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Absence of RIPK3 predicts necroptosis resistance in
malignant melanoma

P Geserick1, J Wang1,2, R Schilling1, S Horn1, PA Harris3, J Bertin3, PJ Gough3, M Feoktistova1,2 and M Leverkus*,1,2

Acquired or intrinsic resistance to apoptotic and necroptotic stimuli is considered a major hindrance of therapeutic success in
malignant melanoma. Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptotic and necroptotic cell death
mediated by numerous cell death signalling platforms. In this report we investigated the impact of IAPs for cell death regulation in
malignant melanoma. Suppression of IAPs strongly sensitized a panel of melanoma cells to death ligand-induced cell death,
which, surprisingly, was largely mediated by apoptosis, as it was completely rescued by addition of caspase inhibitors.
Interestingly, the absence of necroptosis signalling correlated with a lack of receptor-interacting protein kinase-3 (RIPK3) mRNA
and protein expression in all cell lines, whereas primary melanocytes and cultured nevus cells strongly expressed RIPK3.
Reconstitution of RIPK3, but not a RIPK3-kinase dead mutant in a set of melanoma cell lines overcame CD95L/IAP antagonist-
induced necroptosis resistance independent of autocrine tumour necrosis factor secretion. Using specific inhibitors, functional
studies revealed that RIPK3-mediated mixed-lineage kinase domain-like protein (MLKL) phosphorylation and necroptosis
induction critically required receptor-interacting protein kinase-1 signalling. Furthermore, the inhibitor of mutant BRAF
Dabrafenib, but not Vemurafenib, inhibited necroptosis in melanoma cells whenever RIPK3 is present. Our data suggest
that loss of RIPK3 in melanoma and selective inhibition of the RIPK3/MLKL axis by BRAF inhibitor Dabrafenib, but not
Vemurafenib, is critical to protect from necroptosis. Strategies that allow RIPK3 expression may allow unmasking the
necroptotic signalling machinery in melanoma and points to reactivation of this pathway as a treatment option for meta-
static melanoma.
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Over the past few years, necroptosis has been established
as an alternative programmed form of cell death, contrasting
caspase-dependent apoptosis. It is now evident that
an ordered activation of the receptor-interacting protein
kinases-1 and -3 (RIPK1 and RIPK3), and their downstream
substrates is mandatory for the execution of necroptosis.1–3

Under caspase-limited conditions, the necroptotic cell
signalling machinery is regulated by RIPK1, with the impact
of scaffolding function as compared with kinase function still
unclear.1,4–6 RIPK1 interacts with and either autophosphor-
ylates or transphosphorylates RIPK3 (for review, see Cho
et al.,1 Zhang et al.,2 He et al.,3 and Vanden Berghe et al.7).
When RIPK1 is active, RIPK3 phosphorylation and activation
occurs within the assembled Necrosome (for review, see
Remijsen et al.8) or Ripoptosome.4,9,10 RIPK3 then phosphor-
ylates the pseudo kinase mixed-lineage kinase domain-like
protein (MLKL).11 MLKL in its active form allows its oligomer-
ization, membrane accumulation, and complex formation
within cellular membranes of the mitochondria12 and cell
membranes,13 and finally results in necroptosis.14

The RIPK1/RIPK3/MLKL signalling network acts as a
sensor for genotoxic stress9 and also has a key role in
necroptosis regulation in keratinocyte skin cancer (SCC).4

In these epithelial cancers, cellular inhibitors of apoptosis
proteins (cIAPs) block both apoptotic and necroptotic cell
death.4,5 Both apoptosis and necroptosis can be increasingly
initiated by intrinsic or extrinsic stimuli when IAPs are
suppressed by IAP antagonist. Extrinsic apoptosis mediated
by activation of death receptors (DRs) such as cluster of
differentiation 95 (CD95), TRAILR1/R2 or tumour necrosis
factor receptor-1 (TNFR1) through ligation of respective death
ligands (DLs) such as CD95L, TNF-related apoptosis-
inducing ligand (TRAIL), and TNF initiates apoptosis either
by direct activation of the caspase cascade (caspase-8/
caspase-3) or via the intrinsic cell death signalling machinery
regulated by pro-apoptotic members of the Bcl-2 family
followed by caspase-3 activation.15 Inhibition of caspase-8
within the death-inducing signalling complex or complex II,
or within the Ripoptosome can trigger CD95L-mediated,5

TRAIL-mediated16 or TNF-induced necroptosis.8,17 A role for
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apoptosis resistance, cancer maintenance, and progression is
widely assumed (for review, see Obexer et al.18), but the
pathophysiological inhibitory or propagating function of
necroptosis has not formally been demonstrated in cancer.
Metastatic melanoma has an overall poor prognosis but

novel therapeutics have revolutionized clinical practice for
different subsets of patients. The use of inhibitors of the
V600E- or V600K-mutated proto-oncogene serine/threonine
protein kinase B-RAF (e.g., Dabrafenib or Vemurafenib)
results in suppression of Ras/Raf/mitogen-activated protein
kinase pathways and translate into unfortunately transient
clinical responses (for review, see Spagnolo et al.19). The high
recrudescence of metastatic melanoma following the treat-
ment with BRAF inhibitors will potentially require combination
therapies that activate additional tumour-inhibitory pathways.
Combinations such as BRAF inhibitors with mitogen-activated
protein/extracellular signal-regulated kinase kinase (MEK)
inhibitors have already yielded impressive results20 and other
combination therapies may further improve clinical outcome.21

As BRAF inhibitors target the cell death pathway at best in an
indirect manner, we reasoned that necroptosis induction could
represent a novel option to improve melanoma therapy. Our
investigations demonstrate for the first time that loss of RIPK3
during melanoma development is critical for necroptosis
protection. Reactivation of the RIPK1/RIPK3/MLKL signalling
machinery by RIPK3 reconstitution allows IAP antagonist/
DL-mediated necroptosis in the presence of Vemurafenib, but
not Dabrafenib. Here, Dabrafenib blocks necroptosis by
interference with RIPK3-mediated MLKL phosphorylation.
Therefore, strategies that increase RIPK3 expression in
combination with Vemurafenib, but not Dabrafenib, likely
represent an attractive strategy to overcome cell death
resistance in melanoma.

