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Autophagy prevents irradiation injury and maintains
stemness through decreasing ROS generation in
mesenchymal stem cells

J Hou1,2,7, Z-p Han1,7, Y-y Jing1,7, X Yang3, S-s Zhang1, K Sun1, C Hao1, Y Meng4, F-h Yu5, X-q Liu6, Y-f Shi3, M-c Wu1, L Zhang*,2

and L-x Wei*,1

Stem cells were characterized by their stemness: self-renewal and pluripotency. Mesenchymal stem cells (MSCs) are a unique
type of adult stem cells that have been proven to be involved in tissue repair, immunoloregulation and tumorigenesis. Irradiation
is a well-known factor that leads to functional obstacle in stem cells. However, the mechanism of stemness maintenance in
human MSCs exposed to irradiation remains unknown. We demonstrated that irradiation could induce reactive oxygen species
(ROS) accumulation that resulted in DNA damage and stemness injury in MSCs. Autophagy induced by starvation or rapamycin
can reduce ROS accumulation-associated DNA damage and maintain stemness in MSCs. Further, inhibition of autophagy leads
to augment of ROS accumulation and DNA damage, which results in the loss of stemness in MSCs. Our results indicate that
autophagy may have an important role in protecting stemness of MSCs from irradiation injury.
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Stem cells are defined by their capacity for self-renewal and
multipotential differentiation, which include embryonic stem
cells and adult stem cells (ASCs). Mesenchymal stem cells
(MSCs) are a unique type of ASCs that originate from the
mesoderm. They can differentiate into not only mesodermal-
lineage cells such as osteoblasts and adipocytes but also
ectodermal and endodermal cells.1–4 MSCs are involved in
immunoloregulation, tumorigenesis and tissue repair.
MSCs have an important role in repairing tissue injury. It has

been reported that MSCs contribute to several kinds of tissue
repair and function recovery by their self-renewal and multi-
differentiation potential. Ionizing radiation (IR) is a form of
electromagnetic radiation produced by X-ray machines,
fluoroscopy, radioactive isotopes, as well as nuclear environ-
mental catastrophe.5 The medical applications of IR have
increased in recent decades.6–8 IR may induce DNA damage,
chromosomal aberrations, cell cycle arrest or cell death.
Moreover, exposure to irradiation causes cells to generate
reactive oxygen species (ROS) and induces single-strand and
double-strand DNA breaks.9,10 An understanding of these

radiobiological effects remains a challenge to seek a safe
strategy to recover their capacity to repair DNA damage and
maintain their stemness in MSCs exposed to irradiation.
Autophagy is characterized by the formation of a double-

membrane vesicle, called autophagosome, which engulfs
cytoplasmic components and delivers them to lysosomes for
degradation.11 Autophagy is a conserved proteolytic mechan-
ism that degrades cytoplasmic material, including cell
organelles, and is important in maintaining intracellular
homeostasis and keeping the cell healthy, which can be
activated as adaptive response to adverse environmental
conditions, such as deprivation of nutrients, hypoxia and
different types of therapeutic stress.12–17 Autophagy is an
important event in many different kinds of cells,18 including
erythrocytes,19 lymphocytes20 and monocytes.21 Mortensen
et al.22 reported that autophagic mechanisms were activated
in hematopoietic stem cells (HSCs). HSCs lacking autophagy-
related gene ATG7, an essential autophagy protein, were
unable to survive in vivo. These results suggest that
autophagy is important for the stemness maintenance and
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differentiation in HSCs. As a consequence, we investigated
the role of autophagy in preserving self-renewal and multi-
differentiation potential in MSCs. Interestingly, we found that
autophagy induced by nutrient deprivation or rapamycin can
reverse injury in MSCs exposed to irradiation. We hypothe-
sized that induction of autophagy could protect MSCs against
irradiation and maintain their multipotential status. The
purpose of this study is to investigate the role of autophagy
in maintenance of stemness in MSCs during exposure to IR
and the potential mechanisms.

