alsometastasizes to other bone and soft tissue
locations. This issue is still controversial, as some authors
have argued that bone metastases may actually be multifocal
osteosarcomas rather than actual metastases. Death from
osteosarcoma is usually a result of pulmonary metastasis and
respiratory failure because of widespread progression.
Tumor invasion and metastasis is a multilink, multistep

complex process comprising invasion, intravasation, dissemi-
nation, extravasation, and colonization. Briefly, tumor cells
alter cell–extracellular matrix (ECM) interactions at the
primary tumor site, escape from the primary site and invade
adjacent tissues, and translocate through the vasculature to
migrate to other systems. Then, these metastatic cancer cells
anchor to distant vessel walls and extravasate into their
destination tissues (Figure 3) before finally proliferating from
microscopic growths to form secondary tumors.
Adhesion molecules, angiogenic factors, proteolytic

enzymes, tumor metastasis-related factors, and metastasis
suppressors are involved in migration and metastasis. MMPs
are a family of proteolytic enzymes and are the key proteases
involved in digesting components of the ECM and surface
receptors. MMPs has an important role in tumor invasion and
metastasis by degrading the ECM and basement membrane

Long noncoding RNAs
Z Yang et al

4

Cell Death and Disease



to remodel the tumor microenvironment and promote tumor
angiogenesis. Conversely, MMP activity is suppressed by
endogenous tissue inhibitors of metalloproteinases (TIMPs),
specific MMP inhibitors. The levels of endogenous MMPs and
TIMPs contribute to imbalances between MMPs and TIMPs
and regulate ECM degradation and deposition. It has been

reported that the levels of MMP-2 and MMP-9 secretion are
elevated in several types of human cancers and that these
elevations are associated with a poor prognosis.99 During
osteosarcoma cell invasion and migration, several lncRNAs
reportedly promote or inhibit cell proliferation and invasion by
regulating MMP-2 and MMP-9 secretion.100 Osteosarcoma
cell invasion and metastasis and the lncRNAs associated with
these processes are shown in Figure 4.
The HOX antisense intergenic RNA (HOTAIR), a well-

known lncRNA, is involved in the pathogenesis and progres-
sion of multiple tumors. HOTAIR is commonly overexpressed
in osteosarcoma, and its knockdown significantly inhibits
cellular proliferation and invasion by decreasing MMP-2 and
MMP-9 section in osteosarcoma cells. Meanwhile, high
HOTAIR expression levels are significantly associated with
advanced tumor stages, high histological grades, and poor
prognoses. Thus, HOTAIR may be an important target in the
treatment of human osteosarcoma.101 It has been reported
that the small nucleolar RNA host gene 12 (SNHG12)
promotes cell proliferation and migration by upregulating
angiomotin (AMOT) gene expression in human osteosarcoma
cells.102 In particular, tissue samples from primary osteosar-
comas (n=20) and adjacent normal tissues (n= 20), as well
as samples from the osteosarcoma cell lines SAOS-2, MG63,
and U2OS and the human osteoblast cell line hFOB (OB3),
were studied using quantitative real-time polymerase chain
reaction to detect SNHG12 expression. They found that
SNHG12 mRNA expression was upregulated in osteo-
sarcoma tissues and cell lines compared with normal tissues
and cells and that SNHG12 knockdown suppressed cell
proliferation and migration but did not affect cell apoptosis.
These findings suggest that SNHG12 lncRNA promotes cell

Figure 3 Tumor invasion and metastasis is a multilink, multistep complex
process. Tumor cells at primary tumor sites invade surrounding tissues, migrate
through the blood or lymph and localize in distal targeted tissues. This process is
divided into the following five stages: invasion, intravasation, dissemination,
extravasation, and colonization

