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BIS targeting induces cellular senescence through
the regulation of 14-3-3 zeta/STAT3/SKP2/p27 in
glioblastoma cells

J-J Lee1,2, J-S Lee3, MN Cui1,2, HH Yun1,2,4, HY Kim1,2,4, SH Lee4 and J-H Lee*,1,2,4

Cellular senescence is an important mechanism for preventing tumor progression. The elevated expression of Bcl-2-interacting
cell death suppressor (BIS), an anti-apoptotic and anti-stress protein, often correlates with poor prognosis in several cancers
including glioblastoma; however, the role of BIS in the regulation of senescence has not been well defined. Here, we describe for
the first time that the depletion of BIS induces G1 arrest and cellular senescence through the accumulation of p27 that is
independent of p53, p21 or p16. The increase in p27 expression in BIS-depleted cells was attributable to an impairment of the
ubiquitin-mediated degradation of p27, which was caused by a decrease in S-phase kinase-associated protein 2 (SKP2) at the
transcriptional level. As an underlying molecular mechanism, we demonstrate that the loss of activity of signal transducer and
activator of transcription 3 (STAT3) was specifically linked to the suppression of SKP2 expression. Despite a reduction in phospho-
STAT3 levels, total STAT3 levels were unexpectedly increased by BIS depletion, specifically in the insoluble fraction. Our results
show that 14-3-3ζ expression is decreased by BIS knockdown and that 14-3-3ζ depletion per se significantly induced senescence
phenotypes. In addition, the ectopic expression of 14-3-3ζ blocked senescence caused by BIS depletion, which was paralleled with
a decrease in insoluble STAT3 in A172 glioblastoma cells. These findings indicate that the impairment of the protein quality control
conferred by BIS and/or 14-3-3ζ is critical for BIS depletion-induced senescence. Moreover, BIS knockdown also induced
senescence along with an accumulation of total STAT3 and p27 in several different cell types as well as embryonic fibroblasts
derived from Bis-knock out mice with/without variations in 14-3-3ζ levels. Therefore, our findings suggest that a downregulation of
BIS expression could serve as a potential strategy for restricting tumor progression via an induction of senescence through the
regulation of STAT3/SKP2/p27 pathway.
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Emerging evidence has shown that the induction of senes-
cence, an irreversible cell growth arrest, could function as a
tumor-suppressive mechanism to restrict tumor expansion.1,2

However, frequent mutations in and subsequent functional
inactivations of key regulators of cell cycle progression, such
as p53, p21 or p16, confer tumor cells with the ability to bypass
senescence, leading to oncogenic transformation.3,4 Thus, the
activation of senescence program that is not dependent upon
the classical senescence pathway, involving p53–p21 or pRB–
p16 signaling, could contribute to an increase in the
therapeutic efficacy of chemotherapy or radiotherapy.5,6

S-phase kinase-associated protein 2 (SKP2) is an F-box
protein that functions as a substrate recognition unit of the
Skp1-Clu1-F-box ubiquitin ligase complex.7,8 Although SKP2
targets numerous cell cycle regulators for ubiquitination and
degradation, the oncogenic potential of SKP2 is mainly linked
to p27 degradation, as evidenced by low levels of p27 in
aggressive tumors in which SKP2 expression is high.9–13

Furthermore, the inactivation of SKP2 through the regulation
of abundance or activity has been shown to restrict

tumorigenicity concomitantly with p27 accumulation.5,14–16 In
addition, the downregulation or loss of SKP2 is specifically
associated with several senescence responses,most of which
are p53 and p16 independent.17–20 Given the inverse relation-
ship between SKP2 and p27 levels, the regulation of SKP2–
p27 axis warrants investigation as a critical determinant for
cellular fate, especially in regard to restoring the senescence
program in tumor cells in which p53 and/or p16 are defective.
Recently, several studies have provided clues that link signal
transducer and activator of transcription 3 (STAT3) signaling
with SKP2–p27 axis. In colorectal cancer cells, the down-
regulation of STAT3 increases p27 expression.21 Subse-
quently, it has been reported that IL-6 or JAK2-mediated cell
proliferation or invasion is due to an induction of the SKP2
gene through STAT3 binding to the SKP2 promoter.22–24