Results

Irradiation impairs the stemness of MSCs. As shown in
Figure 1a, MSCs were positive for specific surface markers
such as CD105, CD90 and CD29, but negative for the
hematopoietic cell-surface markers like CD34 and CD45.
The expression of CD105, CD90 and CD29 in irradiated
MSCs appeared to be less than that in control group.
A series of the irradiation doses, from 1 to 10Gy, were

employed to determine a proper dose that has an impact on
the stemness without inhibiting the proliferation in MSCs. We
found that the colony formation of MSCs was effectively
inhibited by 6 Gy dose irradiation while the cell viability of
MSCs was not (Supplementary Figure 1). Then, apoptosis of
MSCs at 0, 6, 24 and 48 h after 6Gy irradiation was examined
with PI-Annexin V-FITC assay. The results demonstrated that
there was no significant effect of 6Gy dose irradiation on
apoptosis of MSCs at early stage. (Supplementary Figure 2).
Efficiency of self-renewal was assessed by the rate of

colony formation in clony-forming unit-fibroblast (CFU-F)
assay. Both CFU-F numbers and the mean colony size were
significantly smaller in irradiated MSCs than that in control
group (Figure 1b). The calculated efficiency for CFU-F varied
significantly between cell cultures obtained from two groups.
MSCs and irradiated MSCs possessed the CFU-F efficiency
of 35.2 (±2.69) and 20.6% (±3.06%), respectively.
We were particularly interested in understanding whether

pluripotency genes were also affected by irradiation. Impor-
tantly, well-known embryonic transcription factors such as
Nanog, Oct4 and Sox2, which were expressed in hESCs and
were critical for maintaining pluripotency and self-renewal,
were also expressed in MSCs. Real-time PCR and western
blotting were performed to quantify the expression of Nanog,
Oct4 and Sox2 in MSCs (Figure 1c). The expression of
Nanog, Oct4 and Sox2 in irradiated MSCs decreased
significantly compared with the control group.
To examine the effect of irradiation on MSCs osteogenesis,

MSCs were cultured with osteogenic induction medium after
exposed to irradiation. MSCs were collected for 21 days, and
Alizarin Red S staining was used to examine the minerali-
zation status of the cells at the end of culture. With osteogenic
induction, irradiatedMSCs exhibited a less calcium deposition
than that of control (Figure 1d). Real-time PCR was employed
to detect the mRNA levels of ALPL, OGN and RUNX2, the
osteogenic-related markers and transcription factor gene in
MSCs with osteogenic induction for 0, 7 and 14 days. The
ALPL, OGN and RUNX2 mRNA expression levels in both
groups were gradually elevated at day 14. During the 14-day
period of osteogenic induction, irradiated MSCs showed a

relative lower level of ALPL and OGN compared with the
control groups. Similarly, the mRNA expression level of
RUNX2 markedly decreased in the irradiated MSCs group
compared with control group at day 14 (Figure 1e).
The effect of irradiation on MSCs adipogenesis was also

investigated. Irradiated MSCs were cultured in the adipogenic
medium. After 21 days of adipogenic induction, irradiated
MSCs showed remarkably reduced Oil red-Oþ staining
compared with control (Figure 1f). The mRNA expression of
adipogenic-relatedmarkers and transcription factor LPL,CFD
and PPAR-g in the irradiated MSCs were assessed at 0, 7 and
14 days of adipogenic differentiation as well. In the irradiated
MSCs group, the mRNA expression levels of LPL and CFD
were significantly suppressed, whereas PPAR-g showed
slight decrease in mRNA expression of the irradiated MSCs
group (Figure 1g). All the data implied that irradiation injured
the self-renewal and multidifferentiation potential of MSCs.

Starvation/rapamycin reduce the injury of MSCs induced
by irradiation. Irradiated MSCs were pretreated with
starvation or rapamycin to induce autophagy. As shown in
Figure 2a, the calculated efficiency for CFU-F of irradiated
MSCs was lower than those of starvation- or rapamycin-
pretreated group. Irradiated MSCs showed CFU-F efficiency
of 10.4% (±1.72%), irradiated MSCs pretreated with
starvation or rapamycin showed CFU-F efficiency of 16.4%
(±1.84%) and 13.6% (±1.34%). The expression of plur-
ipotent transcription factors Nanog, Oct4 and Sox2 were
upregulated when irradiated MSCs were pretreated with
starvation or rapamycin (Figure 2b).
The actual amount of calcium deposition and the mRNA

expression of lineage-specific-related markers and transcrip-
tion factor for osteocytes ALPL, OGN and RUNX2 were
increased in the irradiated MSCs pretreated with starvation
(Figures 2c and d). The induced adipocytes were increased
and the mRNA expression of adipogenic markers LPL, CFD
and PPAR-g also increased in the irradiated MSCs pretreated
with starvation compared with control group (Figures 2e and f).
Similar results could be observed when MSCs were pretreated
with rapamycin. These observations indicated that irradiated
MSCs pretreated with starvation or rapamycin possess a high
capacity of expansion and multilineage differentiation in vitro
than those of irradiated MSCs.