Figure 2 Osteosarcoma cell proliferation is regulated by lncRNAs, including H19, MALAT1, ANCR, and PACER. These osteosarcoma-related lncRNAs are involved in the
PI3K/Akt signaling pathway, NF-κB signaling pathway, and Hh/Yap1 signaling pathway
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proliferation and migration by upregulating AMOT gene
expression in osteosarcoma cells in vivo and in vitro and are
consistent with the findings of previous studies involving
human gastric cancer patients, which showed that upregula-
tion of SNHG15 lncRNA expression promotes cell proliferation
and invasion by regulating MMP-2/MMP-9 expression.103

Mammalian genomes encode numerous natural antisense
transcripts that are at least partially complementary to their
sense transcripts. FGFR3 antisense transcript 1 (FGFR3-
AS1) increased FGFR3 mRNA stability and upregulated
FGFR3 expression via antisense pairing with FGFR3
3′-UTR. Increased FGFR3-AS1 expression was correlated
with large tumor size, advanced Enneking stage, metastasis
and poor survival. FGFR3-AS1 knockdown inhibited xeno-
graft tumor growth of osteosarcoma cells in vitro and in vivo.
Therefore, lncRNA FGFR3-AS1 promoted osteosarcoma
growth by regulating its natural antisense transcript
FGFR3.104

LncRNA and Osteosarcoma Cell Proliferation

Cancer occurrence is characterized by uncontrolled cell cycle
activity, including uncontrolled DNA replication and parental
cell division.105 Imbalances between programmed cell death
and cell proliferation contribute to the development of various
cancers. Both oncogene activation and tumor suppressor
gene inactivation lead to cancer occurrence and develop-
ment.106,107 In osteosarcoma, lncRNAs also exhibit oncogenic

properties or act as tumor suppressors to control osteosar-
coma progression by regulating cell cycle progression or cell
apoptosis to regulate cell proliferation or migration. Antidiffer-
entiation noncoding RNA (ANCR) is a newly identified onco-
genic lncRNA that has an important role in the maintenance of
cell undifferentiation. ANCR knockdown significantly inhibited
U2OS and SAOS cell proliferation and U2OS cell colony
formation and arrested the U2OS cell cycle at the G0/G1
phase. Moreover, ANCR regulated and controlled cell cycles
by regulating the endogenous levels of cell cycle-related
proteins, including p21, CDK2, and CDK4.108 The levels of
taurine-upregulated gene 1 (TUG1) and one of its transcript
variants (n377360) were significantly higher in osteosarcoma
tissues compared with that in matched non-tumorous tissues.
Consistent with this finding, TUG1 and n377360 suppression
by siRNA significantly impaired osteosarcoma cell prolifera-
tion potential and promoted osteosarcoma cell apoptosis.109

Tumor suppressor lncRNAs are involved in regulating
human osteosarcoma. The levels of hypoxia-inducible factor-
2α (HIF2α) promoter upstream transcript (HIF2PUT), a novel
lncRNA, were assessed via quantitative polymerase chain
reaction in 17 osteosarcoma tissue specimens, and the data
demonstrated that HIF2PUT functions as an osteosarcoma
stem cell inhibitor in vitro partly by controlling HIF2α expres-
sion. HIF2PUT overexpression markedly inhibited cell
proliferation and migration, decreased the percentage of
CD133-expressing cells, and impaired the osteosarcoma
stem sphere-forming ability of MG63 cells.110 It has been