In addition, the anticancer effects of salinomycin in ovarian
cancer cells were shown to be linked to the inhibition of STAT3
activity, which subsequently decreased SKP2 and increased
p27 levels.25 Although these previous results indicate that
SKP2 is a direct target of STAT3, the regulatory function of
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STAT3 in SKP2/p27-induced senescence has not been
previously clarified.
Accumulating evidence has shown that Bcl-2-interacting

cell death suppressor (BIS) is an important molecule that
sustains oncogenic characteristics of tumor cells. This is
primarily based on its prominent pro-survival activity against
various stresses in vitro and the observed overexpression of
BIS in various types of human cancers including thyroid,
prostate, pancreatic cancers and glioma.26–28 The mechan-
isms by which BIS regulate apoptotic process appear to be
primarily based on its interaction with other apoptosis-
regulating proteins such as BCL-2, IKK-γ, BAX or MCL-2, in
cooperation with HSP70, thereby facilitating or inhibiting their
degradation process or affecting their translocation within
cellular compartments. 26,28–32 Moreover, BIS, also known as
BAG3, has been implicated in the invasive and metastatic
phenotypes of cancers, suggesting a possible role as a
prognostic marker.33–36 Although the anti-apoptotic function of
BIS appears to largely contribute to tumor expansion and
resistance to chemotherapy, the impact of BIS on the inhibition
of senescence and subsequent tumor progression has not
been elucidated.
In this study, we demonstrate for the first time that BIS

depletion results in a significant induction of premature
senescence in several types of cells via a p27-dependent
mechanism. We also identify the upstream signals involving
14-3-3ζ/STAT3/SKP2 pathways. Our findings have crucial
implications for the targeting of BIS in therapeutic strategies to
restrict the proliferation of cancer cells, especially for tumor
cells that harbor intact p27 but defective of p53–p21 or p16
pathways.

Results

Induction of cell growth arrest and senescence by BIS
depletion in A172 glioblastoma cells through a p27-
dependent pathway. Using small interfering RNA (siRNA)
strategy, BIS expression was efficiently suppressed in A172
glioblastoma cells; this suppression was sustained for up to
5 days following transfection, to 11.3% of control cells
(Figure 1a). We then examined the influence of BIS depletion
on cellular morphology, cell growth and apoptosis. Of note,
cells treated with BIS-specific siRNA (SiBIS) showed typical
senescence-related phenotypic changes in a time-dependent
manner: large, flattened morphology and gradually increased
senescence-associated β-galactosidase (SA-β-Gal) staining:
86.8% of cells were positive for SA-β-Gal staining at 5 days
after transfection (Figures 1b and c). The proliferation rate
was considerably slower in BIS knockdown cells compared in
control cells as determined by relative increase in the cell
numbers, 1.7-fold and 5.6-fold at day 5, respectively
(Figure 1d). The colony-forming ability was also prominently
suppressed in SiBIS-treated cells, by 92% compared with
control siRNA (SiCON)-treated cells (Figure 1e). In addition,
cell cycle profile demonstrated that the significant accumula-
tion of cells in the G1 phase of the cell cycle accompanied by
decrease in the cell populations in S or G2/M phase in SiBIS-
treated cells, showing that the proportion of G1 phase was
84.7% and 59.9% in SiBIS- and SiCON-treated cells,

respectively, at day 5 (Po0.05, Figure 1f). No obvious
apoptosis resulted from BIS silencing as assessed by subG1
proportion, PARP cleavage and Annexin V staining, which
was distinguished from the typical features of apoptosis
induced by doxorubicin (Figure 1f and Supplementary
Figures S1a–c). Collectively, BIS depletion leads to prema-
ture cellular senescence via G1 cell cycle arrest in A172
glioblastoma cells.
To further define the senescence process triggered by BIS

