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Neuroblastoma: oncogenic mechanisms and
therapeutic exploitation of necroptosis

S Nicolai1, M Pieraccioli1, A Peschiaroli2, G Melino1,3 and G Raschellà*,4

Neuroblastoma (NB) is the most common extracranial childhood tumor classified in five stages (1, 2, 3, 4 and 4S), two of which
(3 and 4) identify chemotherapy-resistant, highly aggressive disease. High-risk NB frequently displays MYCN amplification,
mutations in ALK and ATRX, and genomic rearrangements in TERT genes. These NB subtypes are also characterized by reduced
susceptibility to programmed cell death induced by chemotherapeutic drugs. The latter feature is a major cause of failure in the
treatment of advanced NB patients. Thus, proper reactivation of apoptosis or of other types of programmed cell death pathways in
response to treatment is relevant for the clinical management of aggressive forms of NB. In this short review, we will discuss the
most relevant genomic rearrangements that define high-risk NB and the role that destabilization of p53 and p73 can have in NB
aggressiveness. In addition, we will propose a strategy to stabilize p53 and p73 by using specific inhibitors of their ubiquitin-
dependent degradation. Finally, we will introduce necroptosis as an alternative strategy to kill NB cells and increase tumor
immunogenicity.
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Facts

� High-risk NB is resistant to conventional pro-apoptotic
therapies.

� MYCN amplification, mutations in ALK and ATRX, and
genomic rearrangements in TERT genes are frequent in
high-risk NB.

� Although not mutated, p53 and p73 are destabilized in NB.
� Caspase 8 is often compromised in advanced NB stages.
� Necroptosis is an alternative modality of programmed

cell death.

Open Questions

� Are there ongoing clinical trials that exploit specific
apoptosis and/or necroptosis defects in NB?

� Is stabilization of p53 and p73 a potentially exploitable way
to induce apoptosis/differentiation in NB?

� Is activation of necroptosis an alternative to kill NB cells and
to increase their immunogenicity?

In neuroblastoma (NB), several genomic abnormalities
have been described and the causative genes of the disease
have been searched for.1–3 Some genomic defects such as
deletions on chromosomes 1p and 11q or gains on 17q2,3

have been utilized as prognostic markers although the

contributing gene(s) whose alteration is responsible for the
resulting phenotype, are still unknown. One of the first and
doubtlessly most important genetic signature of NB is the
amplification of the proto-oncogene MYCN.4–6 Amplification
leading to aberrant expression of MYCN has been associated
with tumor aggressiveness,7 resistance to chemotherapy1

and inability to differentiate.8 NB patients who carry MYCN
amplification are classified in the high-risk group and their
overall survival does not exceed 50% at 5 years from
diagnosis.9 Nevertheless, there is a significant number of NB
patients with poor prognosis whose DNA does not harbor
MYCN amplification.1 The latter observation implies that
MYCN is not the only culprit of NB aggressiveness. More
recently, activating mutations of ALK were reported in both
familial and sporadic cases of neuroblastoma.10–13 In familiar
NB, germline mutations in ALK gene have been found in
~ 50% of the cases.13 In addition, some sporadic NB acquire
somatic mutations of ALK and ~2% display genomic
amplification of the gene as reviewed in (ref. 14). ALK is a
member of the insulin receptor (IR) superfamily of receptor
tyrosine kinases, which shows homology with the leukocyte
tyrosine kinase, the insulin-like growth factor-1 receptor kinase
and the IR kinase.14 In humans, ALK is located on chromo-
some 2p23 and the gene encodes for a single-chain
transmembrane protein.14 The mutated/amplified full-length
ALK leads to cell growth and survival by the activation of
the JAK–STAT, PI3K–AKT or RAS–MAPK pathways. In NB,
the constitutively activated ALK is complexed with

1Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy; 2Institute of Cell Biology and Neurobiology
(IBCN), CNR, Via E. Ramarini 32, Rome 00015, Italy; 3Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, PO Box 138,
Leicester LE1 9HN, UK and 4ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, Rome 00123, Italy
*Corresponding author: G Raschellà, ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese 301, Rome 00123, Italy. Tel: +39
0630483172; Fax: +390630486559; E-mail: giuseppe.raschella@enea.it

Received 25.8.15; revised 17.10.15; accepted 19.10.15; Edited by RA Knight
Abbreviations: NB, Neuroblastoma; TERT, telomerase reverse transcriptase; DAMPs, damage-associated molecular patterns

Citation: Cell Death and Disease (2015) 6, e2010; doi:10.1038/cddis.2015.354
& 2015 Macmillan Publishers Limited All rights reserved 2041-4889/15

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2015.354
mailto:giuseppe.raschella@enea.it
http://dx.doi.org/10.1038/cddis.2015.354
http://www.nature.com/cddis


hyperphosphorylated ShcC,15 deregulating the MAPK path-
way response to growth factors.16 Another relevant genetic
feature in neuroblastoma is the loss-of-function mutations or
deletions of the RNA-helicase ATRX.17,18 In a study of 240 NB
cases using a combination of whole-exome, genome and
transcriptome sequencing Pugh et al.19 observed putative
loss-of-function ATRX alterations in 9.6% of cases (6 muta-
tions and 17 multi-exon deletions). This study confirmed that
alterations of ATRX and MYCN were mutually exclusive and
that ATRX alterations were enriched in older children.17

A real breakthrough in the search for genomic alterations
that impact on NB aggressiveness comes from the recent
observation of telomerase reverse transcriptase (TERT)
activation by genetic rearrangements in high-risk NB.20 By
whole-genomic sequencing of 59 NB cases the authors
discovered recurrent genetic rearrangements in the chromo-
somal region 5p15.33 proximal of TERT. Rearrangements of
this region took place only in high-risk NB (12 out of 39= 31%).
TERTrearrangements, ATRXmutations and MYCN amplifica-
tions occurred in a mutually exclusive manner within the high-
risk group. The latter observation implies that all these
alterations converge on similar effector functions. Of interest,
in MYCN-amplified tumors without TERT rearrangements the
expression of TERT was nevertheless increased compared
with low-risk NB owing to the known function of MYCN as
transcriptional activator of TERT.21 The expression of TERT
was greatly increased in TERT-rearranged NBs compared
with the low-risk group. Indeed, rearrangements juxtapose
TERT to strong enhancers resulting in a complete epigenetic
remodeling of the regulatory region without changes in the
gene copy number. The whole-genomic sequencing analysis
highlighted also that ATRX mutations, which define another
high-risk subgroup, occur only in MYCN-non-amplified and
TERT-normal NB, and are associated with alternative length-
ening of telomeres (ALT) activity.20 This observation suggests
that telomere lengthening is a common trait of high-risk NB
(i.e., TERT-rearranged, MYCN-amplified and ATRX-mutated
tumors) regardless of the mechanism that is utilized for
telomere maintenance. Indeed, the most aggressive NB
subtypes are characterized by telomerase activation that can
derive from TERT rearrangement or MYCN amplification
(which activates TERT). In light of these recent findings, we
schematize in Figure 1 the different risk subgroups of NB and
the genetic aberrations that define each subgroup. A question
that arises from the genomic aberrations studies is as follows:
which are the pathways and the genes that, following TERT
rearrangements or MYCN amplification, become the execu-
tioners of the NB aggressiveness? p53, although rarely
mutated in NB, is destabilized in MYCN-amplified tumors by
the high expression of its ubiquitin ligase MDM2.22 Further-
more, p53 pathway is often deranged in NB cells that lack
MYCN amplification but display telomere lengthening
activity.23 In the next paragraph we will discuss the role of
p53 family and the detrimental effect(s) that its alteration may
cause in NB.
The p53 family includes three genes (p53, p63 and p73) that