Autophagy is induced by starvation or rapamycin in
irradiated MSCs. Subsequently, we investigated the auto-
phagy in irradiated MSCs pretreated with starvation or
rapamycin, a well-described inducer of autophagy. Micro-
tubule-associated protein light chain 3 (LC3) expression is
the most commonly used marker for autophagosome
formation. Autophagy induction leading to LC3 is cleaved to
produce LC3-I, which is localized on the membrane of
autophagosomes. LC3-II is a lipidated form of LC3-I. We
examined the expression of LC3-I (18 kDa) and LC3-II
(16 kDa) in MSCs after irradiation by western blotting. The
level of LC3-II increased slightly in irradiated MSCs and in
rapamycin-pretreated groups. Meanwhile, the amount of
LC3-II increased significantly in the irradiated MSCs pre-
treated with starvation than that in the control group
(Figure 3a). Electron microscopic analysis was employed to
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observe autophagsome formation. The results showed the
presence of characteristic double-membrane organelles in
irradiated MSCs pretreated with starvation or rapamycin
(Figure 3b). All of these results suggested that starvation or
rapamycin induces autophagy in irradiated MSCs.
We examined the p53 expression and activation in

irradiated MSCs and found that the level of p53 activation

increased in irradiated MSCs compared with control
group. We also detected the level of p53 activation in
irradiated MSCs pretreated with starvation. However,
we observed that there was no significant difference of
p53 activation between irradiated MSCs pretreated
with starvation and irradiated MSCs (Supplementary
Figure 3).
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Figure 1 The effect of irradiation injury on stemness of MSCs in vitro. MSCs were irradiated at 6 Gy and collected at 6 h after irradiation. (a) MSCs surface markers in
different groups were detected by flow cytometry. (b) CFU-F assays. The number of colonies was determined after 14 days of culture. (c) Real-time PCR and western blotting
were employed to examine the expression of stemness markers Nanog, Oct4 and Sox2 of MSCs exposed to irradiation compared with control groups. (d) Osteogenic
differentiation of MSCs was detected by Alizarin Red stain. (e) The quantitative expression of osteogenic marker genes ALPL, OGN and RUNX2 were measured by real-time
PCR at 0, 7 and 14 days. (f) Adipogenic differentiation of MSCs was detected by Oil red-O. (g) The quantitative expression of adipogenesis marker genes LPL, CFD and
PPAR-g were measured by real-time PCR at 0, 7 and 14 days. The data presented are from three replicates as mean±S.E. *Po0.05
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Autophagy contributes to maintain stemness of irradiated
MSCs by ROS deletion. We next explored the underlying
mechanism that autophagy may protect MSCs against
irradiation injury. Irradiation induces ROS generation that
leads to DNA damage. However, autophagy has been shown
to be regulated by ROS.23–25 The loss of autophagy can
induce ROS accumulation and DNA damage.26 It is possible
that the elevated autophagy in irradiated MSCs may also
serve as an adaptation to prevent the accumulation of ROS;
hence, we detected the intracellular ROS level by using
fluorescent probe dichlorofluorescin diacetate (DCF-DA).
Irradiation increased the intracellular ROS level in MSCs.
However, the intracellular ROS level decreased in MSCs
pretreated with starvation or rapamycin, suggesting that
autophagy contributes to minimize the accumulation of ROS

(Figure 4a). The increase of ROS induced by irradiation was
completely reversed by incubation with the antioxidant
N-acetylcysteine (NAC, 2mM). In contrast, MSCs that treated
with H2O2 (100 mM) showed an increased ROS accumulation
(Figure 4a). The excessive ROS would result in numerous
forms of DNA damage, including DNA double-strand breaks
(DSBs). g-H2A.X has a key role in recruitment of repair
proteins to the sites of DNA DSBs.27 g-H2A.X in MSCs was
examined by immunofluorescence to investigate whether
DSBs were induced in MSCs exposed to irradiation.
As shown in Figure 4b, the intensity of g-H2A.X was increased
in irradiated MSCs, which indicated that more DNA damage
occurred in MSCs when exposed to irradiation. However,
g-H2A.X levels decreased in irradiated MSCs pretreated with
starvation or rapamycin. Further, treatment with NAC could
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abrogate the effect of oxidative DNA damage on MSCs
(Figure 4b), confirming that irradiation-induced DNA damage
is mediated by ROS generation.
AlthoughROS can be generated through non-mitochondrial

