
OPEN

Review

Strange attractors: DAMPs and autophagy link tumor
cell death and immunity

W Hou1, Q Zhang1, Z Yan1,2, R Chen1,3, HJ Zeh III 1, R Kang1, MT Lotze*,1 and D Tang*,1

Resistance to ‘apoptotic’ cell death is one of the major hallmarks of cancer, contributing to tumor development and therapeutic
resistance. Damage-associated molecular patterns (DAMPs) are molecules released or exposed by dead, dying, injured,
or stressed non-apoptotic cells, with multiple roles in inflammation and immunity. Release of DAMPs not only contributes to
tumor growth and progression but also mediates skewing of antitumor immunity during so-called immunogenic tumor cell death
(ICD). Autophagy is a lysosome-mediated homeostatic degradation process in which cells digest their own effete organelles and
macromolecules to meet bioenergetic needs and enable protein synthesis. For tumor cells, autophagy is a double-edged sword.
Autophagy, in balance with apoptosis, can function as a tumor suppressor; autophagy deficiency, associated with alterations in
apoptosis, initiates tumorigenesis in many settings. In contrast, autophagy-related stress tolerance generally promotes cell
survival, which enables tumor growth and promotes therapeutic resistance. Most anticancer therapies promote DAMP release
and enhance autophagy. Autophagy not only regulates DAMP release and degradation, but also is triggered and regulated by
DAMPs. This interplay between autophagy and DAMPs, serving as ‘strange attractors’ in the dynamic system that emerges in
cancer, regulates the effectiveness of antitumor treatment. This interplay also shapes the immune response to dying cells upon
ICD, culling the least fit tumor cells and promoting survival of others. Thus, DAMPs and autophagy are suitable emergent targets
for cancer therapy, considering their more nuanced role in tumor progression.
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Facts

� Dysfunction of cell death pathways participates in the
pathogenesis of many diseases, including cancer and
autoimmunity.

� The interplay between autophagy and damage-associated
molecular pattern (DAMPs) regulates cell death and
shapes the immune response to dying cells.

� Autophagy has pro- and antitumor roles depending on the
cellular context and early (anti-) and late (pro-) settings of
tumorigenesis and tumor progression.

� Immunogenic tumor cell death (ICD) involves the release
of DAMPs, often necrotic death, and the subsequent
elicitation of antitumor immunity; tolerogenic cell death
(TCD) involves clearance of apoptotic cells or release
of many of these same DAMP factors such as high
mobility group box 1 (HMGB1), oxidized within the
tissues.

Open Questions

� What are the distinct roles of individual DAMPs in
autophagy and tumor immunity?

� What controls the network of autophagy signaling
pathways?

� Why are the effects of cell death on the immune system so
complex?

� Do dying cells directly induce DAMP secretion from
immune cells following ICD or TCD?

� What is the role of ICD/TCD in tumorigenesis and other
diseases?

Randomness, with its own underlying order, is not a bad
definition of an emergent cancer – wild and chaotic, yet bound
by metabolic, bioenergetic, and spatial limitations with
selection by immune effectors, ‘culling’ tumor cells and
shaping their emergent behavior. In 2011, Hanahan and
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Weinberg1 updated their 10 hallmarks of cancer that define
tumor cells, distinguishing them from normal cells. Of note,
resistance to ‘apoptotic’ cell death is a major hallmark of
cancer, which has a profound effect on the malignant
phenotype and contributes to the development and progres-
sion of cancer. Necrosis releases multiple pro-inflammatory
factors, including damage-associated molecular pattern
molecules (DAMPs) within the surrounding microenviron-
ment, which actively promotes tumor growth or mediates
immune responses to dying cells. Autophagy, which had been
proposed as a third mode of cell death, is primarily an
intracellular degradation system and stress response required
for survival. Autophagy has dual roles in cancer, acting as a
tumor suppressor or promoter in a context-dependent
manner.2 Apoptotic, autophagic, and necrotic tumor cells all
release DAMPs, which interact with DAMP receptors on
immune cells. This in part largely determines whether cell
death is immunogenic (termed immunogenic tumor cell death
(ICD)) or tolerogenic (termed tolerogenic cell death (TCD)).3

Here, we provide an overview of the cell death process and
the release and function of DAMPs and focus on the immune
response to cell death along with the functional interplay
between autophagy and DAMPs in tumor therapy and
immunity.