have a variety of roles in normal and in transformed cells.24–26

In Table 1 the prominent cellular pathways and principal
regulatory circuits that involve p53 family are reported.
Similarly to p63, p73 is expressed as several distinct protein

isoforms.27,28 In more detail, the usage of two alternative
promoters results in the expression of two different N-terminal
isoforms: the transcriptionally active p73 (TAp73) proteins,
containing a complete N-terminal transactivation domain
(TAD), and N-terminally truncated (ΔNp73) isoforms, which
lack the TAD andmight act as dominant negativemolecules by
inhibiting the transactivating activity of TAp73 and p53.25 Many
lines of evidence have clearly demonstrated that TAp73 and
ΔNp73 control several biological processes in opposite
manner.29,30 Although TAp73 is an inducer of cell cycle arrest
and apoptosis, and largely mimics the tumor suppressive
activities of p53,31,32 ΔNp73 isoforms promote cancer cell
survival and exhibit oncogenic properties.29 The phenotypical
characterization of selectively deficient mouse models for the
N-terminal p73 isoforms confirmed the role of TAp73 and
ΔNp73 as tumor suppressor and pro-oncogenic factors,
respectively.33,34

Besides their role in controlling tumor growth, p73 isoforms
also contribute to the development and differentiation of
neuronal tissue. TAp73 null mice show hippocampal dysgen-
esis with reduction of the neurogenesis in the subgranular
zone of the dentate gyrus,33 while ΔNp73− /− mice show

Figure 1 NB-risk subgroups (low and high) inferred from ploidy, ATRX mutations,
MYCN amplifications, TERTactivation (by genomic rearrangements) and alternative
lengthening of telomeres activation

Table 1 Prominent pathways and main regulatory circuits that involve p53
family

Pathway/regulatory circuit References

Apoptosis 88–94

Cell growth control 90,95–98

RNA metabolism 99–114

Protein degradation/stability 67,69,115–123

Autophagy 93,124–131

Splicing events 111,132–136

ROS and cell metabolism 92,137–147

Chemotherapeutic response 56,57,148–154

DNA damage response 155–168

Transcription and translation 169–178

Stemness and lineage determination 94,109,179–186
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evidence of neurodegeneration, confirming thus the pro-
survival role of this isoforms.34 All together, these data indicate
that TAp73 and ΔNp73 are important transcription factors
whose dysregulation might be an important determinant in
tumorigenesis as well as in neuronal development.

p73 and NB

Alteration of the 1p chromosomal region is commonly
observed in NB and the smallest region of overlapping
deletions in this region has been refined within 1p36.3.35 As
p73 maps at 1p36,28 it was originally hypothesized that this
genemight act as tumor suppressor gene in NB. However, p73
is rarely mutated in primary NB and it is unlikely that it may
function as a tumor suppressor in a classic Knudson’smanner.
Nevertheless, several data indicated that the altered p73
expression rather than its mutation is a determinant factor in
the pathogenesis of the NB. The contribution of p73 to NB is
indeed thought to depend on the TAp73 to ΔNp73 isoforms’
ratio and different molecular mechanisms accounting for
altered ΔN : TAp73 expression have been described in NB.
Epigenetic modifications, particularly by hyper- or hypo-
methylation, are crucial events in cell transformation.29 As
several human malignancies, such as leukemia and Burkitt’s
and non-Hodgkin lymphomas, display Trp73 silencing by
promoter methylation,36,37 it has been postulated that this type
of epigenetic modification could account for the decrease of
the expression of the TAp73 isoform observed in NB. However,
the analysis of the TAp73 promoter methylation in association
with its expression level does not support the idea that the p73
gene is subjected to genome imprinting in NB.38 The idea that
the TAp73 activity is associated with NB development is also
supported by the role of TAp73 during the neuronal
differentiation.39 Indeed, one therapeutic approach aimed to
restrain NB growth is based on the pro-differentiation action of
the retinoic acid.40 It has been shown that the expression of
the TAp73 isoform is increased during the retinoid-driven NB
differentiation and its depletion inhibits differentiation, sug-
gesting that the TAp73 activity is functionally associated with
the growth inhibition occurring during the NB differentiation.39