depletion, we investigated activation status of several hall-
marks of senescence following BIS knockdown, including p53,
p21, p27 and pRB. Although p53 and p21 expression levels
were not notably altered by BIS silencing, p27 protein levels
were gradually increased and p-pRB levels were decreased in
a time-dependent manner: 3.1-fold increase and 0.5-fold
decrease, respectively, compared with those expression
levels in the cells at day 0 (Figure 2a). The p27 levels were
also progressively accumulated as increasing concentration
of SiBIS (Figure 2b). As p16 has been known to be deficient in
A172 cell lines,37 the decrease of p-pRB is likely due to the
inactivation of CDK, which is affected by p27 but not by p16. To
verify the potential involvement of p27 in BIS depletion-
induced senescence, we examined the outcome of p27 or p53
siRNA transfection concomitantly with SiBIS. We found that
the senescence-like morphologies and SA-β-Gal activities
induced by SiBIS were reversed by p27 knockdown, from 77.9
to 23.5% as determined by SA-β-Gal-positive cells, but not by
p53 knockdown (Figures 2c–e). These results indicate that
p27 is essential for the induction of senescence by BIS
silencing, which is independent of the p53–p21 axis.

BIS modulates p27 protein stability via STAT3 and
SKP2. p27 expression is post-translationally regulated by
proteasome-dependent degradation.38 In accordance with
this, our results indicate that p27 mRNA levels are not
significantly affected by BIS silencing as analyzed by
quantitative real-time PCR (Figure 3a). Cycloheximide
(CHX) chase experiments revealed that the degradation of
p27 protein was notably delayed by BIS silencing compared
with control cells (Figure 3b). p27 protein levels from CHX-
treated cells were further accumulated about to two fold
following pretreatment with MG132, a proteasome inhibitor, in
BIS silencing cells (lanes 4 and 5 in Figure 3c), verifying that
BIS depletion retarded the proteasome-dependent degrada-
tion of p27. Under glucose deprivation conditions in which
p27 degradation was shown to be accelerated in a previous
study,39 we confirmed that p27 protein is markedly stabilized
by BIS depletion (Figure 3d). As shown in Figure 3e, glucose
limitation significantly led to the poly-ubiquitination of p27 in
control cells, which was suppressed by BIS depletion,
showing an inverse relationship with cellular p27 levels.
These data clearly indicate that BIS modulates p27 turnover
through ubiquitin-mediated proteasomal degradation. To test
whether interaction of BIS and p27 is involved in the
degradation of p27, immunoprecipitation was performed,
which demonstrated no direct interaction of BIS with p27
(Figure 3f).
As SKP2 is a major determinant of p27 levels,7,8,10 we

examined the effects of BIS depletion on the expression of
SKP2. Immunoblottig showed that SKP2 levels were
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prominently decreased as BIS decreased, to 42% of control
cells at day 5, which was inversely correlated with p27
(Figure 4a). SKP2 mRNA levels were also decreased to 45%
of control cells at 3 days following SiBIS transfection
(Figure 4b). This prompted us to investigate which transcrip-
tion factor was responsible for the alteration ofSKP2mRNAby
BIS depletion. Recent studies have reported that STAT3
activation upregulates SKP2 expression, which leads to p27
degradation, in association with the survival and invasive
ability of various cancer cells.23–25 Thus, we assessed
whether the STAT3 signaling pathway was involved in the
senescence phenotypes induced by BIS depletion. We found
that the phosphorylation of STAT3, representing the activated
form of STAT3 as a transcriptional regulator, was profoundly