mechanisms, mitochondria is the main intracellular source of
ROS in most of tissues. Mitochondrial membrane potential
(MMP) reflects the functional state of mitochondria; main-
tenance of membrane potential is an essential property of
mitochondria. In addition, accumulated ROS resulted in MMP
depolarization and mitochondria damage. Therefore, we
assessed mitochondria ROS with MitoSOX Red (Invitrogen,
Carlsbad, CA, USA; Figures 4c and d) and MMP with
Rohdamin123 (Figures 4e and f) in MSCs measured by
FACS and immunofluorescence. The mitochondrial ROS
level in irradiated MSCs alone was higher than that in
irradiated MSCs pretreated with starvation or rapamycin.
MMP went depolarized in irradiated MSCs but maintained in
irradiated MSCs pretreated with starvation or rapamycin.
These results indicate that autophagy protects MSCs from
irradiation injury by decreasing ROS and reducing DNA
damage.

The protective effect from autophagy on the stemness of
MSCs was suppressed by autophagy inhibitor. Auto-
phagy was suppressed by chemical inhibitors to detect the
role of autophagy in maintaining stemness of irradiated
MSCs. The most extensively used autophagy inhibitor is
3-methyladenine (3-MA), which blocks the formation of
autophagosomes by inhibiting the class III phosphatidylino-
sitol 3-kinase.28 Chloroquine (CQ) is another autophagy
inhibitor, which inhibits autophagy at a later step in the
pathway, that caused an additional accumulation of LC3-II.
The addition of 3-MA significantly reduced the expression of
LC3-II, and CQ accumulated LC3-II expression in irradiated
MSCs pretreated with starvation (Figure 5a). After autophagy
inhibition with 3-MA and CQ, irradiated MSCs pretreated with
starvation demonstrated lower CFU-F efficiency than control
(Figure 5c). The expressions of Nanog, Oct4 and Sox2 were
downregulated by autophagy inhibitor 3-MA and CQ in
irradiated MSCs pretreated with starvation (Figure 5d). When

autophagy in irradiated MSCs pretreated with starvation was
deleted by autophagy inhibitor, the potential of osteogenesis
and adipogenesis differentiation in MSCs decreased
significantly (Figures 5e and g). Meanwhile, we also observed
downregulated expression of mRNA associated with osteo-
blastic and adipocytic differentiation in irradiated MSCs
pretreated with starvation when autophagy was inhibited
(Figures 5f and h). We also inhibited autophagy in irradiated
MSCs pretreated with starvation by short hairpin RNA
(shRNA)-ATG7 or shRNA-Beclin1. As shown in Figures
5b–h, the expression of ATG7 and Beclin1 was significantly
inhibited and the two shRNAs, respectively, diminished the
protection of autophagy on MSCs stemness.
Inhibition of autophagy in irradiated MSCs pretreated with

starvation by autophagy inhibitor resulted in an increase in
total ROS levels compared with control group (Figure 5i).
Strikingly, the inhibition of autophagy resulted in an increase
in DNA damage, as reflected by the greater number of
g-H2A.X foci in irradiated MSCs pretreated with starvation
(Figure 5j). These data indicated that autophagy served as
decreasing ROS levels and reducing DNA damage in MSCs.

Discussion

In this study, we demonstrated that autophagy had a critical
role in stemness maintenance of MSCs from IR injury. We
found that stemness of MSCs was impaired by irradiation,
whereas this process could be reversed by autophagy
induction. Further, we showed that autophagy decreased
ROS accumulation, relieved DNA damage and maintained
stemness in MSCs when MSCs were exposed to IR.
Stem cells were characterized by their stemness: self-

renewal and pluripotency. Self-renewal was described as the
proliferation of undifferentiated stem cells without lineage
commitment,29 whereas pluripotency refers to the ability of
stem cells differentiating into a variety of cell lineages.30