In contrast to TAp73, high levels of expression of ΔNp73
have been reported in primary NB.41 The increased levels
of ΔNp73 observed in NB might functionally inhibit the
pro-apoptotic activity of wild-type p53,42 and/or physically
block the activity of TAp73 allowing the NB to escape from
TAp73-driven differentiation program.39 In addition, ΔNp73
could inhibit the full activation of ATM and p53, allowing NB
to be more resistant to the chemotherapic agents.34 Mechan-
istically, the increased levels of ΔNp73 is likely due to
the epigenetic modifications as hypo-methylation of the
internal P2 promoter that controls the transcription of this
isoform has been observed in NB cell lines and primary
tumors.38,43

N-MYC/MDM2/p53/p73 Axis in NB

As described in the first paragraph, MYCN oncogene
amplification is one of the most important biological marker
of aggressive NB and it occurs in about 20% of primary
tumors.44 MYCN amplification contributes to the NB

development and progression by influencing many biological
processes, such as cell invasion and motility, cell cycle,
immune surveillance, self-renewal and apoptosis.45 TP53
mutations are rare in NB at diagnosis,46 and amplification of
MYCN contributes to maintain under surveillance the p53
activity, thought to be its role in the MDM2–p53 pathway.47,48

MDM2 is an E3 ubiquitin ligase that promotes survival by
ubiquitinating and driving the degradation of p53. Several
tumors, especially those expressing wild-type p53 like NB,
are characterized by increased levels of MDM2 expression
due to several mechanisms, such as amplification of its
locus, increased transcription or increased mRNA or protein
stability.49 In NB cells it has been shown that MYCN can
regulate the MDM2/p53 axis by directly promoting the
transcription of MDM2 thus stimulating the ubiquitin-
mediated degradation of p53.22 Besides p53, MDM2 can also
physically interact with TAp73 and as the affinities of MDM2 for
p73 are of the same order of magnitude as those for p53, it is
likely that these proteins interact in cells, as has been
suggested in several studies.50,51 However, MDM2 does not
trigger TAp73 proteasome-dependent degradation but rather
negatively controls the transcriptional activity of TAp73.52,53

Therefore, by increasing the levels of MDM2, MYCNmight not
only stimulate p53 protein degradation but also inhibits the
TAp73 transcriptional activity, enhancing thus the NB survival
and chemo-resistance. It is also worth noting that some
data, although controversial, suggest that MYCN can directly
affect TAp73 expression levels. MYCN is indeed able to
repress the transcription of TAp73 and the reduced expression
of p73 correlated with the MYCN overexpression in a
statistically significant manner in NB primary tumors.54 On
the other hand, the overexpression of TAp73 is also able to
reduce MYCN expression and thus facilitate the neuronal
differentiation program, suggesting an antagonistic role of
these two transcription factors on NB cell proliferation and
differentiation.39,55 Recently, it has been shown that TAp73
loss determines an increase of the vascularization of lung
tumors, suggesting that TAp73 might act as a tumor
suppressor by, at least in part, inhibiting tumor angiogenesis.
At molecular level, TAp73 stimulates the degradation of the
hypoxia-inducible factor-1 alpha (HIF-1α) in an oxygen-
independent manner.56,57 Interestingly, recent data suggest
that ΔNp73 is also involved in tumor angiogenesis. Indeed,
upon hypoxia ΔNp73 is stabilized and capable of inducing the
expression of VEGF-A, the prototypic angiogenic gene.58