Results

IAP antagonists sensitize malignant melanoma cells to
apoptosis, but not to necroptosis. To investigate the role
of IAPs in malignant melanoma, we initially analysed and
compared protein expression of different IAPs in cultured
primary melanocytes, nevus cells, and malignant melanoma
representing different tumour stages and compared them
with HaCaT keratinocytes (Figure 1a). cIAP1 and X-linked
IAP (XIAP) are expressed in most of the melanoma cell lines
examined with lower cIAP1 levels in PREYER, MeWo, IGR,
and MM-LH. Low XIAP expression was found in primary
melanocytes, MeWo and IGR cells, whereas XIAP is absent
in HaCaT keratinocytes as previously described.22 In
contrast, cIAP2 expression was only detected at low levels
in A375 and EP cells, but undetectable in primary melano-
cytes, nevus cells, and all other melanoma cell lines.
Of interest, we detected an additional band reactive with
cIAP1 antibody (Ab) in primary melanocytes, nevus cells, as
well as in SK-Mel and MM-AH melanoma cells, suggesting
that cIAP1 may undergo posttranslational modifications in
these cells (Figure 1a). When cIAP1/cIAP2 expression or
XIAP function is suppressed by IAP antagonist compound A23

(Supplementary Figure 1A), sensitivity to CD95L-mediated
cell death is increased. This sensitization was largely

independent from the concentrations of IAP antagonist used
(Supplementary Figure 1B and C). In addition, low concen-
trations of IAP antagonists were sufficient for a subtotal
decrease of cIAP1 in IGR and also of cIAP2 in A375 cells.
This indicates that XIAP is rather more critical as cIAPs for
cell death resistance in melanoma cells. In further investiga-
tions, we analysed the quality and quantity of IAP antagonist/
CD95L-mediated cell death in the presence or absence of a
pancaspase inhibitor (zVAD-fmk; Figures 1b and c) in four
melanoma cell lines. Under those conditions, melanoma cells
were strongly sensitized to DL-mediated caspase-dependent
(zVAD-fmk) (Figure 1b, black columns and Figure 1c) but
RIPK1-independent (Nec-1), as shown by Annexin-V/propi-
dium iodide (PI) double staining (Figure 1c), apoptosis when
compared with cells treated with CD95L alone (Figure 1b,
grey columns). Our results demonstrate the indispensable
role of IAPs for inhibition of CD95L-mediated apoptotic cell
death and suggest that melanoma cells are intrinsically
resistant to necroptotic cell death.

RIPK3 expression is lost during melanoma development.
We next reasoned that the lack of necroptosis in melanoma
could be a result of a melanoma cell-intrinsic inhibition of
proteins relevant for necroptosis induction. We thus examined
RIPK1, RIPK3, and MLKL at mRNA and protein levels
(Figures 2a and b). When compared with HaCaT keratinocytes
that express high levels of RIPK3,4 primary melanocytes and
nevus cells demonstrated high RIPK3 expression. In marked
contrast, expression of RIPK3 is extremely low (A375, MC,
IGR, and MM-LH) or fully absent in melanoma cells. MLKL and
RIPK1 protein was present in most melanoma cell lines, nevus
cells, and primary melanocytes. In addition, PREYER, MeWo,
and MM-AN cells showed low or absent expression of MLKL
(Figure 2a). To investigate whether the absence of RIPK3
expression was a result of a lack of transcription of RIPK3, we
next investigated mRNA expression of RIPK3. When
compared with HaCaT keratinocytes, primary melanocytes
(Mel #20 but not Mel #19) and both cultured nevus cells
highly expressed RIPK3 mRNA. In marked contrast, RIPK3
mRNA expression was absent or below detection level in all
melanoma cell lines studied (Figure 2b). Taken together,
these observations raised the possibility that the lack of
RIPK3 mRNA and protein expression explains the absence
of necroptosis in melanoma cells.

RIPK3 allows for IAP antagonist/CD95L-induced necrop-
tosis in malignant melanoma. To functionally investigate
the role of RIPK3 in apoptotic and necroptotic cell death in
melanoma, we next reconstituted RIPK3 in a number of
melanoma cell lines (Figure 3a). Successful RIPK3 over-
expression, but not its kinase-inactive mutant D160N
(RIPK3-kinase dead (KD))1 in A375, EP or IGR cells resulted
in spontaneous MLKL phosphorylation (Figure 3a), indicating
that reconstitution of functional RIPK3 is sufficient to
phosphorylate a known downstream target. We next
analysed the respective RIPK3-expressing melanomas for
DR-induced, caspase-dependent or -independent cell death
(Figures 3b and c and Supplementary Figures 1A and C).
Only RIPK3 increasingly promoted CD95L-mediated cell
death in A375 cells (Figure 3b) and to a lesser extent, in
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IGR cells (Supplementary Figure 2A), indicating that active
RIPK3 participates in apoptosis regulation as recently
demonstrated.24,25 Moreover, the sensitivity to CD95L-
mediated cell death was further increased whenever
IAPs were inhibited (Figures 3b and c and Supplementary
Figure 2A and C), in line with the data in the parental cell lines
(Figure 1b). However, whenever caspase activity was
inhibited (zVAD-fmk), both CD95L and IAP antagonist/
CD95L treatment exclusively unmasked necroptosis in cells
expressing functional RIPK3 (Figures 3b and c and
Supplementary Figure 2C). These results support the
conclusion that RIPK3 protein and its kinase activity are not
only involved in regulation of apoptosis but also required for