decreased by BIS depletion in a time-dependent manner as
determined by immunoblotting using specific antibodies for
phospho-STAT3 (p-STAT3) that target pS727 and pY705
(Figure 4a). To clarify whether the inactivation of STAT3 is
critical for BIS-modulated senescence, dominant-negative
STAT3 constructs and wild type-STAT3 (WT-STAT3)
were introduced into A172 cells before BIS knockdown.
The expression of WT-STAT3 almost completely prevented
the senescence responses induced by BIS depletion,
whereas the expression of two dominant-negative mutants,
Y705F-STAT3 and S727A-STAT3, did not affect the senes-
cence phenotype (Figure 4c). In agreement with the observed
morphological changes, SKP2 expression was restored by
WT-STAT3 in BIS-depleted cells, which led to a decrease in
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Figure 1 The depletion of BIS induces cell growth arrest and senescence in A172 glioblastoma cells. A172 cells were transfected with 100 nM of SiCON or SiBIS and
incubated for the indicated times. d, day. (a) Western blot analysis for BIS expression. Actin levels are shown as a loading control. (b) Morphological changes and (c) SA-β-Gal
staining and percentage (%) of SA-β-Gal-positive cells indicates that BIS depletion significantly induced senescence in A172 cells. ***Po0.001 versus day 0. Scale bars, 50 μm.
(d) Cell viability was determined by Trypan blue staining. The cell number at day 0 was designated as 1.0. **Po0.01, ***Po0.001 versus control cells. (e) Colony-forming ability
was compared between SiBIS- and SiCON-treated cells at 14 days following transfection. The relative efficiency was presented in right column. ***Po0.001 versus SiCON-
treated cells. (f) Cell cycle distribution was measured by flow cytometry at 5 days following transfection. Values are mean± S.E. of triplicate experiments
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p27 protein levels; there was no effect from either inactive
mutant (Figure 4d). Interestingly, however, the total STAT3
levels were not parallel with the levels of p-STAT3, rather
significantly increased by BIS knockdown (Figure 4a). To
address whether the accumulation of total STAT3 has an
impact on senescence induction, we suppressed STAT3
expression using specific siRNA. As illustrated in Figure 4e,
the depletion of STAT3 activation, accompanied with a
decrease in active p-STAT3, both pY705 and pS727, down-
regulated SKP2 but increased p27 expression, comparable to
what was observed following BIS depletion. These results
indicate that decreased STAT3 activation is associated with
the progression of senescence initiated by BIS knockdown.

14-3-3ζ is involved in the BIS-mediated regulation of the
STAT3/SKP2/p27 pathway. The activation of STAT3 is
primarily mediated by the phosphorylation of Y705, which is
maximized or suppressed by phosphorylation at S727,
resulting in the modulation of inflammation, survival, angio-
genesis and motility.40,41 Among the numerous kinases that
mediate the phosphorylation of STAT3, JAK2 and mTOR
were examined as the prototypical kinases for Y705 and
S727, respectively.41–43 No detectable changes were
observed in the phosphorylation status of JAK and mTOR
following BIS silencing (Figure 4f). Thus, the decreased

phosphorylation of STAT3 is not because of a disruption in
upstream signals from JAK or mTOR.
Recently, sequential systemic proteomic analyses demon-

strated that BIS and STAT3 were enrolled in the lists of 14-3-3ζ
interactome and, reversely, 14-3-3ζ was recognized as a BIS-
binding protein in the BIS interactome.44,45 The importance of
14-3-3ζ and BIS was described in promoting aggresome
formation.46 Moreover, 14-3-3ζ was reported to interact with
STAT3 in multiple myeloma cells.47 Based on these previous
findings, we tested the possibility that 14-3-3ζ is involved in the
coupling of BIS and STAT3 with respect to the regulation of
senescence. Figure 5a shows a gradual decrease in 14-3-3ζ
expression following the decrease in BIS, whereas the
expression of 14-3-3θ, another 14-3-3 protein isoform, was
not altered. We next evaluated if 14-3-3ζ silencing per se could
trigger senescence. Immunoblotting analysis indicated that
14-3-3ζ-depleted cells exhibited similar profiles to BIS-
depleted cells with regards to the expression of p-STAT3
(S727), total STAT3, SKP2 and p27, thus acting as a substitute
for BIS depletion (Figure 5b). p-STAT3 (S727) levels but not
p-STAT3 (Y705) were abolished upon 14-3-3ζ knockdown,
which was in keeping with the previous report showing that 14-
3-3ζ protects the dephosphorylation of S727 sites of STAT3
from PPA2 in multiple myeloma cells.47 In addition, themarked
increase in the SA-β-Gal-positive cells was observed in
14-3-3ζ-depleted cells (Figure 5c). The SA-β-Gal assays also
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revealed that ectopic expression of 14-3-3ζ almost completely
prevented senescence initiated by BIS depletion (Figure 5d).
Taken together, these findings indicate that 14-3-3ζ expres-
sion is modulated by BIS and that 14-3-3ζ protein functions as
a potent regulator of cellular senescence as well. Subsequent
investigation into the physical association between BIS, 14-3-
3ζ and STAT3 using immunoprecipitation and subsequent
immunoblotting assays indicate that these proteins constitute
one complex (Figure 5e).