Cell Death Mechanisms in Cancer Therapy

The earliest classification of cell death was proposed in 1973,
in which cell death is divided into apoptosis (type I),
autophagic cell death (type II), and necrotic cell death
(type III) based on morphological characteristics. Since then,
new forms of cell death have been described, as biomedicine
and technology have advanced from the bench to the
bedside.4 Cancer is still best and most successfully treated
by surgical excision with removal of the tumor. Nonsurgical
therapies include chemotherapy, radiation therapy, hormonal
therapy, and immunotherapy, which primarily inhibit cancer
growth by promoting cell death with removal of the cellular
corpse in situ. Apoptosis and necrosis are the two major
types of tumor therapy-induced cell death, and induction of
autophagy within the tumor is often significantly enhanced
during tumor therapy. Clearly, apoptosis, necrosis, and
autophagy can all be initiated by common stimuli and their
regulatory mechanisms appear to be multiple and over-
lapping. In general, apoptosis and necrosis are both observed
during effective anticancer activity, whereas induction of
autophagy increases tumor cell resistance to treatment.
The switch from one type of death response to another
determines an individual tumor cell’s fate – either survival or
death – following anticancer therapy.

Apoptosis: Programmed Cell Death

Apoptosis is the process of programmed cell death and
includes ‘extrinsic’ and ‘intrinsic’ pathways, as well as the
cytolytic mechanisms mediated by T and natural killer (NK)
cells (Figure 1). All three cause characteristic cellular
changes, including cell shrinkage and fragmentation into
membrane-bound apoptotic bodies that are efficiently cleared
by phagocytes. The extrinsic pathway begins outside the cell

and involves transmembrane death receptors (DRs) that are
members of the tumor necrosis factor receptor gene super-
family, which are activated by corresponding death ligands. In
addition, dependence receptors (for example, unc-5 homolog
A and deleted in colorectal carcinoma) mediate the alternative
extrinsic pro-apoptotic pathway through the assembly of a
caspase-9-activating platform or by the dephosphorylation-
mediated activation of death-associated protein kinase 1,
respectively. The intrinsic apoptotic pathway alters mitochon-
drial permeability and subsequent mitochondrial protein
release. Most apoptosis is accompanied by a complex
cascade of intracellular events that may include the activation
of pro-apoptotic Bcl-2 family members, caspases, and several
nucleases. However, the intrinsic apoptotic pathway can also
function in a caspase-independent manner by translocation of
apoptosis-inducing factor and endonuclease G from the
mitochondria to the nucleus, thereby mediating large-scale
DNA fragmentation. In addition, Omi/HTRA2, a mitochondrial
serine protease, also contributes to caspase-independent
apoptosis primarily by cleaving cytoskeletal proteins.
Interestingly, increased apoptosis in tumor tissue is

observed early in tumorigenesis. A possible reason for this
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Figure 1 Extrinsic and intrinsic apoptosis. There are two intracellular pathways
to control apoptosis. A third pathway, mediated by cytolytic effectors including T and
NK cells, delivers pro-apoptotic granzymes through perforin-mediated pores, culling
the least fit cells, and promoting survival of the remaining cells through autophagy.
The extrinsic pathway is mediated by DRs including tumor necrosis factor family
members such as Fas/CD95 and dependence receptors like deleted in colorectal
carcinoma or unc-5 homolog A. The intrinsic mitochondrial pathway is controlled by
Bcl-2 family proteins such as Bax and Bak. When lethal signals prevail,
mitochondrial outer membrane permeabilization occurs and leads to release of
the mitochondrial proteins such as Cyt C, SMAC, HTRA2, endonuclease G
(ENDOG), apoptosis-inducing factor (AIF), and HTRA2. Among these, Cyt C,
SMAC, and HTRA2 contribute to caspase-dependent apoptosis, whereas ENDOG,
AIF, and HTRA2 contribute to caspase-independent apoptosis
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is that rapid reparative epithelial proliferation, possible fusion
events with inflammatory macrophages, and selection by
lymphoid cells promotes early genetic instability required for
tumor transformation and progression. The associated DNA
damage in turn activates the intrinsic apoptosis pathway.
Excessive apoptosis can lead to immune dysfunction within
the tumor microenvironment. Recent studies indicate that loss
of pro-apoptotic genes, such as CD95/Fas and PUMA,
promotes tumorigenesis by activation of JNK, or sustains
tumor stem cell survival.5–7 These findings raise the possibility
that apoptosis promotes early tumorigenesis.8

Necrosis: More than an Accident

The term ‘necrosis’ was used to describe irreversible tissue
damage in pathological circumstances and was considered a
merely accidental cell death mechanism lacking the morpho-
logical characteristics of apoptosis or autophagy. The term
‘necroptosis’ has recently been used to describe programmed
necrosis when cells lack the capacity to activate caspase-8
following DR ligation.9 Generation of the kinase receptor-
interacting protein 1 (RIP1)/RIP3 containing ‘necrosomes’
activates downstream necroptotic signaling, which can be
inhibited by necrostatin 1 (Figure 2). Morphologically, necrosis
is characterized by disruption of the cellular membrane,
swelling of the cytoplasm andmitochondria, and breakdown of

