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mitochondrial death and mitophagy marker BNIP3
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Bcl-2 E1B 19-KDa interacting protein 3 (BNIP3) is a mitochondrial death and mitophagy marker, which is involved in inducing
cardiac remodeling post myocardial infarction. In this study, we show that BNIP3 expression increases in stressed
cardiomyocytes in vitro and in response to pressure overload in vivo, and that its transcription is directly related to JNK activity.
BNIP3 expression gradually increased in the first weeks after pressure overload and peaked at the heart failure stage.
Ultrastructurally, the mitochondrial area was inversely proportional to BNIP3 expression. Both JNK and AKT activities increased
with pressure overload; however, JNK signaling dominated over AKT signaling for the activation of the transcription factor
FOXO3a and for the transcription of its effector, BNIP3. 3-methyladenine attenuated JNK signaling and significantly decreased
BNIP3 expression and reversed cardiac remodeling in heart failure. Ultrastructurally, the mitochondrial area was significantly
increased in the 3-methyladenine group compared with placebo. Moreover, adenoviral gene delivery of dominant negative JNK in
a rat model of pressure overload hypertrophy abolished the increase in BNIP3 expression in response to pressure overload.
These results suggest that JNK signaling is a critical modulator of the transcription factor FOXO3a driving the expression of its
effector, BNIP3, in heart failure and that JNK, through BNIP3, induces mitochondrial apoptosis and mitophagy.
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Heart failure is a clinical syndrome characterized by the
activation of the neurohormonal and renin angiotensin
aldosterone system followed by remodeling of the left
ventricle (LV) and alterations in the LV geometry.1 The
integrity of the endoplasmic reticulum (ER) and the juxta-
posed mitochondria is pivotal for the proper function of the
cardiomyocyte. Ultrastructurally, these two organelles are
located at very close proximity and crosstalk with each other
via calcium signaling.2–6 In heart failure, both the ER and the
mitochondria, and each on its own, execute death signals that
take the form of programmed apoptotic and autophagic cell
death.7 The decline in cardiac function of heart failure patients
is in part due to the loss of the diseased cardiac myocytes in
the form of necrotic, apoptotic and autophagic cell death. The
Bcl-2 family proteins serve as a critical death regulators that
reside immediately upstream of the mitochondria. They
consist of anti-apoptotic members such as Bcl-2 protein and
pro-apoptotic members. The pro-apoptotic Bcl-2 members
are subdivided into ‘multidomain’ and ‘Bcl-2 Homology (BH3)’
proteins. Multidomain pro-apoptotic proteins such as Bax and
Bak display sequence conservation in the BH domains 1–3
and their expression is directly regulated by the anti-apoptotic
Bcl-2 protein. On the other hand, the BH3-only members

display sequence conservation only in the a-helical BH3
region, which constitutes the critical death domain.8 Of the
BH3 members, the Bcl-2 E1B 19-KDa interacting protein 3
(BNIP3) is unique in the sense that it induces mitochondrial
apoptosis as well as mitochondrial autophagy (mitophagy).9

In the initial phase of apoptosis, BNIP3 inserts into the outer
mitochondrial membrane with the N terminus oriented into the
cytoplasm and the C terminus inside the mitochondria. It
induces mitochondria-mediated apoptosis and fragmentation
by driving mitochondrial permeability transition pore opening,
cytochrome C release and the destruction of the mitochondrial
cristae.10,11 On the other hand, BNIP3 is an autophagy
receptor that activates mitophagy in a non-canonical order
leading to their sequestration and subsequent removal.9,12,13

What makes BNIP3 more interesting is that, unlike the other
Bcl-2 members, it is the effector of the transcription factor
FOXO3a in post-mitotic skeletal muscles and cardiomyo-
cytes.14 Many studies have suggested that BNIP3 expression
increases under ischemic condition in cardiac myocytes and
that cardiac remodeling is directly related to BNIP3 expres-
sion.15–19 In this study, we show that BNIP3 is expressed in
response to cardiomyocyte stressors, such as phenylephrine
(PE) or calcium, in vitro and to pressure overload in vivo.
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Moreover, we show how the interplay between AKT and JNK
signaling modulates FOXO3a for the transcription of its
effector BNIP3. Moreover, we show that 3-methyladenine
(3 MA), by interfering with JNK signaling, modulates the
expression of the mitochondrial death and mitophagy marker
BNIP3 in vivo, and reverses cardiac remodeling in a rat model
of pressure overload-induced heart failure. This signaling
pathway was further validated via the adenoviral gene delivery
of dominant negative JNK (Ad-DN-JNK) in a rat model of
pressure overload hypertrophy (POH).