necroptosis execution in melanoma. We further observed an
altered cell death morphology in melanoma cells with
functional RIPK3, whenever caspases are blocked
(Figure 3d). In the presence or absence of cIAPs, cell death
exhibited apoptotic morphology on CD95L stimulation,
including membrane blebbing, independent of RIPK3 expres-
sion. In contrast, another rounded cellular morphology
together with a swollen cytoplasm, disintegrated nuclei
(HOECHST and SYTOX Green positivity) was detected in
the presence of zVAD-fmk indicative of necroptosis
(Figure 3d). In summary, reconstitution of functional RIPK3
in melanoma cell lines increasingly promotes DL-induced
apoptosis and unmasked DL-induced necroptosis in the
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Figure 1 Suppression of IAPs by IAP antagonists in melanomas promotes increased sensitivity to CD95L-induced apoptotic but not necroptotic cell death. (a) Heterogeneous
expression of cIAP1, cIAP2, and XIAP in HaCaT keratinocytes, primary melanocytes (Mel #19, Mel #20), nevus cells (Nevus #5and #8), and different melanoma cell lines was
identified by western blot analysis. Five micrograms of total protein lysates were separated with 4–12% NuPAGE gradient gels before detection of cIAP1 (*1 describes an
unspecific band detected with cIAP1 Abs), cIAP2, XIAP (*2 describe an unspecific band recognized by the used XIAP antibody) proteins, and β-tubulin as loading control by
western blot analysis. One representative experiment of a total of two experiments is shown. (b and c) IAP inhibition promotes CD95L-induced apoptotic but not necroptotic cell
death. (b) A375, IGR, SK-MEL and EP melanoma cells were either non-stimulated or pre-stimulated with zVAD-fmk (10 μM) or IAP antagonist (100 nM) alone or in combination
for 1 h before stimulation or costimulation with CD95L (0.5 U/ml) for 18–24 h. Surviving attached cells were quantified with crystal violet assay as described in Materials and
Methods section. Summary of multiple independently performed experiments (three to four experiments) is shown and S.E.M. was determined accordingly. (c) IAP antagonist/
CD95L-induced cell death in melanomas is caspase but not RIPK1 kinase dependent. A375, EP, and IGR melanoma cells were either pre-stimulated with DMSO and Ethanol
(control), zVAD-fmk (10 μM), Nec-1 (50 μM), or IAP antagonist (100 nM) alone or in respective combinations for 1 h followed by stimulation or costimulation with CD95L (0.5 U/ml)
for further 14 h. The externalization of phosphatidylserine as well as the amount of death cells were analysed by AnnexinV/PI double staining as detailed in Materials and
Methods. One representative of two independently performed experiments is shown
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absence of caspase and IAP activity. Therefore, functional
RIPK3 is necessary for apoptosis and necroptosis execution
in malignant melanoma.
IAP antagonists can activate autocrine TNF production in a

subset of tumour cells.26–29 We successfully inhibited TNF-
mediated apoptosis in previous studies5 as well as our control
conditions (Supplementary Figure 3A–D) by recombinant
TNFR2-Fc. However, CD95L-induced cell death in RIPK3-
expressing melanoma cells or their respective controls was
unaltered by addition of TNFR2-Fc. This supports that neither
apoptosis nor necroptosis in RIPK3-expressing A375 and IGR
melanoma cells is dependent on autocrine TNF signalling.

RIPK3 activates spontaneous and cIAP-protected MLKL
phosphorylation. For the execution of necroptosis, RIPK3-
mediated phosphorylation of MLKL requires the interaction of
kinase-active RIPK1 with RIPK3 (for review, see Vanden

Berghe et al.7), but RIPK3 overexpression is also able to
promote necroptosis independent from RIPK1 activity.25,30

To further elaborate the role of RIPK1/RIPK3 activities in
necroptosis execution, we analysed cell death responses of
RIPK3-expressing melanoma cells in the presence of the
RIPK1 inhibitor Necrostatin-1 (Nec-1) in more detail.31

Inhibition of RIPK1 alone did not alter CD95L-induced cell
death when IAPs were suppressed irrespective of the level of
RIPK3 expression in melanoma cells, indicative of dual
activation of necroptosis and apoptosis5 (Figures 4a and b).
As demonstrated for TNF-mediated necroptosis,30 RIPK3-
expressing A375 (Figures 4a and b) or, to a lesser extent,
IGR melanoma cells (Supplementary Figure 2B and C, lower
result panel), but not control transduced melanoma cells,
were not fully protected from IAP antagonist/CD95L treatment
by ZVAD-fmk and Nec-1 (Figure 4a). The inability of Nec-1 to
fully suppress IAP antagonist/CD95L-mediated necroptosis
raised the possibility of a potential activation of the
necroptotic signalling machinery downstream of RIPK1, as
observed in other studies.30,32 Therefore, we next studied the
kinetics and extent of MLKL phosphorylation in the presence
or the absence of cIAPs (Figures 4c and d) under conditions
of necroptosis induction (zVAD/CD95L versus zVAD/IAP-
antagonist/CD95L) in RIPK3-reconstituted melanoma cells.
MLKL phosphorylation was detected in a time-dependent
manner within 90min, with further increase up to 6 h after
stimulation in RIPK3-expressing, but not in RIPK3-KD or
vector control melanoma cells (Figure 4c). Suppression of
cIAPs by IAP antagonist also resulted in an increase in MLKL
phosphorylation in RIPK3-reconstituted cells (Figure 4d).
These experiments suggested that MLKL phosphorylation
indeed not only occurs in a strict RIPK3-dependent manner
but is also a consequence of DL stimulation with further
increase on cIAPs depletion. Of interest, CD95L stimulation
led to a marked shift of the RIPK3-specific signals to a slightly
higher molecular weight, indicative of posttranslational
modification. This shift may likely be explained by auto-
phosphorylation of RIPK3 on CD95L stimulation.

