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Mature neurons: equipped for survival

AJ Kole1,2, RP Annis2,3 and M Deshmukh*,1,2

Neurons completely transform how they regulate cell death over the course of their lifetimes. Developing neurons freely activate
cell death pathways to fine-tune the number of neurons that are needed during the precise formation of neural networks.
However, the regulatory balance between life and death shifts as neurons mature beyond early development. Mature neurons
promote survival at all costs by employing multiple, often redundant, strategies to prevent cell death by apoptosis. This dramatic
shift from permitting cell death to ensuring cellular survival is critical, as these post-mitotic cells must provide neuronal circuitry
for an organism’s entire lifetime. Importantly, as many neurodegenerative diseases afflict adult neuronal populations,
the survival mechanisms in mature neurons are likely to be either reversed or circumvented during neurodegeneration.
Examining the adaptations for inhibiting apoptosis during neuronal maturation is key to comprehending not just how neurons
survive long term, but may also provide insight for understanding how neuronal toxicity in various neurodegenerative diseases
may ultimately lead to cell death.
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Facts

� Programmed cell death, or apoptosis, is active and
necessary during early nervous system development.

� Mature neurons become strikingly resistant to cytotoxic
stimuli following the developmental stage.

� Brakes are engaged both pre- and post-mitochondria
in the apoptotic pathway in mature neurons.

� The use of multiple, redundant mechanisms to inhibit
apoptosis probably provides mature neurons with long-
term survival capabilities.

Open Questions

� Are there other undiscovered mechanisms engaged in
mature neurons to inhibit cell death?

� What upstream molecular cues instruct neurons to become
mature and engage cell survival mechanisms?

� Do mature neurons revert to a phenotype similar to
immature neurons during neurodegeneration?

The precise regulation of basic biological processes, such as
cell growth, proliferation, differentiation, metabolism, and cell
death, is critical for cellular function. Equally important, cells
must also have the ability to adapt these biological pathways
in response to developmental or environmental cues. For
example, in neurons, although the cell death pathway is

remarkably active during early development, it becomes
highly restricted as neurons mature. This striking adjustment
to the regulation of cell death during maturation is a critical
event for neurons, as these post-mitotic cells must survive and
perform vital functions for an organism’s entire life.

Programmed cell death, or apoptosis, is normal, necessary,
and occurs in surprisingly large numbers during nervous
system development.1 Such massive developmental death is
critical for the remarkably complex task of establishing a
perfectly wired nervous system. This task is accomplished by
generating an abundance of neurons and eliminating those
that are developmentally transient, fail to properly migrate, or
are not matched to survival factors provided by afferent
inputs.2 For example, in the peripheral nervous system (PNS),
nearly twice as many neurons are initially produced as are
eventually found in the fully developed nervous system.1 In
order to survive, developing neurons must reach and
innervate their appropriate target cells, which supply critical
survival promoting trophic factors, but in limiting amounts.
Those neurons without trophic factor support undergo
apoptosis, thus elegantly generating a functional, matched
network of neurons, and their target cells.3,4

Importantly, once the nervous system is fully developed,
neurons can no longer afford to remain susceptible to
apoptosis, as these post-mitotic cells have limited regenera-
tive potential and must live long term. Therefore, it is
imperative for neurons to carefully inhibit the apoptotic

1Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA; 2Neuroscience Center, University of North Carolina, Chapel
Hill, North Carolina, USA and 3Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina, USA
*Corresponding author: M Deshmukh, Department of Cell Biology and Physiology, University of North Carolina, 7109E Neuroscience Research Building, Box 7250,
115 Mason Farm Road, Chapel Hill, NC 27599, USA. Tel: 919 843 6004; Fax: 919 966 1050; E-mail: mohanish@med.unc.edu

Received 06.5.13; revised 20.5.13; accepted 21.5.13; Edited by G Raschellà
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pathway as they mature. To implement this rapid switch from
apoptotic susceptibility to strict inhibition, mature neurons
appear to engage multiple mechanisms to inhibit the pathway
of apoptosis. Failure to maintain these brakes on apoptosis is
likely to increase the vulnerability of mature neurons to
degeneration.