Results

BNIP3 is the effector of FOXO3a and its expression is
upregulated in PE-stressed cardiomyocytes. 3 MA inhi-
bited the increase in BNIP3 expression in PE-stressed
cardiac myocytes in vitro. BNIP3 expression is increased by
two-fold 2 h after cardiomyocyte stress with PE or calcium
in vitro. BNIP3 expression was also increased with the addition
of chloroquine, a well-known autophagolysosome fusion
inhibitor, in stressed cardiomyocytes, whereas 3 MA, an
autophagy induction inhibitor, inhibited the increase in BNIP3
expression Figure 1a. The relative BNIP3 mRNA expression
was significantly increased in PE-stressed cardiomyocytes for
2 h and its increase was significantly inhibited by 3 MA
Figure 1b. Autophagosomes, containing mitochondria with
different stages of vacuolar degeneration, were observed in
chloroquine, PE and PE plus chloroquine-stressed cardio-
myocytes Figure 1c and Supplementary Figure 1. The number
of autophagosomes increased with the addition of chloroquine
and in PE-stressed cardiomyocytes for 2 h with the highest
number of autophagosomes observed in the PE plus
chloroquine-treated cardiomyocytes. 3 MA inhibited the
formation of autophagosomes in PE-stressed cardiomyo-
cytes Figure 1d. This suggests that the increase in autophago-
somes with PE treatment is due to the increase in
autophagosomes formation rather than the consequence of
a degradation removal problem. The overexpression of
FOXO3a using an adenovirus containing constitutively active
FOXO3a (Ad-FOXO3a) increased the expression of BNIP3 in
cardiac myocytes in vitro compared with adenovirus green
fluorescent protein (Ad-GFP) and dominant negative FOXO3a
(Ad-DN-FOXO3a), respectively Figure 1e. Moreover, the
overexpression of BNIP3 in eGFP-LC3 expressing cardio-
myocytes by simultaneous infection with an adenovirus
containing BNIP3 (Ad-BNIP3) and another with eGFP-LC3
(Ad-eGFP-LC3), robustly increased the number of
autophagosomes compared with adenovirus Null (Ad-Null)
and adenovirus Sh BNIP3 (Ad-Sh BNIP3)-infected cardiomyo-
cytes, respectively Figure 1f. Western blot data shown in
Supplementary Figure 2. Ultrastructurally, BNIP3 over-
expression in cultured cardiac myocytes was associated with
a marked increase in autophagosomes and robust decrease in
mitochondrial area compared with Ad-Null and Ad-Sh BNIP3-
infected cardiac myocytes, respectively Figure 1g and
Supplementary Figure 3.

3 MA reversed cardiac remodeling and improved cardiac
function in heart failure. 3 MA treatment reversed cardiac

remodeling in heart failure compared with the placebo group
as shown in Figure 2a. Transthoracic echocardiography data
are shown in the Supplementary Table 1. There was no
difference in the heart weight versus the body weight in both
the groups. There was no difference in LV septal (LVSd) and
posterior wall (LVPWd) thickness between the 3 MA and the
placebo groups. However, there were significant decreases
in the LV end diastolic diameter (LVIDd), LV end diastolic
volume (LVEDV), LV end systolic diameter (LVIDs) and LV
end systolic volume (LVESV) in the 3 MA group compared
with the placebo group, respectively Figure 2b. This was
accompanied by significant increases in LV fractional
shortening and LV ejection fraction in the 3 MA group
compared with the placebo group Figure 2c. Hemodynamic
data are shown in the Supplementary Table 2. There
was a trend in improved LV contractility and efficiency at
baseline as determined by pressure–volume loop
measurements in the 3 MA group compared with the
placebo group, but with a statistically significant shift of
V0 to the left in the 3 MA group compared with placebo
Figure 2d and Supplementary Table 2. The 3 MA group had
significantly lower end diastolic pressure, tau and end-diatloic
pressure-volume relationships (EDPVR) compared with the
placebo group suggesting improved relaxation of the LV.
Moreover, The 3 MA group significantly increased their LV
contractility with b-adrenergic stimulation in response to
escalating doses of dobutamine infusion compared with the
placebo group Figure 2e.