CD95L-induced MLKL phosphorylation and necroptosis
depends on RIPK1 and RIPK3 kinase activity. Given the
intricate balance of RIPK1 and RIPK3, and their functions as
scaffold molecules or kinases, respectively, we next investi-
gated the impact of recently reported chemical inhibitors
of RIPK1 and RIPK3 in more detail24,33 (Figure 5a).
Spontaneous MLKL phosphorylation mediated by RIPK3
overexpression (Figure 4c) is fully suppressed by RIPK3
inhibitors (GSK’840 and GSK’872), but not inhibited
by RIPK1 inhibitors (7-Cl-O-Nec-1 and GSK’481A)33,34 or
Nec-1 (Figure 5a). Our findings led us to conclude that RIPK3
overexpression can promote DL-induced necroptosis inde-
pendently from RIPK1 activity as previously demonstrated.25,30

In contrast, IAP antagonist/zVAD/CD95L-induced MLKL
phosphorylation in RIPK3-expressing melanomas was par-
tially suppressed by Nec-1 and other RIPK1 inhibitors but
fully suppressed by any of the used RIPK3 inhibitors. RIPK3
inhibition and MLKL phosphorylation correlated with full
inhibition of necroptosis (Figure 5b). Furthermore, the lack
of complete necroptosis protection by Nec-1 (Figures 4a and b)
also correlated with at best partial suppression of MLKL
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Figure 2 RIPK3 mRNA and protein expression is absent in melanoma.
(a) Expression of RIPK3, MLKL, RIPK1, and β-tubulin as loading control were
analysed by western blot analysis from HaCaT keratinocytes, primary melanocytes
(Mel #19 and Mel #20), Nevus cells (Nevus #5 and #8), and different melanoma cell
lines. Five micrograms of total protein lysates were separated with 4–12% NuPAGE
gradient gels before detection of respective proteins by western blot analysis. One
representative experiment of a total of two experiments is shown. (b) Total mRNA
from HaCaT cells, primary melanocytes (Mel #19 and Mel #20), Nevus cells (Nevus
#8), and six melanoma cell lines were isolates, reverse transcribed followed by
analysis of RIPK3 mRNA expression, as well as housekeeping gene (actin) by
quantitative PCR analysis. The mRNA expression of RIPK3 in melanocytes, nevus
cells, and melanomas was compared with RIPK3 mRNA expression from HaCaT
keratinocytes that serves as control. Summary of two independently performed
experiments is shown. The S.E.M. is indicated by error bars
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Figure 3 Reconstitution of RIPK3, but not of RIPK3-KD, promotes spontaneous MLKL phosphorylation and necroptotic cell death. (a) Overexpression of RIPK3 and RIPK3-KD
(D160N) in melanomas. Retroviruses expressing human RIPK3 or RIPK3-KD, or vector controls were used for transduction of A375, RPM-EP, and IGR melanoma cells. Transduced
cells were selected and analysed for RIPK3 overexpression, as well as for MLKL, p-MLKL, and β-tubulin as loading control. Five micrograms of total protein lysates were separated
with 4–12% NuPAGE gradient gels before detection of respective proteins by western blot analysis. One representative experiment of a total of three independent performed
experiments is shown. (b–d) RIPK3 but not RIPK3-KD promotes caspase-independent cell death. (b) A375 cells with expression of control (vector), RIPK3, and RIPK3-KD were either
non-stimulated or pre-stimulated with zVAD-fmk (10 μM) or IAP antagonist (100 nM) alone or in combination for 1 h before stimulation or costimulation with CD95L (0.5 U/ml) for
18–24 h. Surviving attached cells were quantified with crystal violet assay as described in Materials and Methods. Summary of multiple independent performed experiments
(four experiments) including the S.E.M. of all experiments is depicted. (c) For phosphatidylserine (PS) externalization and cell death quantification, AnnexinV/PI double stainings was
performed. A375 cells with expression of control (vector), RIPK3, and RIPK3-KD were pre-stimulated with DMSO/Ethanol (control), zVAD-fmk (10 μM), or IAP antagonist (100 nM)
alone or in respective combination for 1 h before stimulation or costimulation with CD95L (0.5 U/ml) for 14 h. Externalization of PS and cell death were analysed after Annexin V/PI
double staining by FACS analysis as described in Materials and Methods section. One of two independent experiments is shown representatively. (d) A375 cells with expression of the
respective constructs were stimulated as described in c followed by qualitative characterization of cell death by fluorescent microscopy after Hoechst/Sytox green double staining as
detailed in the Materials and Methods section. One of two independent experiments is shown (L, through Light-microscopy; H, Hoechst staining; S, Sytox green staining)
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(c) and one of two (d) representative and independently performed experiments is shown
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phosphorylation (Figure 5a). Our experiments show that
both RIPK3-mediated spontaneous and DL/IAP antagonist-
induced MLKL phosphorylation and subsequent necroptosis
induction require RIPK3 activity. In contrast, RIPK1 activity is

critical for DL-induced, but not for RIPK3-initiated sponta-
neous MLKL phosphorylation. However, as our experiments
show, the previously published inhibitor of MLKL-mediated
necroptosis (NSA, necrosulfonamide)11 was unable to suppress
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MLKL phosphorylation (Figure 5a, NSA treatment), and
necroptosis inhibition (data not shown) in our cellular models.
In summary, our data show that spontaneous MLKL
phosphorylation is RIPK3 dependent but is not associated
with spontaneous necroptosis induction, indicating that
Phospho-MLKL under those conditions either accumulates
in an inactive form that is not able to translocate into cellular
membranes. Alternatively, there may exist other proteins that
bind to and block MLKL translocation and necroptosis, as
suggested.14 As an additional alternate explanation, addi-
tional triggers may be required for MLKL phosphorylation,
membrane translocation and finally necroptosis execution.