Indeed, evidence has been accumulating in the literature for
over three decades supporting the concept that mature
neurons of the PNS and central nervous systems (CNS) are
markedly more resistant to cell death than developing
immature neurons. In this review, we will begin with diverse
examples that highlight the various insults against which
neurons gain resistance during their maturation. Next, we will
describe our understanding of the specific mechanisms
utilized by mature neurons to strictly inhibit the intrinsic
pathway of apoptosis. Finally, we propose that an important
transition that occurs during neurodegeneration is the return
of neurons to an immature state, thereby increasing their
susceptibility to apoptosis. The intent of this review is to focus
primarily on the dynamic changes in the apoptotic pathway
that occur with neuronal maturation. The overall mechanism
of apoptosis in neurons has been comprehensively reviewed
elsewhere.2,5–7 Although the mechanism by which the
apoptotic pathway becomes inhibited with neuronal matura-
tion remains incompletely understood, this field is poised to
take advantage of the many recent advances in our knowl-
edge about apoptosis.

It should be noted that the timing of development varies
between the different neuronal types and thus the point at
which neurons become mature and resistant to apoptosis will
be different for various neuronal types.1,2 However, despite
these differences in the precise timing of neuronal maturation, a
consistent theme that we highlight is that neuronal maturation is
accompanied with increased resistance to apoptosis.

Resistance of Mature Neurons to Diverse Apoptotic
Stimuli

The surprising observation that healthy neurons routinely die
during normal development was first made by the laboratory
of Erich Kallius,8,9 then more extensively explored by Viktor
Hamburger and Rita Levi-Montalcini.10 Among the first
evidence that young neurons are particularly susceptible to
naturally occurring, trophic factor deprivation-induced cell
death came in 1960, when Rita Levi-Montalcini and collea-
gues injected mice with an antiserum to the then recently
discovered nerve growth factor (NGF).11 When NGF anti-
serum was injected into newborn mice, histological analysis of
superior cervical ganglia showed loss of 97–99% of neurons
compared with control. This technique, known as immuno-
sympathectomy, resulted in the nearly complete destruction
of the mouse sympathetic nervous system. These data
highlighted the importance of NGF for sympathetic neuron
development and survival. Perhaps just as striking, but
overshadowed at the time, was the observation that in the
only adult mouse injected with the same NGF antiserum, 34%
of sympathetic neurons remained viable versus control.11 The
difference in response between young and adult mice was
intriguing, but this observation was not followed up for more
than 10 years. Subsequent studies confirmed that although

NGF antiserum in adult mice caused a pronounced reduction
in cell size, as seen by electron microscopy, the survival of
neurons was indeed largely maintained. This was most
evident with the observation that although the functional
capacity of adult neurons was initially reduced by injection of
NGF antiserum in adults, as measured by decreased
neuronal catecholamine synthesis and target organ catecho-
lamine uptake, the neurons recovered once the anti-NGF
injections were stopped.12–15

This phenomenon has also been recapitulated in vitro using
a model of sympathetic neuron death induced by NGF
deprivation. Nearly, 100% of young sympathetic neurons that
are equivalent of post-natal day 5 (P5; neurons isolated from
P0 mice and maintained in culture for 5 days) undergo cell
death by apoptosis following removal of NGF. In contrast,
when these neurons are maintained in culture until P28
equivalent, they become strikingly resistant to apoptosis as
less than 10% are now susceptible to the same insult of NGF
deprivation.16–20 Likewise, sensory neurons from the dorsal
root ganglia (DRG) have also been shown to become
insensitive to NGF deprivation upon maturation.21–23 Inter-
estingly, acquisition of this NGF-independent phenotype in
DRG neurons is dependent on calcium signaling, as neurons
matured in low calcium-containing media remain sensitive to
NGF deprivation.24