Similarly to ΔNp73,ΔNp63 is also able to increase the vascular
endothelial growth factor (VEGF) secretion by leading to the
stabilization of the HIF-1α protein.59 Therefore, these data
suggest a cross talk between the p53 family members and the
tumor angiogenesis pathways, potentially involved in the
regulation of NB vascularization. Of interest, several data
indicated that MYCN is functionally linked with tumor
angiogenesis. Indeed, aberrant expression of MYCN had a
positive effect on pro-angiogenic factors, including angiogenin
and VEGF, and MYCN amplification correlates with poor
survival, increased dissemination and high vascularization
in NB.45 In this scenario, MYCN amplification might stimulate
tumor vascularization and dissemination by also inhibiting
the anti-angiogenic activity of TAp73 either directly or
via MDM2.

NB: oncogenic mechanisms and therapeutic necroptosis
S Nicolai et al

3

Cell Death and Disease



Itch as a Potential Therapeutical Target in NB

E3 ubiquitin ligases (E3s) have been shown to have a critical
role in regulating cell proliferation, differentiation or
apoptosis.60,61 For this reason, the ubiquitin system is often
the target of cancer-related deregulation and is critically
involved in processes such as oncogenic transformation and
tumor progression. Genetic alterations, abnormal expression
or dysfunction of E3s is often accompanied by the occurrence
of cancer. The HECT-type E3 ubiquitin ligase Itch regulates
several important biological processes, such as apoptosis, cell
growth and inflammation, and several reports have demon-
strated that dysregulation of Itch expression affects the
apoptotic response induced by the chemotherapeutic
drugs.60–62 Itch depletion by siRNA indeed increases the
cytotoxic effect of anti-neoplastic drugs in cancer cell lines and
in cancer stem cells.63 Furthermore, the in vivo administration
of siRNA duplex targeting Itch mRNA is effective in sensitizing
pancreatic cancer to gemcitabine.64 Itch exerts its biological
functions mainly by controlling the proteasomal-dependent
degradation of a subset of target proteins, including p73.
Indeed, among several E3s controlling TAp73 protein
levels,65–67 Itch is the most characterized. In detail, in
unstressed cells Itch stimulates the proteasome-dependent
degradation of TAp73, thereby keeping its expression levels
low under normal conditions.68 In several tumor cell lines, the
induction of TAp73 in response to chemotherapeutic drugs is,
at least partially, accomplished through Itch downregulation.
We found, in a preliminary analysis, that Itch is expressed in
the majority of NB cells tested so far (data not shown). Thus,
it is reasonable to hypothesize that in NB cells an
Itch-dependent mechanism for negatively controlling TAp73
protein levels might occur and contribute to the chemo-
resistance. Thus, targeting Itch ubiquitin ligase activity could
be a feasible strategy to stabilize TAp73, enhance its pro-
apoptotic activity and sensitize NB cells to the cytotoxic effects
of commonly used anti-neoplastic agents. Recently, our
laboratory has identified desmethyl-clomipramine (DCMI),
the active metabolite of clomipramine, as inhibitor of the Itch
autoubiquitylation activity and Itch-dependent ubiquitylation of

p73.69 Clomipramine is an FDA-approved drug clinically used
for the treatment of obsessive compulsive disorders.70 Of
interest, DCMI increases the cytotoxic activity of conventional
chemotherapic drugs in several cancer cell lines as well as in
cancer stem cells.63,69 Although it is still not clear whether the
DCMI-mediated effect on cancer cell survival completely
depends on Itch inhibition, DCMI represents the proof of
principle that targeting the E3 ubiquitin ligase Itch might be a
novel therapeutical approach to decreaseNB cell survival and/
or increase the pro-apoptotic effects of conventional anti-
neoplastic agents.