MSCs, one type of human ASCs, were identified by their
capacity to adhere to plastic and generate colony-forming
unit-fibroblasts (CFU-F) in culture, as well as by their potential
to differentiate into multiple lineages. Stem cells need to

Figure 3 Examination of autophagy in MSCs pretreated with starvation or rapamycin exposed to irradiation. (a) Total protein extracts were analyzed by western blotting
with antibody against LC3. GAPDH expression was used as control. (b) Electron micrographs exhibited numerous vacuoles with cytoplasmic content in irradiated MSCs
pretreated with starvation or rapamycin; most of them were clearly identified as being autophagosomes. Scale bar: 2mm
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protect their genome from damage to maintain their pool and
self-renewal capacity.31 We revealed that induction of
autophagy by starvation or rapamycin protected MSCs from
injury induced by irradiation and maintained their stemness.
When MSCs are exposed to irradiation, the self-renewal
capacity and maintenance of pluripotency in culture is
attenuated. Self-renewal capacity of MSCs was routinely
detected by CFU-F assays. MSCs exhibited higher CFU-F
efficiency, whereas irradiated MSCs possessed lower CFU-F
efficiency. Autophagy inhibition could further decrease the
CFU-F efficiency of irradiated MSCs. Indeed, MSCs have

been reported to express a large number of genes including
embryonic transcription factors Nanog, Oct4 and Sox2, which
regulated the stemness of MSCs.32–35 In our study, the loss of
pluripotency was confirmed by significant downregulation of
Nanog, Oct4 and Sox2 expression in MSCs during exposure
to irradiation, which, however, was recovered by inducing
autophagy. Our result demonstrated that the osteogenic and
adipogenic differentiation potential of MSCs were damaged
by irradiation, which was consistent with the previous study.36

Autophagy is important in maintaining intracellular homeo-
stasis. On one hand, autophagy eliminates toxic and damaged
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Figure 5 Inhibition autophagy results in stemness injury and ROS increase in irradiated MSCs. (a) LC3 expression was detected by western blotting assay in irradiated
MSCs pretreated with starvation by autophagy inhibitor 3-MA or CQ. (b) Irradiated MSCs pretreated with starvation were transfected with shRNAs to knockdown the
autophagy-associated genes ATG7 and Beclin1. The bottom panel is a GAPDH-loading control. (c) CFU-F assays. The number of colonies was determined after 14 days of
culture. (d) The expression of stemness markers Nanog, Oct4 and Sox2 of irradiated MSCs pretreated with starvation by inhibiting autophagy were measured by real-time
PCR and western blotting. (e) Osteogenic differentiation of irradiated MSCs pretreated with starvation by autophagy inhibitors was stained with Alizarin Red S. (f) The
expression of osteogenic markers ALPL, OGN and RUNX2 were measured by real-time PCR. (g) Adipogenic differentiation of irradiated MSCs pretreated with starvation by
autophagy inhibitors were stained with Oil red-O. (h) The expression of adipogenic markers LPL, CFD and PPAR-g were measured by real-time PCR. (i) Irradiated MSCs
pretreated with starvation by autophagy inhibitors stained with DCF-DA to detect ROS level were measured by immunofluorescence. Cell nucleus was stained with Hoechst
33258. (j) Irradiated MSCs pretreated with starvation by autophagy inhibitors were stained with g-H2A.X antibody to determine DNA damage. Cell nucleus was stained with
DAPI. The data presented are from three replicates as mean±S.D. *Po0.05
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cellular components. On the other hand, this process delivers
new precursors for synthesis of macromolecules. It has been
recently shown that autophagy is required for themaintenanceof
HSCs.22,37 The authors showed that ATG7� /� hematopoietic
stem and progenitor cells significantly accumulated more
aberrant mitochondria, elevated mitochondrial superoxide
levels, DNA damage and apoptosis. They also demonstrated
that those cells failed to form secondary colonies in vitro. The
importance of autophagy asanenhancer of ‘stemness’ has been
further strengthened by a study showing that autophagy is
required for self-renewal and differentiation of adult human stem
cells. Salemi et al.38 had shown that under conditions of
autophagy blockade, epidermal stem cells, dermal stem cells
and HSC underwent a loss of their self-renewal and
differentiation capacities. Our results showed that the basal
activity of autophagy in MSCs was very low. However,
administration of rapamycin or serum-free starvation was
sufficient to induce autophagy in vitro. Our data suggest that
autophagy has an adaptive system to help MSCs overcoming
irradiation stress. When cells are exposed to IR, decomposition
reactions occur and a variety of ROS are generated.39 Various
defense mechanisms have been developed to protect cells
against oxidative stress, such as upregulation of antioxidants,
removal of specific proteins by the ubiquitin–proteasome system
and removal of damaged proteins and organelles by auto-
phagy.40,41WhenROS is at high cytotoxic level, the possible role
of autophagy is restraining oxidative damage from reaching
cytotoxic levels as well as maintaining energy homeostasis.
Jang et al.42 have reported that a low oxygen niche in the bone
marrow limits ROS production, resulting in better protection and
higher self-renewal potential for HSCs. An increase of ROS level
in irradiated MSCs has been shown in Figure 4. We also found
an increasing frequency in DNA damage in irradiated MSCs.
Therefore, we assume that increasing ROS levels induced by
irradiation leads to DNA damage, thus, destroys the stemness
and multipotential of MSCs.
Most ROS was generated in cells by the mitochondrial