Other developing neuronal populations that undergo cell
death in response to deprivation of sensory input to afferent
neurons also show age-dependent sensitivities. For example,
in the developing auditory circuitry, neurons in the anteroven-
tral cochlear nucleus (AVCN) undergo cell death if the cochlea
is removed during a critical early post-natal period.25

This death is apoptotic as it can be inhibited with the
antiapoptotic protein Bcl-2.26 Studies have shown that
cochlear removal in P5 mice causes approximately 60–80%
AVCN neuron loss, measured by histologic cell counting and
terminal deoxyribonucleotidyl transferase-mediated dUTP
nick end labeling (TUNEL) stain. Importantly, however, if
cochlear removal occurs in mice that are just 1-week older,
neuronal death in the AVCN is minimal.27,28

Intriguingly, the remarkable survival of mature neurons is
seen not only when challenged with developmental cues, but
also following axotomy, traumatic brain injury, hypoxia, or viral
infection. For example, it appears that one of the most
important factors determining whether a neuron will survive
after axotomy is the age of the neuron.29 Although only 40% of
motor neurons survive transection of the hypoglossal nerve in
1-week-old mice, nearly twice as many neurons survive the
same transection if performed on 3-week-old mice.30 Inter-
estingly, not only do a smaller number of mature neurons die
after nerve transection, but the rate of neuronal death is also
much slower after nerve transections in older animals.30–32

The correlation between neuronal maturity and survival after
axotomy or crush injury has been shown in a variety of
neuronal subtypes, including neurons of the rat facial
nerve32–34 and dorsal root ganglia,35 retinal ganglion cells36,37

or following head trauma.38

In neonatal rat models of hypoxia and ischemia in vivo, a
significant amount of neuronal death occurs by apoptosis, as
evidenced by increased TUNEL labeling, DNA laddering, and
features of apoptosis on electron microscopy.39 In addition,
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caspase inhibitors can prevent neuronal loss in this model,
consistent with the observation that caspase-3, a protease
and critical mediator of apoptosis, becomes active after
neonatal hypoxia-ischemia.39,40 In contrast to the neonatal
models, hypoxia-ischemia in progressively older rats results in
markedly reduced caspase-3 activation with fewer cells
showing morphological characteristics of apoptosis, indicat-
ing that apoptosis becomes more restricted with develop-
mental age.40–42 Interestingly, although the apoptotic
pathway becomes blocked with increasing neuronal age,
neuronal viability is still affected upon severe hypoxia-
ischemia, with many neurons exhibiting features of necrosis
rather than classical apoptosis.41

In response to viral infections, young and mature neurons
also show differential capacity to survive. For example,
intracerebral inoculation of Sindbis alphavirus causes a fatal
encephalitis in neonatal mice and is associated with CNS
toxicity.43 Interestingly, although Sindbis virus causes 100%
mortality within 8 days when inoculated in the cerebrum of P1
mice, the same viral challenge in 4-week-old mice causes an
asymptomatic infection without any associated mortality.43

Also, whereas infection of neonates was associated with
TUNEL-positive neurons and histological evidence of neuro-
nal death, these findings were absent in 4-week-old brains.
A more recent study investigating age-related differences
following Coxsackie B5 virus infection in primary cortical
neurons from mice also showed substantially more cytotoxi-
city in immature neurons after infection than cortical neurons,
which were matured for 11 days in culture and treated with the
same insult.44 At this time, little is known about the exact cell
death pathways, which may be activated following neuronal
exposure to Sindbis and Coxsackie viruses.43,44 However, an
important theme that can be established from these and other
studies described in this section, is that despite the diversity of
CNS and PNS subtypes and the various cytotoxic insults

presented to neurons both in vitro and in vivo, mature neurons
are consistently more resistant to diverse cellular insults.