Dabrafenib, but not Vemurafenib, interferes with
MLKL phosphorylation and necroptosis signalling in
RIPK3-expressing melanoma. BRAF mutations that result
in constitutive cell proliferation are present in roughly 50% of
malignant melanoma.35 The BRAF inhibitors Vemurafenib
or Dabrafenib suppress proliferation of BRAF-mutated
melanoma cells,36 but surprisingly Dabrafenib effectively
suppresses RIPK3 activity as an off-target effect.37 Thus, it
is intriguing to speculate that the effectiveness of a therapy
with BRAF inhibitors could be hampered (or altered) by
interference with necroptosis/RIPK3 signalling. We therefore
explored conditions of necroptosis induction in the presence
of Dabrafenib or Vemurafenib in our model systems. In line
with the recent report, Dabrafenib but not Vemurafenib
blocked necroptosis (Figures 6a and b; black bars) and
MLKL phosphorylation (Figures 6c and d), but also protected
from DL/IAP antagonist-mediated apoptosis (Figures 6a
and b; grey bars) in RIPK3-reconstituted A375 or IGR
melanoma cells. Interestingly, both inhibitors strongly
repressed extracellular signal-regulated kinase (ERK) phos-
phorylation in IGR, but not in A375 cells (Figures 6c and d).
Our observations thus indicate that in contrast to Vemurafenib,
Dabrafenib is a potent inhibitor of MLKL phosphorylation and
consequently protects from necroptosis. This was a more
general phenomenon for DR signalling, as Dabrafenib also
inhibited TRAIL (Supplementary Figures 4A and B) and
TNF-mediated necroptosis (Supplementary Figures 4C and
D), in line with a recent report in primary and transformed
keratinocytes.38 Taken together, the absence of RIPK3 or
blockade of RIPK3 activity by the respective inhibitors or the
BRAF inhibitor Dabrafenib, but not Vemurafenib, are able to
block DL-mediated necroptotic and, to some extent, apoptotic
cell death in melanoma.

Discussion

Targeted therapeutics that suppress melanoma growth such
as BRAF inhibitors Vemurafenib or Dabrafenib, or the direct
MEK inhibitors Cobimetinib or Tranetinib,36 have revolutio-
nized metastatic melanoma therapy and have at last improved
patient survival. As these therapeutics lose their effectiveness
within months, most likely by activation of alternative MEK
signalling,39 innovative treatments may require additional
direct triggering of alternative tumour-specific cell death
pathways.40 Inhibition of IAPs is one promising strategy to
activate cell death and is currently under clinical investigation
in various cancer types (for review, see Wan et al.41).

In keratinocyte skin cancer, we described the inhibitory
function of cIAPs for apoptosis and necroptosis.4,5 In the
current report we investigated the impact of RIPK1 and RIPK3
kinase for apoptosis and necroptosis in malignant melanoma.
Our analysis of a large number of cultured melanoma cells

identified largely uniform expression of XIAP and cIAP1, but
not of cIAP2. Thus, IAP antagonists may represent promising
compounds to sensitize melanoma cells to cell death
triggering, possibly in combination with other targeted
therapies or chemotherapeutics (for review, see Obexer
et al.18). We detected a substantially increased sensitivity to
CD95L-mediated apoptosis but not necroptosis when IAP
activity was suppressed. Thus, XIAP and/or cIAPs protect
melanoma cells from DL-induced apoptosis (CD95L) as also
found in breast42 or pancreatic cancer.43 XIAP/cIAPs suppres-
sion bymacrocyclic XIAPantagonists in melanoma and breast
cancer support cell death induction and tumour growth
inhibition in vivo,44 indicative of the indispensable protective
role of IAPs in many cancer entities. In our studies,
melanomas surprisingly lacked the execution of RIPK1-
dependent necroptosis, usually uncovered when caspase
function is blocked. A pure apoptotic cell death response has
been documented in different tissues of genetic mouse
models whenever single genes coding for essential compo-
nents of the necroptotic cell death machinery are absent, most
prominently MLKL or RIPK3.24,45–48

When we examined the cause for loss of necroptosis, we
uncovered the vast absence of RIPK3 protein expression in
melanomas when compared with melanocytes and nevus
cells. The lack of protein expression wasmediated by a lack of
RIPK3 mRNA (Figure 2) as previously described in lung
cancer49 and in colon cancer50 or in subtypes of metastatic
melanoma.51 A more general lack of RIPK3 mRNA can be a
result of limited promoter activation controlled by epigenetic
DNA modification such as DNA methylation, histone
deacetylation52 or regulated by tumour-initiating signals
such as chronic hypoxia.50 Thus, our observation and
the correlation between necroptosis protection and low
RIPK3 expression in melanoma raises the possibility that
progression of malignant melanoma may require silencing
of RIPK3-dependent necroptosis, or alternatively other
RIPK3-dependent signalling pathways, as suggested.53

These different hypotheses await experimental clarification
in the future.
Previous investigations demonstrated the indispensable

role of RIPK3 in cell death regulation during embryonic
development,54–56 stimulation with different ligands of the
TNF superfamily,5,57 TLR3 agonists,4,58 during etoposide-
mediated stress responses9 and on interferon signalling
or during virus infections.7,59,60 In our study, reconstitution of
RIPK3 not only increased apoptosis as recently reported8,24

but also allowed reactivation of necroptosis in melanoma
whenever IAPs are inhibited. Consistent with our observation
that human RIPK3-KD mutant D160N is unable to transmit
necroptosis, reconstitution of murine kinase-inactive RIPK3-KD
mutants such as D161N45 or D143N, or K51A25 also fail to
induce necroptosis, indicating that the RIPK3 catalytic activity
is indispensable for necroptotic cell death.24 In contrast to the
observed apoptosis induction in murine cells that expressed
the RIPK3 kinase-inactive mutant D161N,24,45 reconstitution
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of human RIPK3-D160N did not interfere with spontaneous
apoptosis or led to altered sensitivity to DL or IAP antagonist,
indicating that the RIPK3 catalytic activity is dispensable for
apoptosis. Thus, our data extend the previous notion that
RIPK3 may either be a critical downstream target or a
necessary part of intracellular signalling complexes such as
the Necrosome or Ripoptosome. If RIPK3 acts as a kinase or
may also modulate the stoichiometry of protein complexes by
a presumed scaffold function is an intriguing question that
needs to be addressed in the future.24,61