BIS and 14-3-3ζ modulate the solubility of STAT3. Both
BIS and 14-3-3ζ proteins have been reported to share
chaperon-like function that prevents protein aggregation and
the ability that promotes the aggresomal targeting of unfolded
proteins. 46,48–51 Thus, the increase of total STAT3 in both
BIS-depleted cells (Figure 4a) and 14-3-3ζ-silenced cells
(Figure 5b) raises the question of whether the loss of protein
quality control (PQC) functions of BIS and 14-3-3ζ is involved
in the accumulation of STAT3 aggregates, primarily non-
functioning STAT3. We investigated the solubility of STAT3 by
fractioning cell lysates into soluble and insoluble parts
following BIS depletion. Notably, the total amount of STAT3
was reduced in soluble fraction, whereas it was increased in
insoluble fraction after BIS silencing in a time-dependent

manner; decrease to 0.19-fold in soluble fraction and
increase to 2.36-fold in insoluble fraction at day 4 compared
with those levels at day 0 (Figure 6a). To check whether 14-3-
3ζ could prevent the accumulation of STAT3 in insoluble
fraction as a result of BIS depletion, we performed fractiona-
tion experiments following Myc-14-3-3ζ overexpression
before SiBIS treatment. Ectopic expression of 14-3-3ζ led to
a substantial reversal of STAT3 solubility, shifting from
insoluble to soluble fraction (Figure 6b). This reversal in
STAT3 solubility was further illustrated by the observation of
immunostaining using confocal analysis. A significant
increase in the intensity and size of STAT3-positive dots,
representing aggregated STAT3, in SiBIS-treated cells, was
reduced by 14-3-3ζ overexpression accompanied by a
reduction in cell size (Figure 6c). Altogether, these data
strongly indicate that loss of the dis-aggregating function of
BIS and/or 14-3-3ζ is responsible for STAT3 aggregation,
which leads to the functional inactivation of STAT3.

BIS is negative regulator of senescence in various types
of cells. We investigated the BIS depletion effect in other cell
lines including C6 rat glioma cells, Hep2 human laryngeal
cancer cells and NMS rat kidney cells. As with A172 cells, all
of these cells showed senescence-like morphological
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changes and an increase in SA-β-Gal activity following BIS
silencing (Figure 7a and Supplementary Figure S2a) and
showed similar profiles of total STAT3 and p27 accumulation
and decrease in SKP2 mRNA (Figure 7b and Supplementary
Figure S2b). However, 14-3-3ζ and p-STAT3 levels were not
consistent across the cell types tested. We also examined the
induction of senescence using mouse embryonic fibroblasts
(MEFs) cells at passage 2 derived from WT and Bis gene-
knock out (KO) mice; 22% and 74% cells were positive for
SA-β-Gal staining, respectively, after incubation for 5 days in
10% serum (Figure 8a). The expression levels of p-STAT3
(S727), total STAT3 and p27 were increased and Skp2mRNA
levels were decreased in Bis-KO MEF, whereas 14-3-3ζ and

p-STAT3 (Y705) levels were not decreased (Figures 8b and
c). Overall, these data suggest that BIS negatively regulates
the induction of senescence in various types of cells, via
STAT3/SKP2/p27 pathways, which involves 14-3-3ζ depend-
ing on the cellular context.

Discussion

In this study, we demonstrate for the first time that BIS
depletion results in the premature senescence of various
types of cancer cells, including glioma cells, through
p27-dependent and p53-independent pathway. The stabili-
zation of p27 at the protein levels was attributed to SKP2
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downregulation, which was driven by the loss-of-function of
STAT3. We further demonstrate that the inactivation of STAT3
is linked to a decrease in its solubility, which was most likely
regulated by PQC function of 14-3-3ζ through interactions with
BIS. Based on our results, we propose a working hypothesis
for BIS depletion-induced cellular senescence involving 14-3-
3ζ–STAT3–SKP2–p27 signaling axis as summarized in
Figure 8d. Our findings provide a therapeutic implication for
BIS targeting-induced senescence in the repression in tumor
growth in a variety of cancers in which BIS is highly expressed.
STAT3 is an important signaling node that is involved in