A noteworthy exception to the phenomenon that mature
neurons are more resistant to death than young neurons is the
case of excitotoxicity, which occurs when neurons are
overstimulated with excitatory compounds, such as glutamate
or NMDA. It has been reported that excessive NMDA receptor
stimulation causes extensive death in older neurons, while
actually favoring increased survival in younger neurons. This
topic has been extensively reviewed elsewhere, and the
reasons for this phenomenon have not been definitively
determined.45 Recent findings indicate that changes in NMDA
receptor subunit expression with development, increasing
intracellular calcium levels with maturation, and changing
preference for the ERK versus P38-MAPK pathways as a
result of NMDA receptor stimulation as development
proceeds may all have a role.46

Mechanisms of Enhanced Survival in Mature Neurons

As neurons are post-mitotic cells with limited regenerative
potential, an individual neuron must have the capacity to
survive for the organism’s entire life, a period that in humans
can last a century. Considering that neurons are likely to be
exposed to a variety of stresses during this period, one might
expect mature neurons to have evolved multiple mechanisms
to ensure their long-term survival. Given the longevity of these
cells, the presence of redundant brakes would ensure that
apoptosis is strictly blocked, even in the event that one safety
mechanism fails.

Most of our mechanistic knowledge of this phenomenon
comes from experiments performed in sympathetic neurons,
where the apoptosis pathway is well characterized. As
illustrated in Figure 1, it is now understood that in response
to apoptotic stimuli such as NGF deprivation, neonatal
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Figure 1 Intrinsic mitochondrial pathway of apoptosis in immature developing neurons. Apoptotic stimuli (e.g., NGF deprivation) initiate a kinase cascade involving MLKs
and JNK, which converge on phosphorylation of the transcription factor c-jun. Phosphorylated c-jun (Phos-c-Jun) translocates to the nucleus where it drives transcription of
pro-apoptotic BH3-only genes such as Bim and Hrk. The BH3-only family of proteins either directly or indirectly via inhibition of pro-survival Bcl-2 proteins, activate
pro-apoptotic Bax via oligomerization and insertion to the outer mitochondrial membrane. Upon mitochondrial permeabilization, cytochrome c (cyt c) is released from the
mitochondrial intermembrane space. The presence of cytosolic cytochrome c initiates the formation of the apoptosome complex, which activates caspase-9 (casp-9) and
caspase-3 (casp-3), and ultimately causes cell death
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sympathetic neurons activate the intrinsic mitochondrial
pathway of apoptosis.6,19,47–53 Briefly, phosphorylation of
the transcription factor c-jun by a kinase cascade involving
mixed lineage kinase (MLK) and c-Jun N-terminal kinase
(JNK) proteins induces the transcription of pro-apoptotic
members of the Bcl-2 homology 3 (BH3)-only family of
proteins, which mediate the activation of Bax. Active Bax
oligomerizes and translocates to the outer mitochondrial
membrane, causing its permeabilization and resulting in the
release of cytochrome c from the mitochondrial intermem-
brane space. Cytochrome c then forms the apoptosome
complex with apoptotic protease activating factor-1 (Apaf-1)
and caspase-9, leading to the cleavage and activation of
caspase-3, which in turn cleaves a diverse group of cellular
targets to induce rapid cell death.