Interestingly, RIPK3-expressing melanoma cells, but not
RIPK3-KD cells, show spontaneous and increased MLKL
phosphorylation (Figure 4c), a strong indication that kinase

activity of RIPK3 is the missing link for DL-mediated
necroptosis in melanomas. Both spontaneous and IAP
antagonist/DL-mediated MLKL phosphorylation following
necroptosis induction is blocked in the presence of specific
RIPK3 inhibitors.24 These data demonstrate (a) the function-
ality of RIPK3 for activation of its downstream target within the
necroptotic signalling machinery and (b) the requirement of
the kinase function for this phosphorylation event inmelanoma
cells. In our previous studies,5 we found that RIPK1 was
critical for necroptosis execution in SCC cells. In contrast,
other cell types with high RIPK3 expression failed to be
protected from cell death by interference with RIPK1
activity.8,25 When RIPK1 is inhibited by Nec-1, 7-Cl-O-Nec-1

0

20

40

60

80

100

120

DMSO Dabra Vemu DMSO Dabra Vemu 

su
rv

iv
in

g 
at

ta
ch

ed
 c

el
ls

[%
 o

f c
ry

st
al

 v
io

le
t O

D
]

control
IAP Ant+CD95L
zVAD
zVAD+IAP Ant+CD95L

vector RIPK3

A375

0

20

40

60

80

100

120

DMSO Dabra Vemu DMSO Dabra Vemu 

su
rv

iv
in

g 
at

ta
ch

ed
 c

el
ls

[%
 o

f c
ry

st
al

 v
io

le
t O

D
]

control
IAP Ant+CD95L
zVAD
zVAD+IAP Ant+CD95L

vector RIPK3

IGR

actin

P-MLKL

-IAP Ant + - + - +
- + - + - +
+zVAD-fmk + + + + +

CD95L

MLKL

RIPK3

RIPK1

P-Erk

Erk

A375

co
nt

ro
l

D
ab

ra
fe

ni
b

Ve
m

ur
af

en
ib

MW
[kDa]

51
72

51
72

51
72

51
72

40
51

40
51

40
51

actin

P-MLKL

-IAP Ant + - + - +
- + - + - +
+zVAD-fmk + + + + +

CD95L

MLKL

RIPK3

RIPK1

P-Erk

Erk

IGR

co
nt

ro
l

D
ab

ra
fe

ni
b

Ve
m

ur
af

en
ib

MW
[kDa]

51
72

51
72

51
72

51
72

40
51

40
51

40
51

Figure 6 Dabrafenib, but not Vemurafenib, suppresses DL/IAP antagonist-mediated necroptosis by inhibition of MLKL phosphorylation. (a and b) Dabrafenib blocks necroptosis in
RIPK3-reconstituted melanomas. Vector control and RIPK3-expressing A375 (a) or IGR (b) melanomaswere either pretreated for 2 h with IAP antagonist (100 nM), zVAD-fmk (10 μM),
Dabrafenib (10 μM), or Vemurafenib (A375 with 30 μM and IGR with 10 μM) alone or in respective combinations followed by CD95L (0.5 U/ml) costimulation for 18–24 h and analysis
with crystal violet assay as described previously. Summary of three independently performed experiments is shown. The S.E.M. of the whole set of experiments is depicted. (c and d)
Dabrafenib but not Vemurafenib inhibits MLKL phosphorylation in RIPK3-reconstituted A375 (c) and IGR (d) melanomas. RIPK3-expressing A375 (c) or IGR (d) melanomaswere either
pretreated for 2 h with IAP antagonist (100 nM), zVAD-fmk (10 μM), Dabrafenib (10 μM), or Vemurafenib (A375 with 30 μM and IGR with 10 μM) alone or in respective combinations
followed by CD95L (0.5 U/ml) costimulation for 6 h. Phosphorylation of MLKL or ERK as well as expression of MLKL, RIPK3, RIPK1, ERK, and actin was analysed by western blot
analysis as previously described. One of three independently performed experiments is shown as representation of the results

Necroptosis resistance in melanomas
P Geserick et al

9

Cell Death and Disease



or GSK’481,62 our data also show a partial RIPK1-
independent execution of necroptosis. These results are
supported by other recent reports that highlight the intricate
interplay betweenRIPK1 andRIPK3, and its dependency from
the stoichiometry of the different critical proteins.24,25,30 Taken
together, the cellular context, RIPK1andRIPK3 expression level,
and known (or unknown) downstream molecules such as MLKL
intensely have an impact on the cell biological response to
identical stimuli. Possibly, other currently unknown signalling
pathways can be activated only by RIPK3, which also involves
other interacting proteins that triggers RIPK3 phosphorylation.
Alternatively, RIPK3mayalso assemble in homomultimers and is
activated by autophosphorylation. How this influences the
tumour response (e.g., activation of immune cells to dying
melanoma cells) in a tumour-bearing patient remains to be
elucidated in the future.
Reactivation of the RIPK1/RIPK3/MLKL signalling platform

by RIPK3 reconstitution can overcome necroptosis resistance
in melanoma and therefore could be used as potential death-
inducing targeted therapy against melanoma. Our data
presented in the current study indicate that a combination
therapy of Dabrafenib or Vemurafenib together with reagents
that allow RIPK3 reconstitution could be such a strategy that
was tested in vitro in melanoma (Figure 6). Consistent with
another recent study,37 Dabrafenib also interfered with RIPK3
activity in our study (Figure 6 and Supplementary Figure 3)
and was able to block necroptosis and, to some extent,
apoptosis. Based on the observation that RIPK3 also
increasingly promotes apoptosis (Figures 3b and c and Cook
et al.25), the described off-target effect of Dabrafenib37 for
inhibition of RIPK3 activity could be responsible not only for
inhibition of necroptosis but also for RIPK3-dependent
apoptosis. It is also possible that other currently unknown
molecules of the apoptotic signallingmachinery are influenced
by the off-target activity of Dabrafenib. In contrast, the
alternative BRAF inhibitor Vemurafenib was unable to
suppress MLKL phosphorylation and necroptosis, indicating
that suppression of BRAF/MEK-mediated proliferation and
RIPK3-mediated necroptosis are not interconnected.
Dabrafenib-mediated necroptosis suppression strongly corre-
lated with its inhibitory effect on MLKL phosphorylation.
Although the exact molecular mechanisms how BRAF
inhibition and necroptosis protection cross-talk are fully
unknown, the surprising discordant response of two different
BRAF inhibitors demonstrated in this study merits further
attention in the future. For therapeutic intervention, the
reactivation of the RIPK1/RIPK3/MLKL necroptotic signalling
axis together with simultaneous inhibition of BRAF-mediated
proliferation (e.g., Vemurafenib) without effecting RIPK3
activity could be an attractive strategy.