3 MA significantly decreased the expression of FOXO3a
effector, BNIP3 and MurF-1, and restored mitochondrial
cristae in heart failure. The expression of FOXO3a
effectors, the mitophagy marker BNIP3 and the atrophy
marker MurF-1, are significantly upregulated in heart failure
compared with age-matched controls. 3 MA significantly
attenuated the expression of these markers in heart failure
compared with the placebo group Figure 2f. Ultrastructurally,
the placebo group had tortuous-looking myofibers with
myofibrillar disarray and an increase in the autopha-
golysosomes. Also, there was dilatation of the junctional
sarcoplasmic reticulum (JSR) and T-tubules, most of them
being occupied with lamellar structures. The intermyofibrillar
mitochondria (IMFM) were fragmented with severe loss in
their area and hazy-looking cristae compared with age-
matched control. 3 MA treatment reversed the tortuousity of
the myofibers and the myofibrillar disarray, but did not
improve JSR dilatation. 3 MA treatment significantly
decreased IMFM fragmentation as measured by the
decrease in the average area per mitochondrion and
restored their cristae Figures 2g and h. Figure 2i show the
correlation between BNIP3 expression and the average area
per mitochondrion. The decrease in BNIP3 expression by 3
MA resulted in significant increase in the average area per
mitochondrion.

Prolonged JNK activation overrides the inhibitory effect
of AKT on FOXO3a and activates the latter for the
expression of its effectors, BNIP 3 and MurF-1. JNK and
AKT have opposite effects on FOXO3a. JNK activates
FOXO3a whereas AKT inhibits its activity. Moreover, it has
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(d) Chl increased the number of autophagosomes in normal cradiomyocytes, *Po0.05 versus CTL and 3 MA. There was also increase in the number of autophagosomes in PE-
stressed cardiomyocytes for 2 h with the highest number of autophagosomes observed in the PEþChl stressed cardiomyocytes, #Po0.05 versus CTL and PEþ 3 MA,
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been shown that JNK potentiates AKT activity via its
phosphorylation at Thr450 and increases the interaction of
AKT with its upstream effectors, PI3K1 and PDK.20 Phos-
phorylated JNK and AKT are significantly increased in heart

failure compared with age-matched control. However, and
despite the increases in AKT activity and the phosphorylation
of FOXO3a at Ser253, there were significant increases in
FOXO3a effectors, BNIP3 and MurF-1 in the HF Placebo
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group. The long-term administration of 3 MA in vivo
attenuated JNK activity and significantly decreased the
expression of FOXO3a effectors despite the decreases in
AKT activity and the decrease in FOXO3a phosphorylation
by AKT Figure 3a. From the above, we hypothesized that the
long-term activation of JNK opposes the inhibitory effect of
AKT on FOXO3a, via its phosphorylation at sites that are yet
to be identified, and thus override the inhibitory effect of AKT
on FOXO3a for the activation of the latter, promoting the
transcription of FOXO3a effectors, BNIP3 and MurF-1,
respectively. In other words, the phosphorylation of
FOXO3a by AKT is dependent on JNK activity and that
prolonged JNK signaling dominate over AKT signaling and
promotes or activates FOXO3a, despite its phosphorylation

by AKT, for the transcription and the expression of its
effectors BNIP3 and MurF-1, respectively. Moreover,
prolonged JNK activity phosphorylates Bcl-2 and leads to
the increase in Bax to Bcl-2 ratio Figure 3b. 3 MA did not
affect ERK or P38 activity in vivo Figure 3b. In order to prove
the above hypothesis, we used an Ad-DN-JNK that was
delivered via a cross-clamp technique followed by ascending
aortic banding (AAB). Saline and an Ad-GFP were used as
controls. Transthoracic echocardiography data and M-mode
images are shown in the Supplementary Table 3 and
Figure 4a, respectively. There were significant decreases in
the heart weight to body weight ratio as well as in the septal
and posterior wall thickness and the LV end systolic diameter
and volume of the Ad-DN-JNK group compared with the
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Saline and the Ad-GFP groups, Figures 4b–d. This reflected
significant increases in LV fractional shortening and ejection
fraction, Figure 4e. On the molecular level, the decrease in
JNK activity using Ad-DN-JNK, prevented the significant
increase in AKT activity and the increase in FOXO3a
phosphorylation by AKT in response to pressure overload
as shown in the Saline and the Ad-GFP groups, Figure 4f.
Moreover, the continuous decrease in JNK activity, for 2
weeks, inhibited the increase in BNIP 3 expression, despite
the decrease in AKT activity, and inhibited the increases in
LC3-2 to LC3-1 ratio and Bax to Bcl-2 ratio in response to
pressure overload as shown in the Saline and Ad-GFP
groups, respectively Figure 4f.