Pre-mitochondrial apoptotic brakes. The survival of
young sympathetic neurons is mediated by the binding
of NGF to its tyrosine kinase receptor, TrkA. When NGF is
available, TrkA becomes phosphorylated, initiates signaling
through the PI-3-kinase/Akt and MEK/MAPK pathways, and
is transported retrogradely in a complex with NGF from nerve
terminals to the cell body where it promotes neuronal
survival.54,55 The dephosphorylation of TrkA following NGF
withdrawal is one of the first events that initiates apoptosis.
Interestingly, studies using compartmentalized culture cham-
bers that allow the separation of neuronal cell bodies from
distal axons have shown phospho-TrkA to be significantly
more stable in mature neurons following NGF deprivation
than in immature counterparts. Specifically, in compartmen-
talized cultures of immature and mature neurons maintained
by exposing NGF only to distal axons, phospho-TrkA can be
found in both distal axons and in cell bodies. In response to
the removal of NGF, phospho-TrkA in immature neurons
becomes undetectable in both the distal axons and cell
bodies after just 6 h. In a striking contrast, cell bodies of
mature neurons maintain nearly 50% of phospho-TrkA even
after 2 days of NGF deprivation, illustrating a significant delay
in the dephosphorylation of TrkA with neuronal age.56 As
signaling downstream of phospho-TrkA is key to promoting
survival in neurons, the sustained phosphorylation of TrkA in
mature neurons, even in the absence of NGF, could
contribute to their ability to withstand NGF deprivation.

Although the altered kinetics of TrkA dephosphorylation in
mature neurons may delay the activation of cell death signals,
studies have shown that several of the events immediately
downstream of TrkA dephosphorylation still occur in mature
neurons. For example, characteristic metabolic changes, JNK
activation, and c-Jun phosphorylation all occur in mature
neurons after NGF deprivation.18,21 Thus, additional and more
effective brakes to inhibit apoptosis would be needed down-
stream of the TrkA receptor to adequately ensure mature
neuron survival.

Indeed, studies from the laboratory of Eugene Johnson
identified an additional pre-mitochondrial brake to apoptosis
downstream of TrkA phosphorylation in mature neurons. NGF
deprivation normally activates Bax, which translocates to
mitochondria and induces the release of cytochrome c to the
cytoplasm in immature neurons. However, immunofluores-
cence and subcellular fractionation experiments have shown

that Bax remains cytoplasmic in mature sympathetic neurons
after NGF deprivation.57 As a result, cytochrome c remains
mitochondrial and is not available in the cytoplasm for
subsequent apoptosome formation and caspase activation.
In DRG neurons and the rat forebrain, total Bax levels were
also found to be decreased with maturation.21,58 Consistent
with the finding that a block in the apoptotic pathway
exists between JNK signaling and Bax activation in mature
neurons are data showing that exogenous activation of JNK,
via overexpression of MLK3, induces apoptosis less effec-
tively in mature as compared with neonatal DRG neurons.59

The inability of mature neurons to activate Bax is extremely
effective as a survival mechanism, as Bax deletion has been
shown to confer complete resistance of neurons to many
intrinsic apoptosis stimuli.52

In our own laboratory, we have discovered that a microRNA
(miRNA) may also contribute to the inability of Bax to become
activated in mature neurons. A microarray analysis to detect
differences in miRNA expression between immature and
mature neurons showed that miRNA-29 (miR-29) was
strikingly upregulated in mature sympathetic neurons both
in vivo and in vitro. Interestingly, we found miR-29 to target
multiple members of the BH3-only family of genes, which are
key proteins necessary for Bax activation during apopto-
sis.60–62 Ectopic expression of miR-29 alone in young
sympathetic neurons confers marked resistance to multiple
apoptotic stimuli including NGF deprivation, DNA damage,
and endoplasmic reticulum stress. Consistent with this model,
mature neurons which have high expression of miR-29, do not
show induction of BH3-family proteins in response to
apoptotic stimuli.60 Together, these data identified miR-29
as an additional factor that enhances the survival of mature
neurons. As miR-29 blocks expression of the multiple,
redundant BH3-only proteins, this miRNA is able to inhibit
apoptosis more potently than the loss of any single BH3-only
protein alone. Interestingly, a recent report found miR-29
levels to be decreased in a model of acute ischemic stroke
caused by middle-cerebral artery occlusion. Importantly,
delivering exogenous miR-29 to the cortex reduced the infarct
size and improved behavioral outcomes providing evidence
that miR-29 can also promote neuroprotection in vivo.63

The increased activity of miR-29 in mature neurons may
explain the earlier observation that Bax does not translocate
to the mitochondria after NGF deprivation in mature
neurons.57 However, whether restoration of BH3-only protein
expression in mature neurons enables Bax translocation to
mitochondria has not been studied. Thus, it remains unclear
whether the inability of Bax to translocate to mitochondria is
the result of the activity of miR-29 on BH3-only protein
expression, or the result of an independent redundant
mechanism blocking Bax translocation.