Necroptosis: A Different Modality of Programmed Cell
Death

Besides classical caspase-dependent apoptosis, other forms
of programmed cell death exist in normal and in transformed
cells, which can be activated in response to cellular stress.
Necroptosis is a type of necrosis mediated by death receptors
(DRs; i.e., Fas, TNFR1/2, TRAIL-R1/2, DR3 and DR6) and
their ligands including CD95L (also known as FASL), TNF and
TNF-related apoptosis-inducing ligand (TRAIL; also known as
TNFSF10), interferons, toll-like receptors, intracellular RNA
and DNA sensors, and probably other mediators.71,72 Indeed,
another receptor, the transforming growth factor-β-activated
kinase 1 (TAK1), which is activated through a diverse set of
intra- and extracellular stimuli, has been recently added to the
list of necroptosis-inducing receptors.73

Seminal work of the laboratory of Jurg Tschopp has defined
the role of the first characterized executioner of necroptosis,
the receptor-interacting protein kinase 1 (RIPK1).74 This
original discovery was followed by those of two other essential
components of the process, RIPK375–77 and more recently
MLKL.78 Necroptosis occurs in the absence of caspase
activity and is regulated by the activity of a multi-protein
complex called necrosome consisting of RIPK1, RIPK3 and
MLKL.72,79 In unstressed, normal conditions, FLIP (in multi-
protein complex IIb) inhibits caspase 8 activity, preventing thus
apoptosis. At the same time, caspase 8 (in multi-protein
complex IIa) prevents the activation of RIPK1 blocking the

Figure 2 Apoptotic and necroptotic circuitries in wild-type and knockout settings
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necroptotic pathway.71 The net result of this cross-regulation is
survival. Defects in this regulatory circuitry can lead to
necroptosis (as in the case of the double knockout of FADD
and caspase 8) or to apoptosis (in RIPK3/FLIP double
knockout). Of interest, triple knockout of RIPK3, FLIP and
FADD rescue the normal phenotype (cell survival). A graphic
representation of normal and altered conditions in the
apoptosis/necroptosis pathways is reported in Figure 2.
When the necroptotic pathway is unleashed by the

engagement of a death receptor, the initial activation of RIPK1
leads to that of RIPK3 by phosphorylation resulting in the
recruitment and phosphorylation of MLKL, which causes a
conformational change in the pseudokinase domain leading to
the exposure of the four-helical bundle domain. Trimerization
and movement of active MLKL to the plasma membrane
initiates the final step of necroptosis, which terminateswith cell
rupture and dispersal of the cellular content in the interstitial
space.71 Trimerization of MLKL requires both RIPK1 and
RIPK3 because treating the cells with Necrostatin 1 (Nec-1), a
RIPK1 inhibitor, or knocking down RIPK3 prevented the
trimerization.80

Necroptosis in Inflammation and Cancer

Inflammation is a main pathologic condition in which necrop-
tosis has an active role. Indeed, the necroptotic process
causes amassive release of the so-called damage-associated
molecular patterns (DAMPs) from the disintegrating cells.
Some DAMP components are active promoters of the
inflammatory process that exacerbate inflammation already in
place.81 In sepsis, a life-threatening condition in which
inflammation is a constant feature, necroptosis is associated
with increased mortality during TNF-induced systemic inflam-
matory response syndrome.82 The detrimental effect of
necroptosis in sepsis is blocked by the presence of caspase
8, which promotes RIPK1 and/or RIPK3 cleavage and inhibits
necroptosis.83 On the contrary, in cancer therapy, exploitation
of necroptotic cell death may open novel avenues for the
treatment of apoptosis-resistant tumors. Cancer cells are
known to shift from classical apoptosis to other forms of cell
death such as autophagy, pyroptosis and necroptosis, some of
which entail immunogenicity after anticancer treatments.84 It is
also well recognized that therapy-resistant cancer stem cells
(CSCs) have a higher antiapoptotic activity than that of their
counterparts.85 Therefore, it would be extremely useful to
exploit necroptosis induction in cancer cells for CSC-directed
therapeutic application but also the resultant immunogenicity
to modulate antitumor immunity.84 The latter observation is
extremely important in light of the recent advances and
applications of immunotherapy in cancer.86

Necroptosis Induction in NB: A Route to Novel
Therapies?