FOXO3a effectors, BNIP3 and MurF-1, are significantly
upregulated in POH and peak in heart failure. In order to
understand the timing at which this signaling pathway is altered
in response to pressure overload, we conducted a kinetic study
and examined the expression of the key components in the
pathway at 1 week and 3 weeks of POH and in heart failure.
Echo data are shown in the Supplementary Table 4. Our
results suggest that JNK and AKT activities are significantly
upregulated 1 week after pressure overload and continue to be
activated up to heart failure Figure 5a. There were gradual
increases in the expression of FOXO3a effectors, BNIP3 and
MurF-1, that became significant 2–3 weeks after pressure
overload and peaked in heart failure, despite the increases in
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FOXO3a phosphorylation at Ser253 by AKT Figure 5a. These
results further validate that the continuous and prolonged JNK
activation in response to pressure overload, dominates over
AKT signaling and overrides the inhibitory effect of AKT on
FOXO3a for the gradual increases in the expression of
FOXO3a effectors, BNIP3 and MurF-1, which peak in heart
failure. Moreover, the increases in JNK activity significantly

increased Bax to Bcl-2 ratio the first week after pressure
overload and continued to be elevated up to heart failure
Figure 5a. This signaling pathway has been validated in
human samples of heart failure. There are robust increases in
JNK and AKT activities as well as significant increase in BNIP3
expression, despite the increase in AKT activity, in human
samples of HF Figure 5b.
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Ultrastructurally, there was an increase in autophagosomes
the first week after POH, which continued to be present up to
heart failure Figure 6a. There was a significant decrease in the
average area per mitochondrion the first week after POH. The
mitochondrial area declined further 3 weeks after pressure
overload and was the lowest in heart failure Figures 6a and b.
The gradual and significant increase in BNIP3 expression in
POH up to heart failure reflected a gradual and significant

decrease in the average area per mitochondrion, which was
the lowest in heart failure where BNIP3 expression was the
highest Figure 6c.

Discussion

BNIP3 is a BH3 protein that promotes mitochondrial destruc-
tion and signals mitochondrial death via the opening of
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mitochochondrial permeability transition pore and the sub-
sequent release of cytochrome C.11 Moreover, it is an
autophagy receptor that activates mitophagy in a non-
canonical order via the binding and the lipidation of LC3.12

Our data suggest that BNIP3 expression is significantly
upregulated 2 h after cardiomyocyte stress in vitro with PE
or calcium. Also, the addition of chloroquine to the cultured
medium increased BNIP3 expression, whereas 3 MA atte-
nuated its expression in stressed cardiomyocytes. The
overexpression of BNIP3 in cardiac myocytes, using
Ad-BNIP3, robustly increased autophagosomes formation
and significantly decreased mitochondrial area. In cardiac
myocytes and in skeletal muscles, BNIP3 is the effector of the
transcription factor FOXO3a.14,21 The activation of FOXO3a
or its inhibition is dependent on its post-translational modifica-
tion status.22 AKT phosphorylates FOXO3a at Thr32, Ser253
and Ser315 leading to its inhibition, whereas JNK interacts
and phosphorylates FOXO3a, at sites that are still unknown,
leading to its activation.23

In heart failure, FOXO3a effectors, BNIP3 and MurF-1 are
highly expressed compared with age-matched controls. The
increase in BNIP3 expression leads to increase in mitochon-
drial destruction, mitochondrial apoptosis and mitophagy;
whereas, the increase in MurF-1 and atrogin-1 promote

cardiac atrophy.24–26 3 MA treatment robustly decreased the
expression of FOXO3a effectors, BNIP3 and MurF-1,
respectively, and hence attenuated mitochondrial damage
and cardiac atrophy by interfering with JNK signaling. In our
model of heart failure, both JNK and AKT were activated;
however, AKT failed to inhibit FOXO3a. On the other hand, 3
MA by attenuating JNK activity reversed this signaling
pathway and decreased the expression of FOXO3a effectors
and pro-apoptotic marker Bax and, hence, decreased Bax to
Bcl-2 ratio. These results led us to hypothesize that prolonged
JNK signaling dominates over AKT and overrides the
inhibitory effect of AKT on FOXO3a and forces the latter to
re-translocate into the nucleus for the transcription of its
effectors. Moreover, prolonged JNK signaling phosphorylates
Bcl-2 and increases the expression of the pro-apoptotic
marker Bax, thus increasing Bax over Bcl-2 ratio and
cardiomyocyte loss through apoptosis. This hypothesis was
further validated using an adenovirus expressing dominant
negative JNK that was delivered in vivo using a cross-
clamp technique followed by aortic constriction for the
creation of pressure overload. The continuous inhibition of
JNK activation for 2 weeks prevented cardiac hypertrophy and
prevented the decline in cardiac function in response to
pressure overload. These results are consistent with those of
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Choukroun et al.27,28 who have shown that the inhibition of
JNK suppresses cardiac hypertrophy in vitro and in vivo in
response to endothelin and pressure overload, respectively.
On the molecular level, continuous JNK inhibition for 2 weeks
by Ad-DN-JNK prevented the increase in AKT activity, BNIP3
expression and the increase in Bax to Bcl-2 ratio in response
to pressure overload Figure 7.