organelles. DNA in apoptotic cells is degraded specifically,
whereas DNA in necrotic cells is usually degraded randomly
by extracellular DNAseI or by lysosomal DNAse II. In necrosis,
cellular contents leak into the extracellular environment where
they may act as a ‘danger signal’ that promotes inflammation.
The fundamental causes of necrosis include calcium over-
load, ROS generation, cellular energy depletion, and mem-
brane lipid injury. Poly (ADP-ribose) polymerase (PARP) is
activated by DNA strand breaks, thereby facilitating DNA
repair and enzyme access to damaged DNA. Induced
overactivation of PARP-1 causes ATP depletion, which leads
to necrosis in a TRAF2/RIP1/JNK-dependent manner.
Activation of necrosis often occurs through increased ROS
production, calpain activation, lysosomal destabilization, and
cathepsin release. Necrotic death is induced in cancer cells by
photodynamic treatment (PDT), several DNA alkylating
agents, and other cytotoxic agents, including b-lapachone,
apoptolidin, and honokiol.

Autophagy: an Intracellular Degradation System

The primary autophagy mechanisms, including macroauto-
phagy, microautophagy, and chaperone-mediated autophagy,
are the evolutionarily highly conserved catabolic pathways
involving degradation of cellular components.10 The main
identified form of autophagy is macroautophagy (hereafter
referred to as autophagy), which initiates with engulfment of
cytosolic material by the phagophore, resulting in the
formation of autophagosomes. Autophagosomes then fuse
with lysosomes to form autolysosomes, which lead to
degradation of the engulfed material by lysosomal enzymes
and production of amino acids and fatty acids to meet
bioenergetic needs and protein synthesis (Figure 3a). This
dynamic process is primarily controlled by members of the
autophagy-related gene (Atg) family and share regulators
derived from other trafficking and cell death pathways.
During starvation, mammalian target of rapamycin 1

dissociates from the unc-51-like kinase 1 (ULK1) complex,
allowing it to initiate autophagosome formation. There are at
least three class III phosphatidylinositol 3 kinase (PI3KC3)–
beclin-1 complexes that are involved in the regulation of
autophagosome formation. The Atg14L (Atg14L–beclin-1–
hVps34–p150) and UVRAG (UVRAG–beclin-1–hVps34–p150)
complexes are required for autophagy, whereas the Rubicon
complex (Rubicon–UVRAG–beclin-1–hVps34–p150) nega-
tively regulates autophagy. Moreover, discovery and identifi-
cation of beclin-1-binding protein increases the complexity of
this process.11 Microtubule-associated protein light chain 3
(LC3)-II as an autophagosome marker ultimately degrades in
the autolysosome. Impairment of the early and late steps of
autophagy can have opposing effects on the number of
autophagy-related vacuoles, as well as LC3-II expression.
Autophagy is not only a nonselective bulk process in response
to starvation but also a highly selective quality control
mechanism in regulation of organelle turnover, cellular debris
disposal, and pathogen clearance (Figure 3b).
Autophagy is primarily an anti-oncogenic mechanism

during tumorigenesis because deletion of autophagy genes
or regulators such as beclin-1, UVRAG, ATG5, and Bif in mice
increases tumor development by their ability to shape
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Figure 2 Pathways of necrosis. Necrosis can be elicited by a wide range of
stimuli. Activation of DRs such as Fas and TNFR or cellular stresses induces the
interaction and activation of the kinases RIP1 and RIP3. Necrotic death stimuli can
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inflammatory responses, bioenergetics, and oxidative stress.
In addition, autophagy has a pro-tumor growth effect in some
cancers. For example, loss of ATG3 in mice prevents BCR-
Abl-mediated leukemogenesis. Similar to apoptosis, these
findings suggest that autophagy has a complex role in
tumorigenesis and may have opposing roles in the early and
late cancer development stages.2

Immune Responses to Cell Death: Immunogenicity and
Tolerogenicity

Apoptosis is usually considered intrinsically tolerogenic,
whereas necrosis is immunogenic and promotes inflamma-
tion.12 A characteristic of apoptotic cell clearance is that no
pro-inflammatory responses are induced. It is widely accepted
that removal of dying cells is achieved either by phagocytes or
neighboring cells.
The macrophage is the major phagocyte to clear dying

cells, and it has a preference for clearing apoptotic rather than
necrotic cells, although the post-engulfment functional con-
sequences are significantly different. Phagocytosis of apoptotic
cells by macrophages triggers the release of anti-inflamma-
tory cytokines, whereas the production of pro-inflammatory
cytokines is suppressed. Phagocytosis of necrotic cells
does not induce pro-inflammatory cytokine production in
macrophages. Phagocytosis of autophagic cells induces
inflammasome activation and IL-1b secretion in macro-
phages, suggesting that autophagy is not immunologically
silent.
The dendritic cell (DC) is another cell type derived from the

mononuclear phagocyte. Uptake of necrotic tumor cells
induces maturation of DCs with the capacity to induce
antigen-specific CD4þ and CD8þ T cells and the immune
response. In contrast, phagocytosis of apoptotic cells by DCs