Post-mitochondrial apoptotic brakes. Even though
mature neurons engage mechanisms to inhibit apoptosis
upstream of mitochondrial cytochrome c release, they also
appear to have evolved additional brakes downstream of
mitochondria to further ensure survival. Evidence for
this came from experiments involving direct microinjection
of cytochrome c protein into cultured neurons. Although
immature sympathetic neurons are resistant to cytochrome c,
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they can be sensitized to cytochrome c under various
conditions. However, even under these conditions, mature
neurons remain resistant to cytosolic cytochrome c.57 For
example, although essentially all immature neurons from
mice lacking X-linked inhibitor of apoptosis protein (XIAP), an
endogenous inhibitor of caspase-9 and caspase-3, die within
24 h of cytosolic cytochrome c, mature neurons from XIAP
knockout neurons are almost completely resistant.64 The
survival of mature XIAP knockout neurons to cytochrome c
can be attributed to the near-complete loss of Apaf-1
expression in these cells. Apaf-1, a critical scaffolding protein
required for cytochrome c-mediated caspase activation, is an
essential mediator of cell death by apoptosis. Interestingly,
multiple neural tissues including the cortex, cerebellum,
retina, and sympathetic ganglia have all been found to
express limited quantities of Apaf-1.64–68 Within the sympa-
thetic neuron model, the lack of Apaf-1 expression appears
to be a result of the greater association of repressed
chromatin at the Apaf-1 promoter, resulting in transcriptional
silencing.64 Similar to Apaf-1, the expression of caspase-3
has been reported to be markedly decreased in multiple
neuronal populations of the mature CNS.65,68–70 Interest-
ingly, in the motor neuron model, maturation is accompanied
with an increase of XIAP and a decrease in its inhibitor XIAP-
associated factor (XAF) levels. This increase in the XIAP to
XAF ratio increases the ability of XIAP to inhibit caspase-9
and caspase-3 and provides mature motor neurons with
increased resistance to axotomy-induced apoptosis.71

Taken together, the studies highlighted in this section
illustrate that mature neurons engage several brakes both
upstream and downstream of mitochondrial release of
cytochrome c, providing redundant mechanisms for strictly
regulating apoptosis (Figure 2, Table 1). The inability of
cytochrome c to activate caspases in mature neurons is likely
to be particularly important for maintaining long-term survival
in the event that any mitochondria become damaged and
accidentally release cytochrome c.

The factors governing the application of these brakes on the
apoptotic pathway are currently unknown. As NGF-TrkA
signaling is crucial for the development of the sympathetic
neuronal population in which many of these brakes have been
characterized, NGF-mediated signaling could be important for
maturation. However, the fact that phenomena such as Apaf-1
restriction and miR-29 induction have been observed in
neuronal populations that do not depend on NGF, such as the
cortex and cerebellum, indicates that either growth factor
signaling does not have a role in this process, or that other
growth factors such as BDNF or GDNF, which have more
significant roles in other neuronal populations, can also
promote maturation by signaling through a common pathway.

Neurodegeneration: a Return to Immaturity?