In NB the pro-apoptotic activity of caspase 8 is often
compromised in advanced stages,87 nevertheless these
tumors show a marked resistance to death induced by drugs
that should trigger necroptosis in a context of caspase 8
deficiency. A scheme pointing out the possible points of
deficiency in the necroptotic pathway in NB is depicted in

Figure 3 Apoptosis and necroptosis defects in NB. Caspase 8 is often defective
in high-risk NB, or its pro-apoptotic activity can be blocked by FLIP. The potential
points at which the necroptotic circuitry is interrupted are shown in red

Figure 4 Proposed approaches (in red) to activate apoptotic or necroptotic response in specific subgroups of high-risk NB
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Figure 3. Extensive experimental evidence is not available on
the proficiency of RIPK1, RIPK3 and other necrosome
components in NB. However, preliminary results from our
laboratory demonstrated that caspase 8 and necroptosis-
associated genes (RIPK1 and RIPK3) are expressed at
significantly lower levels in NB cells compared with other
tumor cell lines used as controls. Furthermore, in vitro tests
suggest that several NB cell lines are resistant to necroptosis
(SN and MP, unpublished results). As mutations in necroptotic
genes have not been described in NB, epigenetic silencing
could occur by hypermethylation of the CpG islands located in
the regulatory regions of the necroptotic genes and/or by

chromatin modifications. Detection of abnormalities in the
activity and/or expression of different members of the
necroptotic machinery may represent novel useful markers
to better define NB aggressiveness and to predict its response
to therapy. More importantly, reactivation of the normal
function of the necroptotic pathway (e.g., by demethylating
drugs and/or HDAC inhibitors) can be a strategy to rescue cell
death ability in chemotherapy-resistant NB tumors defective
for caspase 8. In Figure 4 are schematized our proposed
approaches based on p73/p53-dependent apoptosis and on
necroptosis activation with reference to the potential benefits
for specific groups of NB patients.

Table 2 Current selected clinical trials on NB

Clinical trials Interventions URL

124I-Metaiodobenzylguanidine (MIBG) PET/CT Diagnostic
Imaging and Dosimetry for Patients With Neuroblastoma:
A Pilot Study

Radiation: 124I-MIBG (no-carrier added)
Radiation: 124I-MIBG (carrier added)

https://ClinicalTrials.gov/
show/NCT01583842

European Low and Intermediate Risk Neuroblastoma Protocol
(low and intermediate pediatric NB and neonatal suprarenal
masses)

Drug: chemotherapy https://ClinicalTrials.gov/
show/NCT01728155

Phase II Study of Proton Radiation Therapy for Neuroblastoma Radiation: proton beam radiation therapy https://ClinicalTrials.gov/
show/NCT02112617

Immunomonitoring of Children With Neuroblastoma Immunological analyses https://ClinicalTrials.gov/
show/NCT01295762

Bivalent Vaccine With Escalating Doses of the Immunological
Adjuvant OPT-821, in Combination With Oral β-glucan for
High-Risk Neuroblastoma

Biological: adjuvant OPT-821 in a vaccine
containing two antigens (GD2L and GD3L)
covalently linked to KLH

https://ClinicalTrials.gov/
show/NCT00911560

Biomarkers in Tumor Tissue Samples From Patients With
Newly Diagnosed Neuroblastoma or Ganglioneuroblastoma

Laboratory biomarker analysis; cytology
specimen collection procedure

https://ClinicalTrials.gov/
show/NCT00904241

Multimodal Molecular Targeted Therapy to Treat Relapsed or
Refractory High-risk Neuroblastoma