respiratory chain.43 ROS production by mitochondria can act
as signaling molecules regulating a variety of cellular
functions, including cell survival or senescence.44,45 Geneti-
cally engineered mouse models have provided abundant
evidence for the important role of autophagy in mitochondrial
integrity and ROS control. For example, AMPK- and ULK1-
(Atg1 homolog) knockout liver exhibits p62 accumulation and
defective mitophagy.46 Downstream of Atg1, FIP200(Atg17
homolog) knockout livers exhibit significantly increase in the
mitochondrial mass and ROS.37 Ubiquitinated proteins and
ROS accumulate in Atg5- and Atg7-knockout mice or cells.47–50

Autophagy is well known in mitochondrial quality control by
degrading damaged mitochondria.51 The reduction in MMP
could reflect an accumulation of damagedmitochondria. Hence,
we assessed the mitochondrial ROS and MMP by FACS and
immunofluorescence. The results demonstrated induction of
autophagy in irradiated MSCs reduced mitochondrial ROS
generation and maintained MMP. These data suggest that
autophagy may degrade defective mitochondria, prevent
excessive ROS generation that could induce DNA damage
and protect MSCs from irradiation injury.
We provide evidence that irradiation impair the stemness of

MSCs by inducing ROS accumulation. Autophagy can delete

ROS and reduce DNA damage in irradiated MSCs. These
results indicate that autophagy serves as a protective
mechanism for MSCs stemness when they are exposed to
irradiation. Autophagy-inducing agents may be used as
candidates for protecting stem cells from irradiation injury.

Materials and Methods
Culture of human MSCs. Human MSCs from umbilical cord (a gift from
Institute of Health Sciences and Shanghai Institute of Immunology, Chinese
Academy of Sciences, Shanghai, China;)52 were cultured in Dulbecco’s modified
Eagle’s medium low glucose (Gibco, Los Angeles, CA, USA) with 10% fetal bovine
serum (FBS, Gibco) and used for experiments.

Irradiation procedure. MSCs were irradiated with ELEKTA Synergy Linear
Accelerator (Cravoley, UK) at 6 Gy (a dose rate of 350 cGy/min) over an
appropriate field size in the Irradiation Centre of the Eastern Hepatobiliary Surgery
Hospital. Control cells were removed from the incubator at the same time without
radiation exposure.

We replaced the culture medium with serum and antibiotic-free culture medium
6 h before irradiation. CQ (10 mM) or 3-MA (2 mM) was added into culture medium 2 h
before irradiation. In another group, 2 h before irradiation, we added rapamycin
(200 nM). After irradiation, the medium was removed and changed to standard
culture medium. Cells were incubated at atmospheric conditions of 5% CO2.

Flow cytometry. Six hours after irradiation, surface markers for differently
treated MSCs were quantified by flow cytometry using anti-CD105-FITC, anti-
CD90-FITC, anti-CD29-FITC, anti-CD34-PE and anti-CD45-PE (Biolegend, San
Diego, CA, USA) antibodies. Briefly, 1� 105 cells were washed twice with
phosphate-buffered saline (PBS), resuspended in 100ml of PBS containing
monoclonal antibodies and incubated for 30 min at 4 1C. The cells were then
washed twice and resuspended in 300ml of PBS. Fluorescence analysis was
performed with a flow cytometer (FACS Aria, BD, Franklin Lakes, NJ, USA).