Despite the mechanisms described here that provide neurons
with improved capacity to survive injury and apoptosis, adult
neurons can still be vulnerable and undergo cell death
in situations of acute brain injury or neurodegenerative
disease. Why do the changes associated with maturation
not protect neurons from neurodegeneration? Are the
mechanisms that normally prevent cell death still engaged

during the degenerative processes in mature neurons? Do the
various neurotoxins present in neurodegenerative conditions
(e.g., protein aggregates) overwhelm the neurons’ survival
machinery? Few studies have specifically addressed these
questions. Although apoptosis is clearly not the only mechan-
ism mediating neuronal death in the degenerating adult
brain, it does appear to contribute to this process.6,72–75
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Figure 2 Specific mechanisms utilized by mature neurons to inhibit apoptosis.
The apoptotic pathway has been found to be inhibited at distinct points in mature
neurons. First, multiple neuronal types upregulate the transcription of a microRNA
(miR-29), which can target and repress the induction of BH3-only proteins. Second,
Bax remains cytosolic in mature neurons and does not translocate to mitochondria,
although it is unclear if this is independent of the activity of miR-29 on BH3-only
proteins. Third, Apaf-1 expression is repressed via chromatin restriction. Fourth,
motor neurons exhibit an increase in the XIAP/XAF ratio, which enables XIAP to
more efficiently inhibit both caspase-9 and caspases-3. Fifth, mature neurons of the
CNS have markedly decreased levels of caspases-3. Additional information
regarding the specific neuronal types that exhibit these brakes can be found in
Table 1
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Here, we highlight emerging evidence that the reversals of
events, which promote survival in mature neurons, are seen
during neurodegeneration. We speculate that the loss of
these survival mechanisms may be a factor that creates a
more permissive environment for cell death in these situations
of neurodegeneration (Figure 3).

As described previously, one of the mechanisms by which
mature neurons inhibit apoptosis is by blocking Bax transloca-
tion to mitochondria. Reversal of this protective mechanism in
mature neurons would allow adult neurons to regain the ability
to translocate Bax to mitochondria, resulting in the release of
cytochrome c to the cytosol. Indeed, in mouse models of
amyotrophic lateral sclerosis (ALS), where mutant superoxide
dismutase-1 (mSOD1) is transgenically overexpressed, both
Bax translocation to mitochondria and cytochrome c release
are observed as the disease progresses. Compared with
non-transgenic controls, Bax levels in spinal cords of
symptomatic mSOD1 mice become increasingly more
enriched in mitochondrial fractions throughout disease
progression. Conversely, cytochrome c levels in cytosolic
fractions increase as mice become more symptomatic over

time. Cytochrome c translocation was also detected in
immunohistochemical studies of human spinal cord from
ALS patients.76 Similarly, studies of cytochrome c localization
have been performed in the context of Huntington’s disease
(HD). During the most advanced stages of this disease,
cytochrome c appears mostly in cytosolic fractions in the
neostriatal tissue from human samples. This is in contrast to
control tissues where cytochrome c is primarily found in the
mitochondrial fraction.77 Translocation of cytochrome c from
the mitochondria to cytosol was also seen in a mouse model of
HD as the disease progresses.77 These data are consistent
with Bax-mediated cytochrome c release from mitochondria
occurring at a time when neurons are degenerating in
ALS and HD. Interestingly, as activation of caspases by
cytochrome c is dependent on Apaf-1, which is known to be
restricted in many mature neuron populations, one would
predict that Apaf-1 might be reexpressed during apoptotic
neurodegeneration. Although the number of studies that have
examined this is limited, Apaf-1 has indeed been found to be
reexpressed in mature neurons in response to traumatic brain
injury and DNA damage.64,65

Target
Innervation

&
Developmental

Apoptosis

Mature
Neurons

Apoptotic Brakes

Degenerating
Neurons

Neuronal
Maturation

Return to
Immature

Phenotype?