Our kinetic study shows that JNK and AKT signaling
pathways are activated early in the first week of POH and
remains active throughout compensated hypertrophy up to
heart failure. However, what is more interesting is that the
prolonged and persistent JNK signaling leads to the gradual
but significant rise in FOXO3a transcription factors, which
peak in heart failure despite the increase in AKT activity and
the increase in FOXO3a phosphorylation at Ser253 by AKT.
This signaling pathway was further validated in human
samples of heart failure. The steady and progressive increase
in BNIP3 expression leads to progressive and steady increase
in mitochondrial fragmentation and to the gradual decrease in
the average area per unit mitochondrion, which is the lowest in
heart failure. On the other hand, the attenuation of BNIP3
expression by 3 MA decreased mitochondrial fragmentation
and increased the average area per mitochondrion.

Conclusion

BNIP3 induces mitochondrial autophagy and apoptosis early
on in POH and is further increased in heart failure. JNK is a
critical regulator of BNIP3 expression in vivo. Prolonged JNK
signaling dominates and overrides AKT signaling and
activates FOXO3a contributing to the gradual increase in
BNIP3 expression in compensated hypertrophy, which peaks
in heart failure. The gradual increase in BNIP3 expression
causes destruction of the mitochondria and promotes
mitochondrial-induced apoptosis and mitophagy leading to
the gradual decline in cardiac function and LV remodeling.
3 MA modulates the expression of BNIP3, in vivo, via the
interference with JNK signaling and reverses cardiac remo-
deling in heart failure.

Materials and Methods
Isolation and culture of adult rat cardiomyocytes and in vitro
experiments. Adult rat ventricular cardiomyocytes were isolated from male
Sprague–Dawley rats weighing (250–350 g) as previously described.29,30 Cells
were stressed for 2 h with 10mM of PE or with the addition of 2 mM of calcium to the
culture medium. Chloroquine was added at a concentration of 0.5mM for
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autophagosome–lysosome fusion inhibition, whereas autophagy was inhibited by
the addition of 2.5 mM of 3 MA to the cultured medium. All reagants were purchased
from (Sigma Chemicals, St. Louis, MO, USA). After 2 h, the cells were lysed using
RIPA buffer as mentioned in the western blotting section (n¼ 3 for each experiment
in vitro). For electron microscopy, cells were fixed with 3% glutarldehyde for 24 h at
4 1C. The next day, the cells were detached using a scraper and were sent for
electron microscopy for processing as discussed below in the electron microscopy
section. For the Autophagic flux experiments, cells were infected with adenovirus
eGFP-LC3 and images were taken using fluorescent microscope, Olympus 1� 71.

Western blotting. 30 ug of proteins were loaded and electrophoresed using
SDS-PAGE gels then transferred to a PVDFmembrane. The membrane was blocked
for 1 h using blocking solution then was incubated with the primary Ab overnight at
4 1C. The following antibodies were used: GAPDH (Sigma, 1 : 10000 dilution), LC 3,
BNIP3, JNK, AKT, p-AKT Ser473, FOXO3a, FOXO3a Ser253, Bax, Bcl-2, ERK,
p-ERK, P38 and p-P38 (Cell Signaling, Danvers, MA, USA, 1 : 1000 dilution), p-JNK
(Promega, Madison, WI, USA, 1 : 2000 dilution), MurF-1 (BDM Biosciences, Franklin
Lakes, NJ, USA, 1 : 1000 dilution) and BNIP3 human-specific (Abcam, Cambridge,
MA, USA, 1 : 1000 dilution). The second day, after three washing steps with TBS-
0.05% Tween-20, the blot was incubated with secondary horseradish peroxidase-
conjugated antibody (1 : 10000 dilution) for 45min. The blot was
washed three times with TBS- 0.05% Tween-20, then a supersignal west pico
chemiluminescent substrate (Thermo Scientific, Barrington, IL, USA) was used for the
detection of protein bands using the film method. Bands densities were quantified
using photoshop program and were normalized to GAPDH to correct for variations in
protein loading.