fails to induce maturation and causes tolerance to tumor
antigens by generating helpless CD8þ T cells that produce
TRAIL to kill activated T cells. Phagocytosis of apoptotic cells,
however, may lead to T-cell immunity if followed by an
additional maturation signal provided by DAMPs, pathogen-
associated molecular patterns (PAMPs), inflammatory
products, and CD40L-CD40 interactions. DC type and tissue
localization are also important in shaping immune responses
to cell death.13 In addition, the redox status of DAMPs from
dying cells determines whether cell death is ICD or TCD. For
example, the production of ROS in apoptotic cells can oxidize
cysteine 106 in high mobility group box 1 (HMGB1). This
oxidized HMGB1 cannot activate DCs and has tolerogenic
activities.14

Currently, it is clear that the immunogenic characteristics of
dying cells are mainly mediated by DAMPs, which will be
further discussed in the section below, ‘DAMPs, Immunogenic
Cell Death, and Cancer Therapy’. It is important to note that
both apoptotic and necrotic cells have the ability to release
DAMPs, but necrotic cells may release much of their content
and have varied and increased DAMP activity. In addition,
autophagy dysfunction also contributes to cell death-asso-
ciated immune responses through regulation of phagocytosis,
DC activation and maturation, and DAMP release and
degradation, which will also be further discussed in the
sections ‘Autophagy, Immunity, and Tumor Cell Death’ and
‘Interplay between DAMPs and Autophagy’. Taken together,
the crosstalk between dying and immune cells determines
outcome, whether or not the death of the cell is ICD or TCD.

DAMPs, Immunogenic Cell Death, and Cancer Therapy

DAMPs aremolecules that are secreted, released, or undergo
surface exposure by dying, stressed, or injured cells.15

Stress

p62

LC3-II

Autophagosome

Autolysosome

Phagophore

Lysosome

Autophagy

Mitophagy

Mitochondria

Pexophagy

Lipophagy

Zymophagy

Reticulophagy

Nucleophagy

Rnautophagy

Xenophagy

Ribophagy

Aggrephagy

Lipid droplet

Secretory 
granules 

Endoplasmic 
reticulum 

Peroxisome

Nucleus

RNA

Microbe

Ribosome

Aggregate-
prone 

proteins 

Selective Autophagy

Lysosome

Lysophagy

Figure 3 The process and types of autophagy. (a) Autophagy is an intracellular bulk degradation system through which cytoplasmic components are delivered to
lysosomes to be degraded. The main process of autophagy includes formation and maturation of the phagophore, autophagosome, and autolysosome. LC3, a mammalian
homolog of yeast Atg8, is localized in autophagosome membranes after processing to LC3-II and can be degraded by the autolysosome. Autophagy provides nucleic, amino,
and fatty acids for the synthesis of DNA/RNA, protein, and ATP. (b) Types of selective autophagy. Autophagy can also target selective cargo for degradation such as
organelles, proteins, microbes, and RNA

Strange attractors
W Hou et al

4

Cell Death and Disease



These molecules are mainly recognized by pattern recogni-
tion receptors (PRRs). Many of the individual PRRs also
detect PAMPs, suggesting similar activity between DAMPs
and PAMPs in the regulation of immunity.16 The most studied
DAMPs are HMGB1, the S100 calcium-binding protein family,
heat shock proteins (HSPs), ATP, uric acid, and DNA. The list
of DAMPs is rapidly increasing, with recent new additions
such as histone, mitochondrial DNA,mitochondrial transcription
factor A, peroxiredoxin, and cold-inducible RNA-binding
protein.
More recently, increasing evidence suggests that particular

DAMPs serve as powerful immunological adjuvants and
mediate ICD in cancer therapy.17,18 ICD is the process by
which DAMPs from dying cells contribute to immune-
mediated eradication of tumors during chemotherapy (for
example, anthracyclines), radiotherapy, or PDT (for example,
hypericin-based photodynamic therapy, Hyp-PDT) (Figure 4).
ICD is characterized by the exposure to and/or release of
calreticulin,19 HMGB1,20 HSP70/HSP90,21,22 and ATP23 from
pro-apoptotic, post-apoptotic, and/or necrotic cells. Calreticulin,
HMGB1/HSPs, and ATP then interact with the receptors
CD91, Toll-like receptor 4(TLR4), and purinergic P2X7
receptors, respectively, which are present on the surface of
DCs. CD91, TLR4, and P2X7 are present on DCs and
promote engulfment of dying cells, presentation of tumor
antigens, and production of inflammasome-dependent IL-1b
release, respectively. A tumor-specific immune response,
such as the cytotoxic T lymphocyte or NK response, is
triggered to kill (and cull) cancer cells during cancer therapy.
Apart from these DAMPs and signaling, a recent study
suggested that accumulation of cation-independent mannose-
6-phosphate receptor on the tumor cell surface is also
important for ICD.24 Of note, the signaling pathways elicited
by distinct ICD inducers (for example, anthracyclines and
Hyp-PDT) overlap but are not identical. Interestingly, ICD-
mediated tumor clearance following chemotherapy works only
in tumor cell line transplantation models or the immunogenic
3-methylcholanthrene fibrosarcoma model but not in sponta-
neous tumor models.25 Therefore, it appears that ICD is
dependent on additional factors such as tumor type and
convergent signals in the tumor microenvironment. Below, we
highlight examples of DAMPs as immunogenic effectors to
ICD and their multiple functions in cancer.