Drug: dasatinib
Drug: rapamycin
Drug: irinotecan
Drug: temozolomide
Drug: irinotecan
Drug: temozolomide

https://ClinicalTrials.gov/
show/NCT01467986

Study of DNA in Blood Samples From Patients With
Neuroblastoma

Laboratory biomarker analysis
Genetic: polymerase chain reaction
Genetic: polyacrylamide gel electrophoresis
Genetic: DNA analysis

https://ClinicalTrials.gov/
show/NCT00898391

Monitor Response to Treatment in Neuroblastoma Using
3&Apos;-Deoxy-3&Apos;-Fluorothymidine-Positron Emission
Tomography (FLT-PET)

Device: FLT-PET https://ClinicalTrials.gov/
show/NCT01308905

Expanded Access Study of Fenretinide Lym-X-Sorb Plus
Ketoconazole in Neuroblastoma

Drug: fenretinide Lym-X-Sorb oral powder
Drug: ketoconazole

https://ClinicalTrials.gov/
show/NCT02075177

Activated T Cells Armed With GD2 Bispecific Antibody in
Children and Young Adults with Neuroblastoma and
Osteosarcoma

Biological: IL-2
Biological: GD2Bi-aATC
Biological: GM-CSF
Other: laboratory evaluations of immune
responses

https://ClinicalTrials.gov/
show/NCT02100930

Anti-GD2 3F8 Monoclonal Antibody and GM-CSF for
High-Risk Neuroblastoma

Biological: anti-GD2 3F8 monoclonal antibody
Drug: GM-CSF (granulocyte-macrophage
colony-stimulating factor)
Drug: oral isotretinoin

https://ClinicalTrials.gov/
show/NCT02100930

Fenretinide Lym-X-Sorb+Ketoconazole+Vincristine for
Recurrent or Resistant Neuroblastoma

Drug: fenretinide/LXS oral powder
Drug: ketoconazole
Drug: vincristine

https://ClinicalTrials.gov/
show/NCT02163356

Pilot Study of Activated T-Cell Therapy for Refractory/Relapsed
Neuroblastoma

Biological: activated T lymphocyte https://ClinicalTrials.gov/
show/NCT01802138

3rd Generation GD-2 Chimeric Antigen Receptor and
iCaspase Suicide Safety Switch, Neuroblastoma, GRAIN

Genetic: iC9-GD2 T-cell lymphocytes – frozen
cells
Genetic: iC9-GD2 T-cell lymphocytes – fresh
cells
Drug: cyclophosphamide
Drug: fludarabine
Drug: pembrolizumab

https://ClinicalTrials.gov/
show/NCT01822652

All trials above are recruiting and no results are available yet. From www.clinicaltrials.gov
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Concluding Remarks

NB has been a model for geneticists and molecular biologists
who classified genetic abnormalities and identified causative
genes of the disease.7,13,17,20 However, despite intensive
research, improvements in clinical outcome of NB have been
achieved mostly for low-/intermediate-risk tumors.3 Indeed,
metastatic NB remains a difficult-to-treat cancer that has
benefited relatively little of research advancements. A survey
of the ongoing clinical trials (https://clinicaltrials.gov) highlights
the coexistence of trials aimed at optimizing existing therapeutic
schedules and those that utilize biological/targeted drugs alone
or in combination with well-characterized chemotherapeutic
drugs. A selection of current clinical trials is reported in Table 2.
Few attempts are underway to exploit specific defects in
apoptosis and necroptosis of NB cells. In this sense, our
proposal outlined in the previous paragraphs, although not yet
mature for a therapeutic application, is aimed at steering
preclinical and clinical research toward the exploitation of
specific pro-apoptotic and pro-necroptotic targets in NB cells
minimizing harmful effects in the patients. As a further clue of
the importance of genomic variations in NB, Oldridge et al.187

have recently reported genomic predisposition to NB mediated
by a SNP in a super-enhancer region of the LMO1 gene.
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