Cell counting Kit-8. The measurement of viable cell mass was performed
with Cell Counting Kit-8 (Dojindo, Kumamoto, Japan), and living cells were
counted with WST-8. Cells (5� 103 cells per well) were first seeded in 96-well
plates for irrdiation. After 72 h, 10ml solution from Cell Counting Kit-8 was added
to each well. These plates were continuously incubated for 2 h in a humidified CO2

incubator at 37 1C. Finally, the absorbance of sample taken from each well was
measured on a microplate reader (Synergy HT, Bio-Tek, Vinooski, VT, USA)
at 450 nm.

Cell apoptosis assay. For cell apoptosis analysis, B1� 106 cells were
collected. PI-Annexin V-FITC assay was used to measure apoptotic cells by flow
cytometry according to the manufacturer’s instructions (Nanjing Keygen Biotech,
Nanjing, China). Briefly, cells were collected by trypsinization, washed with ice-cold
PBS twice and resuspended in 300ml 1� binding buffer containing 5 ml Annexin
V and 5 ml PI for 30 min at room temperature in the dark. After incubation, at least
10 000 cells were measured on a BD FACS Aria flow cytometer.

Colony formation assay. Colony-forming unit-fibroblast (CFU-F) assay was
performed to assess the capacity and efficiency for self-renewal. MSCs were
seeded at a density of 50 cells/cm2 in triplicates. After 14 days, cells were washed
with PBS, fixed in methanol and stained with 2% crystal violet for 10 min. Excess
stain was removed with PBS. Stained colonies made up of more than 50 cells
were scored as CFU and were counted.

MSCs differentiation assays. Differentiation of MSCs into adipogenic and
osteogenic lineages were verified following irradiation. Cells were seeded in
24-well culture plates (2� 104 cells per well). Six hours after irradiation, MSCs
were cultured with specialized media according to the desired differentiation.

Osteogenic differentiation: MSCs were treated with osteogenic culture
medium to induce osteogenic differentiation (Cyagen, Santa Clara, CA, USA) for
21 days, with medium being changed every 3 days. Osteogenic medium consisted
of 10% FBS, 100 U/ml penicillin, 100 mg/ml streptomycin, 0.2 mM ascorbate, 10 mM

b-glycerolphosphate and 0.1mM dexamethasone. At the end of osteogenic
induction, cells were washed with PBS and fixed in 4% formaldehyde, and then
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stained with Alizarin Red S (Sigma-Aldrich, St. Louis, MO, USA) to access
osteogenic differentiation.

Adipogenic differentiation: For the first 3 days, MSCs were cultivated in
adipogenic differentiation medium A (induction medium,) with 10% FBS, 100 U/ml
penicillin, 100mg/ml streptomycin, 1mM dexamethasone, 100mM indomethacin,
0.5 mM methyisobutylxanthine and 10 mM insulin. Then the cells were cultured in
differentiation medium B (maintenance medium) with 10% FBS, 100 U/ml
penicillin, 100mg/ml streptomycin and 5mg/ml insulin for 24 h, and then the
medium was changed to differentiation medium A. After three cycles of induction/
maintenance, cells were cultivated in adipogenic differentiation medium B for
additional 7 days by replacing the medium every 3 days (all supplements from
Cyagen). For evaluation of adipocytes, cells were fixed in 4% formaldehyde,
washed with PBS and stained with 0.2% Oil red-O Solution (Sigma, St. Louis, MO,
USA) to detect lipid droplets within the cells.

Real-time PCR. Total RNA was isolated by using Trizol reagent (Invitrogen)
according to the manufacturer’s specifications. cDNA was reverse-transcribed
using the RevertAid RT-PCR system (Fermentas, Pittsburgh, PA, USA). Real-time
PCR was performed by mixing cDNA with primers and Maxima SYBR Green
qPCR Master Mix (Applied Biosystems, Carlsbad, CA, USA). Real-time PCR was
performed using a Stratagene Mx3000P Real-time PCR System with supplied
software (Applied Biosystems), according to the manufacturer’s instructions. RNA
expression levels were compared after normalization with GAPDH. The primer
sequences used in this study are listed in Table 1.