Calreticulin. Calreticulin was discovered in 1974 and is a
highly conserved and unique ER luminal resident protein
(Figure 5a). Within the ER lumen, calreticulin has two major
functions: chaperoning and regulating calcium metabolism.26

As a chaperone, it has a critical role in correctly folding many
proteins and glycoproteins, including ion channels, surface
receptors, integrins, and transporters. Calreticulin affects the
Ca2þ capacity of the ER stores by interacting with other
chaperones, specific substrates, and other ER proteins
including SERCA2b, IP3 receptor, and ERp57. Studies on
calreticulin-knockout mice indicate that the protein is
essential in early cardiac development. Calreticulin has been
identified in many other cellular compartments, including the
cytosol or nucleus or both, the cell membrane, and the
extracellular matrix, which supports calreticulin’s other
functions outside the ER, such as regulation of nuclear

transport, gene transcription, proliferation, migration, adhe-
sion, and phagocytosis.26

Calreticulin is exposed on the outer leaflet of cells during the
early phase of cell death following treatment with anthracyclins.
The formation of surface-exposed calreticulin (ecto-CRT)
is an active process and precedes phosphatidylserine
exposure and plasma membrane permeabilization. Ecto-CRT
initiates ICD and facilitates the engulfment of dying tumor cells
by DCs, which increases cancer immunogenicity.19 The
mechanism for the translocation of ecto-CRT is variable and
depends on ICD inducers, although the ER stress pathway
has a central role. The anthracycline-stimulated translocation
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Figure 4 The process of immunogenic cell death (ICD). Cancer cells responding
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of ecto-CRT has been deconvoluted into three sequentially
activated but functionally distinguishable signaling modules:
(1) an ER stress module, (2) an apoptotic module, and (3) a
translocation module. ER stress is characterized by the
overgeneration of ROS, increased cytoplasmic Ca2þ con-
centrations, and the activation of EIF2AK3/PERK-mediated
phosphorylation of eIF2a. The subsequent apoptosis induc-
tion involves caspase-8, Bax and Bak, and the ER protein
Bap31. Finally, the generation of ecto-CRT is dependent on
an ER-to-Golgi secretory pathway or a PI3K-dependent
exocytosis pathway (Figure 5b). Moreover, interaction
between calreticulin and ERp57 is responsible for their
cotranslocation to the cell surface during ICD. Conversely,
the pathway-mediated Hyp-PDT-induced calreticulin expo-
sure only requires PERK and Bax/Bak, but it is independent
on eIF2a, caspase-8, and ERp57.22 In addition, the calreticulin
receptor CD91 is required for engulfment of dying tumor or
nontumor cells by immature DCs or macrophages, respec-
tively. These studies suggest that calreticulin exposure by
preapoptotic cells is a complex and multiple step process.

HMGB1. HMGB1 was discovered in 1973 and is the most
abundant non-histone nuclear protein (Figure 6a). The
function of HMGB1 is dependent on its subcellular localiza-
tion. In the nucleus, HMGB1 as a DNA-binding and -bending
protein supports chromatin structure and regulates DNA
repair and genomic stability. It is also a cell surface
membrane-expressed protein on activated platelets and
early neurons involved in migration and outgrowth. HMGB1
can be actively secreted from immune cells or passively
released from dying, dead, or injured cells, and mediates
sterile and infectious inflammation responses by binding to
multiple cell surface receptors. The immune response

mediated by HMGB1 lies not simply in the release and
receptors of HMGB1 but rather also in the redox state of
released HMGB1.27 In addition, extracellular HMGB1 acts to
form heterocomplexes with other molecules to initiate a
synergistic immune response.
Cells can release HMGB1 actively or passively by several

identified mechanisms (Figure 6b). There are two steps for
HMGB1 secretion from activated immune cells: nuclear
protein exporter exportin 1 (CRM1) mediates HMGB1 nuclear
export and secretory lysosome-mediated HMGB1 exocytosis.
HMGB1 is the prototypic DAMP released by necrotic cells in a
PARP-1-dependent way. Both apoptotic and autophagic
cancer cells also contribute to HMGB1 release, promoted by
caspase3/7 activation and ATG5, respectively. More recently,
PKR-mediated inflammasome activation was found to be an
essential regulator of HMGB1 release during pyroptosis.28