Material and Methods
Materials. The following Abs were used for western blot analysis: XIAP
(H62120) (Transduction Laboratories, San Diego, CA, USA), rat Abs to cIAP1
(Silke et al.63) and cIAP2,22 anti-β-tubulin (clone 2.1) and anti-actin antibodies
(Sigma, St Louis, MO, USA), RIPK3 polyclonal antibody (IMGENEX, San Diego,
CA, USA), RIPK1 (Transduction Laboratories), anti-MLKL (phospho-S358) antibody
(Abcam, Cambridge, UK), and anti-ERK-2 and anti-phospho-ERK from (Santa Cruz,
Dallas, TX, USA). MLKL antibodies recognizing both mouse and human MLKL46

were kindly provided by James Murphy (WEHI, Melbourne, Parkville, Australia).
Horseradish peroxidase (HRP)-conjugated goat anti-rabbit, goat anti-rat IgG, and goat

anti-mouse IgG Abs, and HRP-conjugated goat anti-mouse IgG1, IgG2a, and IgG2b
were obtained from Southern Biotechnology Associates (Birmingham, AL, USA).

Cell culture. The human melanoma cell lines PM-WK, RPM-MC, RPM-EP, MM-
RU, MM-AN, and MM-LH were kindly provided by Randy H Byers (Department of
Dermatology, Boston University School of Medicine) and cultured as previously
described.64 The following human melanoma cells were obtained either from ATCC
(Manassas, VA, USA) or DSMZ (Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH, Braunschweig, Germany) and cultured as described: A375
(ATCC CRL-1619), MeWo (ATCC HTB-65), SK-Mel-30 (SK-Mel; ACC 151), and
IGR-37 (IGR; ACC 237). PREYER melanoma cells (generated from a subcutaneous
melanoma metastasis) were kindly provided by A Schwaaf and EB Bröcker.
Melanoma cells were cultured in complete DMEM medium (Gibco, Life Technologies,
Darmstadt, Germany) with 4 mM L-glutamine adjusted to contain 4.5 g/l glucose, 10%
fetal bovine serum (FCS Gold, PAA, Cölbe, Germany), 1% sodium pyruvate, and
HEPES buffer. Primary human melanocytes (Mel) and nevus cells were prepared as
described65 and cultured in complete M2 melanocyte growth medium (PromoCell
GmbH, Heidelberg, Germany). HaCaT keratinocytes were kindly provided by Petra
Boukamp (DKFZ, Heidelberg, Germany) and cultured as described.66

Substrates. For cell death induction and the analysis of quality and quantity of
cell death, the following substrates were used in standard concentrations: ZVAD-fmk
(Z-Val-Ala-Asp-fluoromethyl ketone; 10 μM) was purchased from Bachem
(Heidelberg, Germany) and NSA (10 μM) was provided by L Sun and X Wang.11

Nec-1/Necro-1 (50 μM) was from Sigma and RIPK3 inhibitors (GSK’840 or
GSK’872; 10 μM) and RIPK1 inhibitors (GSK’481 or 7-Cl-O-Nec-1/Necro-1) were
from Glaxo Smith Kline Corp. (GSK, New York, NY, USA). The IAP antagonist
(compound A; 100 nM used in most studies) was generously provided by
Tetralogics Corp., Philadelphia, PA, USA. For expression of Fc-CD95L, we used
constructs published elsewhere.67 One unit of Fc-CD95L was determined as a
1 : 500 dilution of the stock Fc-CD95L supernatant and 1 unit/ml of Fc-CD95L
supernatant was sufficient to kill 50% (LD50) of A375 melanoma cells, as
described.68 PI was obtained from Sigma, crystal violet was from VWR International
(Radnor, PA, USA). TNFR2-Fc (Enbrel; Pfizer Inc., New York, NY, USA) was used at
a concentration of 10 μg/ml. HF-TNF was prepared as described68 and used at a
concentration of 10 ng/ml. Vemurafenib (PLX 4032) and Dabrafenib (GSK 2118436)
were purchased from Seleckchem (Houston, TX, USA). All RIPK1/RIPK3 inhibitors
used, and Vemurafenib and Dabrafenib were tested in preliminary experiments for
cell toxicity. The highest non-toxic or low toxic concentration of the respective
inhibitors was used in subsequent experiments.