multiple pathways including inflammation, differentiation,
proliferation or angiogenesis through the activation of target
genes following the translocation of p-STAT3. Although STAT3
activity has been shown to influence SKP2 expression and
subsequently p27 levels in several cancer cells,21–25 it had
remained whether STAT3-mediated SKP2/p27 regulation
exhibited an important role in the direction of senescence
program. In our study, the observed BIS depletion-mediated
decrease in SKP2 was inversely correlated with p-STAT3
levels. Furthermore, the overexpression of WT-STAT3, but not
non-phosphorylated STAT3, rescued glioblastoma cells from
the induction of senescence combined with a restoration of
SKP2 expression levels. This indicates functional inactivation

of STAT3 is crucial in BIS deficiency-induced and SKP2/p27-
mediated senescence. With regard to the senescence
response, the role of STAT3 appears to be inconsistent and
depends on the cellular context or condition. In normal
fibroblasts and hepatic satellite cells, STAT3 activation is
required for IL-6- or IL-22-induced senescence, through the
expression of IGFBP5 or SOC3, respectively,52,53 On the other
hand, the inactivation of STAT3was essential to induce cellular
senescence program in breast, colon and lung cancer cells
following DNA damage,54,55 in accordance with our results.
Thus, our findings demonstrating the critical involvement of
STAT3 activity in SKP2/p27-mediated senescence may
reinforce the significance of the crosstalk between STAT3
signaling and the SKP2/p27 pathway in tumor progression
through the inhibition of senescence in addition to the
promotion of proliferation or invasion.
Notably, we provide important evidence that maintenance of

STAT3 solubility is critical for transcriptional activator activity of
STAT3, in addition to the conventional upstream kinase
activity. Cellular protein solubility or the maintenance of the
proper protein folding structure in response to variety of
cellular stresses is under the control of the PQC machinery.
This system executes the re-solubilization or clearance of
misfolded aggregating proteins and thereby prevents the
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accumulation of toxic protein aggregates.56 Our results show
that total STAT3 levels were specifically increased in the
insoluble fraction following BIS depletion in immunoblotting,
supported by immunofluorescence observations. Thus, the
increase in total STAT3 following BIS depletion represents a
functionally inactive status and possibly aggregated forms of
STAT3, leading to conformational changes that are unable to
maintain a phosphorylated status at active sites. Our hypoth-
esis is supported by previous studies using STAT3 inhibitor,
demonstrating that a selective disruption of STAT3 dimeriza-
tion resulted in its aggregation in perinuclear aggresomes,
followed by a decrease in STAT3 phosphorylation and nuclear
translocation.57 The regulatory function of BIS on STAT3
solubility is in line with previous findings indicating that BIS
participates in PQC process to prevent the accumulation of
misfolded proteins. BIS has been shown to enhance the
degradation of proteins, which are prone to aggregation
because of genetic mutation, such as αB-crystallin, super-
oxide dismutase and Huntingtin protein, by promoting the
macroautophagic pathway or aggresomal targeting of
substrates through interactions with HSP70, HSPB8, p62 or
14-3-3γ.46,58–61 The physiological significance for the role of
BIS in protein homeostasis has been implicated in vivo by the
upregulation of BIS–HspB8 complex in astrocytes of the
human brain affected by protein aggregation diseases such as
Huntington's diseases and spinocerebellar ataxia type 3.62

This indicates that the induction of BIS was driven by the
necessity to facilitate the clearance of aggregated proteins
within an aggregation-prone milieu. In our studies, BIS
depletion itself could constitute an aggregation-prone envir-
onment for STAT3, resulting in cellular senescence. In other
words, even without an aggregation-inducing stressor, the
cellular abundance of BIS could affect the proper folding or
solubility of specific proteins, of which deterioration changes in
cell fate. Our results, therefore, strengthen the importance of
the PQC, in which BIS and other key molecules function in
concert, to protect cells from entering into senescence
program as well as from neurodegenerative diseases.
In this study, we observed that BIS depletion was paralleled

with a decrease in the level of 14-3-3ζ, which appeared to be
an essential prerequisite for BIS depletion-mediated STAT3
aggregation and senescence in A172 cells. We also demon-
strated that BIS, 14-3-3ζ and STAT3 proteins are present as a
complex, consistent with previous proteomic analyses.44