In contrast to the inflammatory response initiated by necrotic
cells, ROS produced by and HMGB1 released from apoptotic
cells promote tolerance in DCs.14 Interestingly, macrophage
engulfment of apoptotic cells induces HMGB1 release and an
inflammatory response.29 These observations revealed pha-
gocytosis-associated crosstalk between macrophages and
apoptotic cells; therefore, the concept that apoptosis is
noninflammatory is not always correct. More recently, it was
discovered that oxidized mitochondrial DNA released from
apoptotic cells promotes inflammasome activation.30

HMGB1-containing nucleosomes from apoptotic cells induce
both inflammation and immune activation.31 Thus, HMGB1
both on its own as well as in its relationships with apoptosis
and immunity are complex.
HMGB1 dysfunction is associated with each of the hall-

marks of cancer.32 Serum HMGB1 and HMGB1 expression in
cancer tissue are generally increased in the setting of cancer.
HMGB1 release promotes tumor growth, proliferation, and
metastasis owing to its cytokine, chemokine, and growth
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Two nuclear localization signals (NLS1 and NLS2) and two nuclear emigration
signals (NES1 and NES2; not shown) control the nuclear transport of HMGB1.
In addition, HMGB1 contains three redox-sensitive cysteine residues (C23, C45,
and C106), which are important for HMGB1 activity. (b) A summary of the
mechanisms of HMGB1 release
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factor activity. However, HMGB1 also functions as a breast
cancer suppressor by binding to retinoblastoma, a tumor
suppressor protein.33 A dynamic relationship between intra-
cellular and extracellular pools of HMGB1 in tumorigenesis
remains to be fully investigated.
HMGB1 has positive and negative influences on tumor

immunity.34 On one hand, HMGB1 suppresses lymph node
DC survival, diminishes naturally acquired CD8þ T-cell-
dependent antitumor immunity, and promotes membrane
lymphotoxin-a1b2 expression on tumor-activated T cells and
subsequent accumulation of tumor-associated macrophages.
This in turn promotes tumor growth and metastasis. On the
other hand, HMGB1 can trigger protective DC-based anti-
neoplastic T-cell responses during ICD. Blocking the HMGB1/
TLR4 pathway inhibits dying tumor cell-mediated anticancer
immune responses upon chemotherapy. Surprisingly, tumor-
associated DC expression of the receptor TIM-3 inhibits
antitumor efficacy of DNA vaccines and chemotherapy by
binding to HMGB1.35 Besides immune cells, cancer cells also
express HMGB1 receptors and have varied roles in cancer
formation and treatment. We found that loss of the receptor
for advanced glycation end products (RAGE) increases
chemotherapy sensitization and inhibits pancreatic carcino-
genesis with a significant diminution of myeloid-derived
suppressor cells.36–38 HMGB1 released from necrotic cancer
cells treated with chemotherapy enhances regrowth and
metastasis of the remaining cancer cells through RAGE
activation39 and RAGE-promoted bioenergetics.40 These
studies suggest that the function of extracellular HMGB1 in
tumor immunity might be receptor dependent.

HSPs. The highly conserved HSPs are constitutively
expressed and function as molecular chaperones, which
facilitate the synthesis and folding of proteins. Increased
expression of HSPs protects the cell mainly by stabilizing
unfolded proteins, inducing proteasomal degradation, and
preventing apoptosis. In addition, cell stress and injury-
mediated release of HSPs results in pro-inflammatory
cytokine/chemokine release and activation/maturation of
antigen-presenting cells (APCs) to produce a robust innate
immune response.41 However, controversy still exists as to
whether HSPs themselves are DAMPs.
The expression of HSPs is increased in various human

tumors (especially those of epithelial origin or gliomas) and
their expression often correlates with increased cell prolifera-
tion, lymph node metastases, poor response to chemotherapy,
and poor prognosis. Thus, knockdown or knockout of
HSPs increase anticancer drug-induced apoptosis and inhibit
tumor grow. Apart from their intracellular location, several
HSPs such as HSP90 and HSP70 have been found on the
plasma membrane of tumor cells and in the extracellular
milieu during cell death. HSP90 as well as HSP70 peptide
complexes are potent stimulators of the adaptive immune
system.42 HSP-chaperoned peptides are taken up by profes-
sional and nonprofessional APCs via receptor-mediated
endocytosis and thus become cross-presented as classical
antigens for CD8-positive cytotoxic T cells on MHC class I
molecules.41,43 TLR4 is the major receptor that recognizes
HSP exposed by tumor cells, which facilitates intracellular
antigen processing and presentation. Other receptors such as

TLR2, CD40, CD91, CCR5, and members of the scavenger
receptor family also mediate binding and uptake of HSPs into
APCs. Surface-exposed HSP70/HSP90 with calreticulin can
mediate T-cell-based antitumor immunity and contribute to
IDC.21,22 The mechanism of export and uptake of HSPs
between immunogenic tumor cells with immature DCs
remains to be elucidated.