Retroviral infection. To overexpress RIPK3 or RIPK3-KD (KD mutant,
D160N), the respective cDNAs were subcloned from pEGFP N1 vectors into
pCFG5-IEGZ retroviral vector by standard cloning procedures and verified by
sequencing. Sequence-confirmed vectors were used for transduction of A375, IGR,
and EP melanoma cells, respectively. For virus production, the amphotrophic
producer cell line ΦNX was transfected with 10 μg of the retroviral vectors by
calcium phosphate precipitation. Cell culture supernatants containing viral particles
were generated by incubation of producer cells with A375 medium DMEM
containing 10% FCS, sodium pyruvate, and HEPES buffer) overnight. Following
filtration (45 μM filter, Schleicher & Schuell, Dassel, Germany), culture supernatant
was added to the respective melanoma cells seeded in six-well plates 24 h earlier in
the presence of 1 μg/ml polybrene. After centrifugation for 2 h at 30 °C, viral particle
containing supernatants were replaced by fresh medium. After 14 days of zeocine
selection of bulk infected A375, IGR, and EP cell cultures, fluorescence-activated
cell sorting (FACS) analysis for green fluorescence protein expression (always
495%, data not shown) and western blot analysis were performed on polyclonal
cells to confirm ectopic expression of the respective molecules. The empty retroviral
vectors served as controls. Aliquots of cells were used for the experiments between
passages 2–6 after initial characterization for all subsequent studies. HaCaT cells
expressing IKK2-KD and vector control were established to control for effectivity of
TNF-R2-Fc for TNF-mediated apoptosis as previously described.22

Western blot analysis. Cell lysates were prepared as described69 and 5 μg
of total cellular proteins were separated by SDS-PAGE on 4–12% gradient
gels (Invitrogen, Karlsruhe, Germany) followed by transfer to nitrocellulose or
PVDF membranes. Blocking of membranes and individual incubation with primary
and appropriate secondary Abs were performed as recommended by the
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companies respectively. Bands were visualized with ECL detection kits (Amersham,
Freiburg, Germany).

Immunofluorescence microscopy. For detection of nuclear morphology
and integrity of the cell membrane, 5 × 104 A375 cells expressing vector control,
RIPK3, and RIPK3-KD were seeded per well in a 12-well plate. Following 24 h of
incubation for adherence, cells were stimulated as indicated in the figure legend for
14 h. Subsequently, cells were incubated with Hoechst 33342 (5 μg/ml; Polysciences
Europe, Eppelheim, Germany) and SYTOX Green (5pM; Invitrogen, Molecular Probes,
Eugene, OR, USA) for 15 min at 37 °C, immediately followed by phase-contrast or
fluorescence microscopy using a Leica DMIRB with integrated camera Leica DFC
450C (Leica Microsystems, Wetzlar, Germany). Digital images were identically
processed using the advanced LAS version 4.4.0, Build: 454 Leica Microsystems.

mRNA isolation and qPCR. For quantification of RIPK3 mRNA expression in
parental melanomas, primary melanocytes, and nevus cells (Figure 2b), total mRNA
was isolated with RNeasy Kit (Qiagen, Hilden, Germany). cDNA was synthesized by
SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). RT qPCR
analysis was performed by using KAPA SYBR Fast qPCR (Peqlab, Erlangen,
Germany) in the Mx3005P (Stratagene, La Jolla, CA, USA) real-time thermal cycler.
Equal cycling conditions were used to amplify genes of interest and reference gene
products. HotStarTaq DNA Polymerase was launched by an initial step of 15 min at
95 °C followed by 42 cycles of 1 step (denaturation) at 94 °C for 15 s, 1 step
(annealing) at 55 °C for 30 s, and 1 step (extension) at 72 °C for 30 s. Melting curve
analysis was used to confirm the specific product amplification. RT-PCR efficiency was
calculated using standard curve (plotted as a logarithmic function of the cDNA dilution
factor) and Mx3005P software (Stratagene). Normalization was performed with
primers to β-actin as described.69 The following primer sequences were used for
qPCR analysis: RIPK3 forward 5′’-CAAGATCGTAAACTCGAAGG -3′, RIPK3 reverse
5′-CCGTTCTCCATGAATTTAGT-3′; β-actin forward 5′-AGAAAATCTGGCACCA
CACC-3′, β-actin (ACTB) reverse 5′-GGGGTGTTGAAGGTCTCAAA-3′.

Cytotoxicity assays
Analysis of living attached cell by crystal violet staining: Cells (1 × 104)
were seeded per well in a 96-well plate and cultured for adherence overnight. Cells
were stimulated with controls (dimethyl sulfoxide (DMSO) and ethanol), IAP
antagonist, zVAD-fmk, Nec-1/Necro-1, NSA, RIPK1 inhibitors (GSK‘481 or 7-Cl-O-
Nec-1/Necro-1), RIPK3 inhibitors (GSK‘840 or GSK’872), TNFR2-Fc or CD95L alone,
or in respective combinations in 96-well plates accordingly described in the respective
figure legends. Crystal violet staining of attached, living cells was performed 18–24 h
after stimulation in triplicate wells per condition as described elsewhere.70 The optical
density of control cultures was normalized to 100% and compared with stimulated
cells. In case of combined stimulation of inhibitors together with CD95L or TNF
(Supplementary Figure 2D), the spontaneous cytotoxic effect of single diluents and
substrates was subtracted from each costimulation to solely show specific DL-induced
cell death. For statistical analysis, the S.E.M. was determined for three to four
independent experiments of each cell line and stimulatory condition.

Annexin V externalization: For detection of phosphatidylserine externalization,
cells were stimulated as indicated in the figure legends. Fourteen hours after
incubation of cells, trypsinized cells, and the supernatants were collected and
resuspended in 1 × Annexin-V binding buffer (10 mM Hepes, pH 7.4, 140 mM NaCl,
2,5 mM CaCl2) and 2–4 × 10

5 cells were subsequently stained with Cy5-conjugated
Annexin-V exactly according to the manufacturer’s instructions (Pharmingen, San
Diego, CA, USA), followed by counterstaining (PI; 10 μg/ml) for 15 min in the dark at
room temperature. For all experiments, 1 × 104 cells were analysed by FACScan
(Becton Dickinson & Co., San Jose, CA, USA) and summarized with FCS Express
version 3 programs (De Novo Software, Glendale, CA, USA). Non-stimulated cells
served as negative control for Annexin V/PI double stainings.

Analysis of CD95 surface expression. For analysis of CD95 cell surface
expression from vector control and RIPK3-overexpressing A375 and IGR cells on
stimulation with control (DMSO) and Dabrafenib (10 μM) for 2 h were stained with anti-
CD95 (Apo-1 IgG1) primary antibody as well as isotype-matched control antibodies
followed by FACS analysis as described in detail in Diessenbacher et al.22
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