ROS levels and MMP detection. Cellular peroxide levels were assessed by
staining with 5mM DCF-DA (Sigma) for 30 min at 37 1C, cell nucleus was stained with
Hoechst 33258 (1mM, Sigma) for 20 min and analyzed by using a fluorescence
microscope. For detection and quantification of mitochondria-derived ROS, MSCs
were loaded with a fluorogenic probe MitoSOX Red (2.5mM, Invitrogen) for 10 min.
Flow cytometer was performed to measure MitoSOX Red fluorescence in MSCs.
For simultaneous measurement of MMP, MSCs were stained with rhodamine 123
(5mg/ml, Sigma) in the cultures for 30 minutes at 37 1C. MSCs were observed under
fluorescence microscope and quantified by flow cytometer.

Staining for c-H2A.X. For evaluating the effect of irradiation on DNA damage,
we assayed the expression of g-H2A.X in MSCs. MSCs were washed with PBS
before fixation in 4% (v/v) paraformaldehyde at 6 h after irradiation. Cells were
permeabilized with 0.1% Triton X-100 in TBS, and blocked using TBS containing 1%
BSA and 10% goat serum for 1 h at room temperature. Cells were then stained
using an anti-gH2AX rabbit monoclonal antibody (1 : 200, Cell Signaling, Boston,
MA, USA) overnight at 4 1C. Thereafter, the cells were washed and incubated with
goat anti-rabbit IgG antibodies (1 : 400, Invitrogen) for 1 h at 4 1C. Cell nucleus was

subsequently stained with DAPI. After washing and being mounted, the cells were
examined under a fluorescence microscope (Olympus, Tokyo, Japan).

Western blotting analysis. MSCs were washed in cold-buffered PBS and
lysed in RIPA buffer with 1 mM PMSF on ice. Cell lysates were centrifuged
(12 000 r.p.m., 10 min) at 4 1C, and the protein supernatant was transferred into
new tubes. The concentration of the protein samples was determined with BCA
Protein Assay Kit (Pierce, Rockford, IL, USA). A 20-mg sample of the total protein
was resolved using 12% SDS-PAGE and transferred onto PVDF membranes. The
membranes were blocked in Tris-buffered saline containing Tween 20 with 5%
nonfat milk at room temperature for 2 h. Primary antibodies to detect LC3
(1 : 1000, Novus Biologicals, Inc, Littleton, CO, USA), ATG7 (1 : 2000, Novus
Biologicals, Inc) and Beclin1 (1 : 2000, Novus Biologicals, Inc) were incubated
overnight with the membranes at 4 1C. Membranes were incubated with
horseradish peroxidase-conjugated anti-rabbit secondary antibodies (1 : 8000,
Dako, Carpinteria, CA, USA), and proteins were detected by enhanced
chemiluminescence (Beyotime, Shanghai, China). GAPDH was used as the
internal control to normalize the loading materials.

Electron microscopy. MSCs were fixed in a solution of 2.5% glutaraldehyde
acid in 0.1 M PBS buffer (pH 7.4) for 2 h at room temperature, then incubated in
1% osmium tetroxide in 0.1 M PBS buffer (pH 7.4) for 2 h, dehydrated in solutions
of ethanol and acetone, embedded in Araldite (Basel, Switzerland) and finally
solidified. Fifty nanometer sections were cut on a LKB-I ultramicrotome and
picked up on copper grids, post-stained with uranyl acetate and lead citrate, and
examined in a Philips CM-120 transmission electron microscopy (Eindhoven,
The Netherlands).

Short hairpin RNA. shRNA candidate target sequences to Atg7 is
50-CCAAGGTCAAAGGACGAAGAT-30 and to Beclin1 is 50-GCAGATGAGGAA
GATCGCCTT-30. The oligonucleotides encoding the shRNA sequence were
inserted into the GFP express vector pGCL-GFP (Shanghai GeneChem, Shanghai,
China). SCR-shRNA was used as a negative RNAi control. The recombinant virus
was packaged using Lentivector Expression Systems (Shanghai GeneChem).
Irradiated MSCs preteated with starvation were infected. Then the cells were
observed under fluorescence microscope and collected at 48 h after transfection.

Statistical analysis. All experiments were performed at least in triplicate. All
data are presented as mean±S.D. of the replicates. Statistical analysis was
performed by Student’s t-test (two-tailed) using the Microsoft Excel Analysis Tool
Pak (Microsoft, Redmond, WA, USA). Value of Po0.05 was considered
statistically significant.
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