Figure 4 Osteosarcoma invasion and metastasis is regulated by lncRNAs, such as MALAT1, SNHG12, HOTAIR, FGFR3-AS1, and HIF2PUT. MMP-2 and MMP-9 secretion is
regulated by the Erk1/2, JNK1/2, P38, PI3K/Akt, and NF-κB signaling pathways. Osteosarcoma cell invasion is regulated by MMP-2 and MMP-9
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reported that the HIF2PUT expression levels were positively
correlated with HIF2α expression in osteosarcoma tissues.
However, HIF2PUToverexpression obviously suppressed cell
proliferation and migration, decreased the percentage of
CD133-expressing cells, and impaired the osteosarcoma
stem sphere-forming ability of MG63 cells. However, HIF2PUT
knockdown had the opposite effect. Tumor suppressor
candidate 7 (TUSC7) is a potential tumor suppressor that
has been shown to inhibit cell proliferation in osteosarcoma.
Cong et al.111 reported that TUSC7 expression was signifi-
cantly downregulated in osteosarcoma tissues compared with
paired non-tumor tissues. Low TUSC7 expression is asso-
ciated with poor survival (HR= 0.313, 95% confidence interval
(CI) 0.092–0.867) in osteosarcoma patients. Loss of TUSC7
copy number is also associated with a poor prognosis
(HR= 3.994, 95% CI: 1.147–13.91) in osteosarcoma patients.
The author of the above study used two osteosarcoma cell
lines, HOS and MG63, to investigate the biological function of
TUSC7. Silencing TUSC7 increased osteosarcoma cell
proliferation ability and colony formation ability. The cell cycle
was not affected by TUSC7 silencing; however, the percen-
tage of apoptotic cells decreased, and the expression levels of
several proapoptotic proteins were downregulated. Impor-
tantly, xenograft tumor models were established in nude mice
using MG63 cells. Silencing TUSC7 significantly promoted
tumor growth in vivo in treated mice compared with negative-
control mice. Thus, TUSC7 may be a tumor suppressor in
osteosarcoma. Similarly, Wang et al.112 determined that
TUSC7 is a potential biomarker for NSCLC prognosis and
that TUSC7 dysregulation has an important role in NSCLC
progression. In their studies, they found that the expression
levels of TUSC7were lower in NSCLC tissues and lung cancer
cells compared with that in normal tissues and cells. Lower
TUSC7 expression levels in NSCLC tissues were associated
with larger tumor sizes and higher TNM stages. Patients with
lower TUSC7 expression levels exhibited worse overall
survival compared with patients with high TUSC7 expression
levels. Univariate and multivariate analyses suggested that
low TUSC7 expression was an independent prognostic
indicator of a poor prognosis in NSCLC patients. Moreover,
TUSC7 upregulation inhibited lung cancer cell proliferation
in vitro.

LncRNA and Osteosarcoma Prognosis

Genetic variants of HOTAIR lncRNA contribute to the risk of
osteosarcoma. A two-stage, case–control study involving 900
OS patients and 900 controls was performed to evaluate the
associations between HOTAIR lncRNA genetic variants and
OS risk in the Chinese population, the results of which
demonstrated that the C allele of rs7958904 was associated
with a significantly decreased OS risk compared with the G
allele (OR: 0.77; 95%CI: 0.67–0.90; P= 6.77x10− 4), suggest-
ing that patients with the rs7958904 CC genotype
had significantly lower HOTAIR RNA levels compared with
patients with other genotypes, as well as a lower OS risk.113

Ma et al.114 found that TUG1 was significantly overexpressed
in osteosarcoma tissues compared with matched adjacent
normal tissues (Po0.01). Moreover, TUG1 levels were
strongly correlated with disease status and tumor size,

postoperative chemotherapy, and Enneking surgical stage.
Furthermore, TUG1 upregulation was strongly correlated with
a poor prognosis and was an independent prognostic indicator
for overall survival (HR= 2.78; 95% CI: 1.29–6.00; P= 0.009)
and progression-free survival (HR= 1.81; 95% CI= 1.01–
3.54; P= 0.037). HOTTIP was overexpressed in OS tissues
and was correlated with advanced clinical stage and distant
metastasis. High HOTTIP expression levels were associated
with poor overall survival in OS patients. Moreover, HOTTIP
expression was an independent prognostic factor for overall
survival in OS patients and may represent a novel prognostic
marker and therapeutic target in OS patients.115 Liu et al.116

demonstrated that MEG3 lncRNA levels were clearly lower
in osteosarcoma tissues compared with that in adjacent non-
tumor tissues. Patients with low MEG3 lncRNA express-
ion levels exhibited shorter overall survival compared
with patients with high expression levels (log-rank test,
Po0.05). Furthermore, decreased MEG3 lncRNA expres-
sion, advanced clinical stage, and distant metastasis were all
independent predictors of shorter overall survival in osteo-
sarcoma patients.