ATP. Intracellular ATP is the major cellular energy currency
involved in many cellular functions. Extracellular ATP can
propagate signals via P2 receptors including P2Y and P2X
that are essential for adhesion, proliferation, differentiation,
mobility, immunity, and inflammation.44 Extracellular ATP
contributes to inflammation and immunity, primarily by
activation of the NALP3 inflammasome pathway. Extra-
cellular ATP contributes to tumorigenesis in multiple ways,
including serving as a growth factor for stem cells and a
Ca2þ regulator for tumor invasion and metastasis. However,
higher concentrations of extracellular ATP can also induce
apoptosis and/or necrosis in cancer cells. Extracellular ATP
can act as a ‘find me’ signal when it accumulates in the
extracellular medium during apoptosis and promote P2Y2-
dependent recruitment of phagocytes.45 Although the
mechanisms responsible for ATP release during cell death
have not been defined, recent studies suggest that pannexin
1 channels, individual ATGs (ATG5, ATG7, and beclin-1),
PERK-based trafficking, and PI3K-dependent exocytosis
regulate ATP release during cell death.
Extracellular ATP released from cells undergoing ICD

activates purinergic P2X7 receptors on DCs.23 This activates
the NALP3-ASC-inflammasome and drives the secretion of
IL-1b, which is required for polarization of IFN-g-producing
CD8þ T cells and for the immune response to tumor cells.23

HMGB123 or calreticulin46 could synergize with ATP to induce
IL-1b release by DCs. As a negative feedback mechanism,
however, extracellular ATP could also be converted to
immunosuppressive adenosine following hydrolysis of ATP
by the action of surface expressed ectonucleotidases, such as
CD39 and CD73.

Autophagy, Immunity, and Tumor Cell Death

Autophagy helps clear apoptotic cells during embryogenesis
by the generation of energy-dependent engulfment
signals including ‘eat me’ and ‘find me’ signals. In addition,
LC3-associated phagocytosis (LAP) is also involved in
macrophage-mediated clearance of necrotic, apoptotic, and
necroptotic cells and the subsequent immune silence by
inhibition of IL-1b release.47,48 LAP is a recently described
form of phagocytosis in which the activation of PI3K leads to
direct recruitment of autophagy factors ATG5, ATG7, and LC3
to phagosomes.47,48 Interplay between autophagy, LAP, and
phagocytosis regulates the clearance of dying cells.49

There is a critical role for autophagy in tumor immunology
and immunotherapy.50 Autophagy is upregulated at the
immunological synapse during DC–T-cell contact.51 Suppres-
sion of autophagy in DCs results in hyperstable contacts
between DCs and CD4þ T cells and increases T-cell
activation.51 Autophagy contributes to CD4þ T-cell survival
by degradation of pro-apoptotic proteins.52 DCs use
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autophagy to promote cross-presentation of tumor antigens
on MHC class I complexes for cytotoxic T-lymphocyte
activation and to facilitate antigen expression on MHC class
II molecules for T-helper cell activation. Other studies show
that autophagy within tumor cells favors cross-priming of
tumor-associated antigen-specific CD8þ T cells.53,54 Auto-
phagosomes from cancer cells are a source of specific
tumor-associated antigens, and autophagosome-enriched
and autophagosome-based vaccines have potent antitumor
efficacy. These findings suggest that autophagy contributes to
APC-mediated antitumor immunity. In addition, autophagy
contributes to IFNg/STAT1-mediated antimetastatic immuno-
therapy. Autophagy also has an immunosuppressive effect
in cancer therapy. Hypoxia-induced autophagy increases
STAT3 phosphorylation, which impairs CTL-mediated tumor
cell lysis in lung cancer cells.55 Thus, autophagy has a dual
role in tumor immunity and has in some instances a
paradoxical influence, requiring further elucidation.
Chemotherapy-induced autophagy promotes ICD and

antitumor immune responses by regulation of ATP release56

or mannose 6-phosphate receptor accumulation on the cell
membrane from dying cells.24 Interestingly, autophagy is not
required for calreticulin exposure and HMGB1 release by
cancer cells upon ICD,56 although other studies show that
autophagy is a critical regulator of HMGB1 release during
starvation, infection, and chemotherapy. These findings
indicate that autophagy has a selective role in regulation of
ICD as well as HMGB1 release.