Figure 3 Changes in apoptotic thresholds during neuronal development and neurodegeneration. Schematic shows that developing neurons undergo programmed cell
death, a necessary phenomenon for proper nervous system development. Following the developmental period, neurons mature and restrict the apoptotic pathway to permit
long-term survival. Under circumstances of neurodegeneration or neuronal injury, the loss of mechanisms to restrict apoptosis causes mature neurons to resemble their
immature phenotype

Table 1 List of known mechanisms by which the apoptotic pathway becomes restricted in mature neurons

Target Neuron/tissue type Findings Refs

Apaf-1 Corticala

Cerebellara

Sympatheticb,a

Photoreceptorb,a

Decrease in Apaf-1 levels with maturation 64–68

BH3-only proteins Sympatheticb Induction of BH3-only family proteins (e.g., Bim, Bmf, Puma, Hrk, N-Bak) is restricted by
miR-29, which is markedly upregulated in mature neurons

60

Bax DRGb,a

Forebraina
Decrease in Bax levels with maturation 21,58

Caspase-3 Corticala

Photoreceptorb,a

Anteroventricular
Cochlear Nucleusa

Shut down of Caspase-3 expression with maturation 40,65–70

TrkA Sympatheticb TrkA phosphorylation persists for a longer period in mature neurons following
NGF deprivation

56

XIAP Motora Increase in XIAP/XAF1 ratio enables XIAP to more potently inhibit caspases
in mature neurons

71

aEvidence from in vivo experiments
bEvidence from in vitro experiments
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Another example of an apoptotic brake that may be
reversed in degenerating mature neurons comes from studies
that have examined miR-29 levels. As discussed earlier,
miR-29 exhibits neuroprotective effects in sympathetic neu-
rons by inhibiting the expression of multiple pro-apoptotic
BH3-only proteins. Although the levels of miR-29 are known to
be very high in the various neuronal subtypes of the mature
nervous system,60,78 miR-29 levels have been reported to be
reduced in the striatum of HD mouse models.79 Likewise, the
expression of miR-29 was specifically found to be reduced in
human brains of Alzheimer’s disease patients.78,80 Intrigu-
ingly, this study also identified b-site APP-cleaving enzyme 1
(BACE1), a critical mediator of b-amyloid peptide release from
APP, as a target of miR-29. Thus, in addition to the effect on
BH3-only protein expression, loss of miR-29 expression in
sporadic AD could lead to an increase in BACE1 expression
and ultimately an increase in b-amyloid plaques, which are the
characteristic protein aggregates of AD. Recently, miR-29
levels have also been reported to be reduced during acute
ischemic stroke.63 Together, these data support the idea that
loss of miR-29 expression, which occurs during neurodegen-
eration, may increase the vulnerability of mature neurons to
progressive degeneration. It should be noted that these
observations of reversed apoptotic brakes in neurodegenera-
tive diseases are purely correlative at this point, and more
experiments will need to be done to determine the causative
role, if any, that these events play in the progression of
neurodegenerative disorders.

Although we have focused here on the mitochondrial
pathway of apoptosis, studies have found evidence for
activation of the death receptor (e.g., Fas) pathway in several
neurodegenerative diseases.81,82 Whether the death receptor
pathway undergoes restriction with neuronal maturation is not
known. However, activation of this pathway in mature neurons
during neurodegeneration could also circumvent the brakes
on the mitochondrial pathway by directly activating caspase-3.

Future Perspective

Mature neurons have clearly evolved multiple redundant
mechanisms that promote long-term neuronal survival. The
ability of these cells to withstand a variety of insults is
absolutely necessary, especially to limit the risks of neuro-
degeneration. Moreover, as mature neurons are post-
mitotic and are not in danger of becoming cancerous, the risk
of inhibiting apoptosis in these cells may be minimal to the
organism.

Many questions still remain regarding the maturation and
enhanced survival of adult neurons. Recent advances in next
generation sequencing and proteomics will enable exploration
of how the apoptotic pathway changes during neuronal
maturation. These changes could include genomic, epige-
netic or post-translational modifications. This would expedite
the discovery of novel apoptotic brakes or uncover new
mechanisms by which the known brakes are regulated during
neuronal development and disease. The answers to these
and other questions will not only help us to better understand
the development and maturation of the nervous system, but
also may contribute to our understanding of how neuronal
survival unravels during neurodegeneration.
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