lncRNA and Chemotherapeutic Drug Resistance in
Osteosarcoma

Surgery, radiotherapy, and chemotherapy are the three main
treatments for cancer. In particular, chemotherapy has an
important role in cancer therapy. However, chemotherapeutic
drug resistance is the largest obstacle limiting the success of
cancer therapy. Large numbers of studies have focused on
chemotherapy drug resistance in human osteosarcoma, but
the mechanism underlying this resistance remains to be
elucidated. In osteosarcoma, chemotherapy drug efficacy is
usually limited by acquired resistance to specific drugs, such
as doxorubicin and cisplatin. Zhu et al.117 studied three sets of
doxorubicin-resistant MG63/DXR cells and their paired
parental MG63 cells and identified 3465 lncRNAs (1761 up
and 1704 down) and 3278 mRNAs (1607 up and 1671 down)
that were aberrantly expressed in MG63/DXR cells (fold
change 42.0, Po0.05 and FDRo0.05). Moreover, an
lncRNA-mRNA coexpression network identified lncRNAs,
including ENST00000563280 and NR-036444, that interact
with genes such asABCB1,HIF1A, and FOXC2 andmay have
an important role in doxorubicin resistance in OS. Several
lncRNAs have been found to serve as biomarkers predicting
the chemoresponses and prognoses of osteosarcoma
patients, including ENST00000563280, whose expression
level was significantly increased in the tissue specimens of OS
patients with poor chemoresponses compared with those with
good chemoresponses.

Conclusions and Perspectives

Previous studies have reported that lncRNAs regulate the
transcription, stability and translation of protein-coding genes
in the mammalian genome, play important roles in regulating
protein-coding genes at the transcriptional and post-
transcriptional levels, and participate in important biological
processes, including cell differentiation, development and
human diseases.118–120 Human genome studies have shown
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that ∼ 18% of protein-coding genes that produce lncRNAs
(10/57) are related to cancer, whereas only 9% of all human
protein-coding genes (2147/23621) are related to cancer
(chi-square test, P-value: 0.047; hypergeometric probability
P-value = 0.018), clearly demonstrating that genes implicated
in cancer development have a greater tendency to produce
lncRNAs.121 In this review, we have summarized how
lncRNAs regulate cell proliferation, invasion and chemother-
apeutic drug resistance in human osteosarcoma patients and
osteosarcoma cells. We have also summarized the roles of
lncRNAs as prognostic biomarkers in osteosarcoma therapy.
Finding promising therapeutic targets for the treatment for
human osteosarcoma, especially chemotherapeutic drug-
resistant osteosarcoma, will be beneficial for patients. How-
ever, several questions regarding the involvement of lncRNAs
in osteosarcoma remain unexplored and unresolved.

(1) To date, limited studies regarding the involvement of
lncRNAs in human osteosarcoma have been published.
Although several lncRNAs are known to exert tumor-
promoting or tumor-suppressing effects in osteosarcoma
species and cancer cell lines, the exact molecular
mechanisms underlying these effects remain unclear.
Thus, additional investigations are required to elucidate
the molecular mechanisms underlying human osteosar-
coma progression, metastasis and drug resistance.

(2) One lncRNA may be involved in several different signaling
pathways associated with cancer development and may
have more than one target associated with osteosarcoma
proliferation and metastasis. For instance, MALAT1 plays
an important role in the PI3K/AKT and RhoA/ROCKs
signaling pathways. However, understanding the connec-
tions between these signaling pathways, as well as
determining whether one of them plays a major role in
osteosarcoma development and progression, warrants
further study.

(3) lncRNAs usually have short half-lives and exhibit low
transcript abundance. They need to be transiently
expressed in vitro. Additionally, it is necessary to deter-
mine how the secondary and tertiary structures of
lncRNAs interact with specific protein targets.

(4) lncRNAs may represent novel therapeutic targets, which
are critical for developing novel strategies for the early
diagnosis and treatment of human osteosarcoma. The
potential clinical applications of miRNAs warrant
investigation.
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