Strange Attractors: Interplay between DAMPs and
Autophagy

HMGB1, one of the best characterized DAMP, has important
nuclear, cytosolic, and extracellular roles in the regulation of
autophagy (Figure 7). Cytoplasmic HMGB1 induces auto-
phagy by binding to beclin-1 and subsequent activation of the
autophagy-initiating beclin-1–PI3KC3 complex.57 p53 and
ULK1 have opposing roles in regulation of the HMGB1–beclin-
1 complex formation in cancer cells.58,59 Nuclear HMGB1
modulates the expression of HSPB1/HSP27 and dynamic
intracellular trafficking during autophagy and mitophagy.60

The Pink1/Parkin pathway has been implicated in mitophagy
and mitochondrial dysfunction in humans, which is also
required for HSPB1/HMGB1-mediated mitophagy.60 These
findings reveal a novel pathway coupling autophagy and
cellular energy metabolism. Extracellular HMGB1 induces
autophagy, and this role is dependent on its redox state and
RAGE expression.61 HMGB1- and RAGE-mediated auto-
phagy promote chemoresistance in cancer cells, including
colon cancer, pancreatic cancer, osteosarcoma, leukemia,
gastric cancer, and ovarian cancer.38,58,59,62 Moreover,
RAGE modulates crosstalk between two pro-survival path-
ways (STAT3 and autophagy) in pancreatic ductal adenocar-
cinoma tumor cells, and contributes to early pancreatic
intraepithelial neoplasia formation.37 Whether the HMGB1–
RAGE-mediated autophagy pathway is involved in other
settings, including ICD, remains unknown.
Autophagy may have a central role in regulation of the

cellular traffic, secretion, and degradation of HMGB1
(Figure 7). Autophagy not only regulates passive HMGB1

release from dying cells but also regulates active HMGB1
secretion from immune and cancer cells by ROS-dependent
signals. Intriguingly, it was recently shown that induction of
autophagy contributes to HMGB1 release during formation of
IL-1b-mediated neutrophil extracellular traps,63,64 and with
treatment with several anti-inflammatory drugs (for example,
Tanshinone IIA sodium sulfonate and green tea)-induced
HMGB1 degradation.65,66

The complex interplay between DAMPs other than HMGB1
(for example, S100, DNA, and ATP) and autophagy as
‘strange attractors’ has been demonstrated in several recent
studies.67 For example, autophagy-deficient macrophages
accumulate dysfunctional mitochondria, which produce
higher mitochondrial ROS, translocate more mitochondrial
DNA, and activate caspase-1 more robustly than normal
macrophages.68 Thus, preservation of mitochondrial integrity
by autophagy proteins is important in regulating mitochondrial
DAMP-mediated NLRP3 inflammasome activation. In addi-
tion to the previously known role of LAP in acceleration of
phagosome maturation,47 LAP is required for type I interferon
secretion following TLR9 stimulation by DNA-immune
complexes.69 ATP-induced autophagy contributes to
phagocytosis and destruction of invading microbes,70

whereas S100A8/A9-induced autophagy has a key role in
the removal of damaged mitochondria in the setting of
apoptosis.71 These findings suggest a link between DAMP
and autophagic clearance during infection and cell death.

Conclusions and Future Challenges

Dysfunction of cell death participates in the pathogenesis of
many diseases, including cancer and autoimmunity. Three
distinct types of cell death can be distinguished by

HMGB1

CytoplasmNucleus Extracellular

HSPB1

R
A

G
E

LC3

Autophagy

Beclin1 mTOR

The cellular traffic, secretion, and degradation of HMGB1

ULK1 p53

Figure 7 The interplay between HMGB1 and autophagy. HMGB1 has important
nuclear, cytosolic, and extracellular roles in the regulation of autophagy. Autophagy
may also have a central role in the regulation of cellular traffic, secretion, and
degradation of HMGB1. Although the connection between HMGB1 and autophagy
is well recognized, the fully explicated molecular basis for it remains elusive
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morphological criteria, namely, apoptosis, necrosis, and
autophagic cell death. However, their function is significantly
different following cellular stress. In general, induction of
apoptosis and necrosis is accompanied by protective auto-
phagy, and induction of autophagy promotes cell survival
under stressful conditions. As we have reviewed, the study of
dying cell clearance and DAMP release has a key role in the
underlying mechanisms of immune response to cell death.
Phagocytosis, autophagy, and LAP contribute to the clear-
ance of dying cells through phagocytic cells from the innate
immune system. DAMPs are released by dying cells,
including apoptotic, necrotic, and autophagic cells, which
alert the host to cell death and trigger an inflammatory
and immune response. Of note, the interplay between
autophagy and DAMPs regulates cell death and shapes the
immune response to dying cells, including ICD and TCD.
Despite efforts to understand the basis of ICD/TCD, the
precise mechanism of ICD/TCD and their roles in disease
remains stubbornly unclear. In addition, new insights into the
mechanistic basis of autophagy-mediated stress responses and
DAMP-mediated immune responses will open new perspec-
tives for the development of molecular targeted treatment
approaches and thus have great potential in drug discovery.
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