Although it is not certain how BIS modulates 14-3-3ζ
expression, it is possible that the interaction of BIS and 14-3-
3ζ might confer stabilization of 14-3-3ζ protein, probably via
protecting from proteasomal degradation, as previously
suggested in the interaction with IKKγ or MCL-1.30,31 Intrigu-
ingly, some of isoforms of 14-3-3, such as 14-3-3γ and 14-3-3ζ,
share this anti-aggregating activity with BIS either through
chaperone-like functions or through aggresome-promoting
activities.46,48–51 Thus, the stable complex of BIS and 14-3-3ζ
in turnmight have amajor role in the PQC for STAT3 in terms of
preserving the native folding or solubility of STAT3. However,
p-STAT3 (Y705) levels were not affected by 14-3-3ζ depletion,
whereas BIS knockdown significantly decreased both
p-STAT3, Y705 and S727, in A172 cells. Furthermore, the
alterations of 14-3-3ζ levels or p-STAT3 levels were not
consistently observed in NMS or MEF cells in which BIS

depletion clearly induced senescence with an accumulation of
total STAT3. Therefore, BIS might affect the proper folding or
solubility of STAT3 through interaction with 14-3-3ζ or through
another pathway unidentified. It is possible that BIS could
directly interact with STAT3 for proper protein folding, as
observed in the mutated in αB-crystallin.61 BIS was shown to
interact only with dimers of 14-3-3γ, not with monomers.46

Therefore, it is also possible that, depending on the cellular
context, different isoforms of the14-3-3 family might interact
with BIS to maintain the solubility of specific target proteins.
Alternatively, BIS depletion might affect the chaperone
function of 14-3-3 through the disruption of the balance
between monomeric and dimeric forms without altering 14-3-3
protein levels. The molecular mechanism, by which BIS and
14-3-3 proteins participate in PQC, either separately or in
collaboration, warrants further extensive study.
In conclusion, we have shown that BIS depletion induces

senescence through the regulation of STAT3/SKP2/p27 axis in
various types of cells. Considering that little is known about the
regulatory mechanism of p27-mediated senescence induc-
tion, our results describe a novel function of BIS, extending
from anti-apoptotic or anti-stress roles to the negative
regulator of p27-mediated senescence. Therefore, BIS target-
ing could be implicated as a therapeutic strategy for inducing
senescence in the prevention of tumor progression, particu-
larly those showing defect in p53 or p16 pathways.

Materials and Methods
Cell lines and reagents. A172 human glioblastoma cells, C6 rat glioma cells
and Hep2 human laryngeal cancer cells were cultured in DMEM, and NMS rat
kidney cells were cultured in RPMI supplemented with 10% fetal bovine serum
(FBS, Thermo Fisher Scientific, Waltham, MA, USA) and 1% penicillin–streptomycin
(Thermo Fisher Scientific). MEFs were prepared from Bis+/+ and Bis− /− mouse
embryos 63 and were grown in DMEM with 20% FBS before serum restriction.
MG132 and CHX were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Doxorubicin was obtained from Calbiochem (San Diego, CA, USA). siRNA duplexes
against BIS (5′-AAGGUUCAGACCAUCUUGGAA-3′), STAT3 (5′-CCAACGACCUG
CAGCAAUA-3′), 14-3-3ζ (5′-CCAACGACCUGCAGCAAUA-3′), p53 (5′-CCACUUG
AUGGAGAGUAUU-3′), and p27 (5′-AAGTACGAGTGGCAAGAGGTG-3′) and
control duplex (5′-CCUACGCCACCAAUU UCGU-3′) were purchased from Bioneer
Inc. (Daejeon, Korea). The 14-3-3ζ overexpression plasmid was cloned into the
pCMV-Myc vector (Clonetech, Mountain View, CA, USA). The plasmids for WT and
mutant forms of STAT3 (Y705F and S727A) in pCS2+ were obtained from Ira O
Daar (National Cancer Institute, Frederick, MD, USA). The transfection of the
indicated plasmids and siRNA were carried out using Fugene Extreme (Roche
Diagnostics, Mannheim, Germany) and the Lipofectamine 2000 reagent (Invitrogen,
Carlsbad, CA, USA), respectively.

Cell morphology, SA-β-Gal staining and immunofluorescence.
The morphological characteristics of cells were evaluated using an inverted phase
contrast microscope (Olympus, Center Valley, PA, USA). For SA-β-Gal staining, we
followed the protocol described in Dimri et al.64 For the immunofluorescence
analyses, fixed cells were incubated with an anti-STAT3 monoclonal antibody, and
immunoreactivity was visualized with fluorescein isothiocyanate (FITC)-conjugated
anti-mouse IgG under a Zeiss LSM 700 laser fluorescence confocal microscope
using Zen software (Carl Zeiss MicroImaging GHBH, Jena, Germany).
Morphological examinations were performed at 4 days following each treatment,
otherwise indicated.

Colony formation analysis, cell cycle analysis and apoptotis
assay. Colony formation ability was assessed by seeding A172 cells at a density
of 500 cells per 60-mm dish and staining with crystal violet (Sigma-Aldrich) after
14 days. Colonies were counted using a colony counter (BioLogics, Manassas, VA,
USA). Cell cycle distributions and apoptotic cells were evaluated by propidium
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iodide (50 μg/ml) staining and a FITC-Annexin V apoptosis detection kit
(BD Bioscience, San Jose, CA, USA), respectively. Data acquisition and analysis
were performed in flow cytometer (FACSCalibur, BD Bioscience) using CellQuest
Pro software (BD Bioscience).

Western blot analysis. For western blot analysis, cells were lysed in RIPA
buffer and centrifuged. Then, equal amounts of total protein were separated on a
SDS-PAGE gel. After transferring the proteins to a nitrocellulose membrane, the
membrane was blocked with 5% (w/v) nonfat dry milk in PBS overnight at 4 °C. After
incubating with specific primary antibodies, the antibody–antigen complexes were
visualized using horseradish peroxidase (HRP)-conjugated secondary antibodies
and a standard chemiluminescence system (Thermo Fisher Scientific) according to
the manufacturer's instructions. The soluble and insoluble fractions from total cell
lysates were prepared as described in Yano M et al.48 p53 and p27 antibodies were
purchased from Novocastra Inc. (Newcastle, UK) and BD Bioscience, respectively.
Phospho-pRB, p-STAT3 (Y705 and S727), STAT3, SKP2, phospho-JAK, phospho-
mTOR, mTOR and PARP antibodies were obtained from Cell Signaling Inc.
(Danvers, MA, USA). Antibodies for p21, 14-3-3ζ, 14-3-3θ, GAPDH, β-actin, Myc,
Ubiquitin, HRP-conjugated anti-rabbit, anti-mouse and FITC-conjugated anti-mouse
were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Quantification of the intensities of each band was carried out using Image J
software, which is provided by the National Institute of Health (NIH, Bethesda, MD,
USA). The relative densities for each protein were determined by normalizing with
that of β-actin.

Quantitative real-time PCR analysis. RNA was isolated with an RNA
extraction kit AcuZol (Bioneer Inc.) and subjected to reverse transcription using
M-MLV reverse transcriptase (ReverTra Ace qPCR RT Kit, Toyobo, Osaka, Japan)
according to the manufacturer’s protocol. Then, quantitative real-time PCR (qRT-
PCR) was performed using SYBR premix Ex Taq (Takara Biotechnology, Shiga,
Japan) with specific primers on Applied Biosystems 7300 PCR machine (Applied
Biosystems, Carlsbad, CA, USA). The relative values for BIS, p27 and SKP2 mRNA
were calculated after normalizing the Ct value to β-actin levels from the same
sample using the ddCt method.

Immunopreciptation. An equal amount of each protein lysate was incubated
with the indicated antibodies, normal rabbit IgG or normal mouse IgG (Santa Cruz
Biotechnology) for 4 h at 4 °C, followed by an incubation with 20 μl of protein A magnetic
beads (Millipore, Billerica, MA, USA) for 16 h at 4 °C. The immune complexes were
analyzed by western blot analyses with the indicated antibodies. Protein lysates were
also subjected to western blot analyses with the indicated antibodies.

Statistics. Statistical values are expressed as the mean± S.E. Multiple
comparisons between groups were assessed by one-way ANOVA with Bonferroni’s
correction (SPSS v. 11.5; IBM, Armonk, NY, USA). Probability values o0.05 were
accepted as statistically significant.
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