Quantitative RT-PCR. Total RNA was isolated using RNeasy Protect Mini
kit (Qiagen, Hilden, Germany). Reverse transcription was performed using High
Capacity cDNA Reverse Transcription Kits (Applied Biosystems, Carlsbad, CA,
USA) with random oligo-dT priming as followed by the manufacturer’s protocols.
PCR was performed using an ABI PRISM Sequence Detector System 7500
(Applied Biosystems) with SYBR Green (BioRad, Hercules, CA, USA) as
fluorescent, and ROX (Takara, Otsu, Japan) as a passive reference dye.
The PCR primers used were: BNIP3-F, 50-AGCATGAATCTGGACGAAGC-30 and
BNIP3-R 50-AACATTTTCTGGCCGACTTG-30; 18S-F, 50-tgcggaaggatcattaacgga-30

and 18S-R, 50-agtaggagaggagcgagcgacc-30 was used as an endogeneous-loading
control.

Human heart samples. Left ventricular samples were obtained from
explanted human hearts obtained at the time of cardiac transplantation. Non-
failing hearts, used as controls, were obtained from donors who died from
neurological diseases or motor-vehicle accidents and who had normal cardiac
function. The three donors had a median age of 62. The heart-failure patients had a
median age of 60 and their average ejection fraction was 20±3%.

Electron microscopy. Cells and fractions (1mm3) from fresh ventricles were
pre-fixed in a solution of 3% glutaraldehyde overnight at 4 1C, post-fixed in 1%
osmium tetroxide (OsO4), dehydrated in an ascending series of alcohols, and
embedded in epoxy resin. Ultrathin sections were stained with uranylacetate and
lead citrate. Samples were viewed under a transmission electron microscope
(HITACHI H-7650, Japan). Images were taken at 1 K, 5 K and 12 K magnification.

Image analysis using Image J. Mitochondrial area analysis was done using
Image-J, a public domain Java image-processing program inspired by NIH. Scale
setting and calibration were done using the ‘Set Scale and Calibration Menu,’ and
measurement parameters were selected. The mitochondrial area was summed for
each image using 12 000 magnified images and the average mitochondrial area per
image was calculated in mm2 (total area/number of mitochondria) after correction by
the magnification factor.

Production of recombinant adenoviruses. Recombinant Ad-GFP was
prepared as described previously.31 Briefly, The Ad-Easy Adenoviral vector system
(Stratagene, La Jolla, CA, USA) was used to generate recombinant adenoviruses.
Full-length EGFP gene was subcloned into the pShuttle vector (containing the
cDNA for enhanced GFP) under the control of CMV promoter. Viral titers were
determined by the plaque assay and the absence of replication-competent
adenovirus was confirmed by PCR to assess the wild-type E1 region. A dominant-
negative JNK adenovirus (Ad-DN-JNK1) was purchased from Seven Hills

Bioreagents (Cincinnati, OH, USA). Ad-DN-FOXO3a and Ad-FOXO3a were
purchased from Vector Biolabs (Philadelphia, PA, USA). Adenovirus Null, BNIP3,
Sh BNIP3 and eGFP-LC3 were done at Vector Biolabs. A multiplicity of infection of
100 has been used in all infection experiments in vitro (n¼ 3 for each experiment
in vitro). For the in vivo experiments, the adenovirus was delivered via a cross clamp
technique as described below with an infectious dose of 200 pfu/cell.

Experimental model of AAB, cross clamp with AAB and study
design. All procedures involving the handling of animals were approved by the
Animal Care and Use Committee of the Mount Sinai School of Medicine and
adhered with the Guide for the Care and Use of laboratory Animals published by the
National Institutes of Health. The aortic banding model was used to generate
pressure overload-induced hypertrophy and heart failure. Sprague–Dawley rats
weighing 180–200 g underwent AAB, as previously described in detail.32 For the
in vivo Kinetic study, animals were killed 1–3 weeks after AAB and at heart failure
development (n¼ 4 at each time point). Before killing, echocardiography was used
to assess LV size and function, whereas the clip placement was verified at the time
of killing. For the heart failure experiment, animals that developed heart failure were
randomized to receive placebo or 3 MA for one month. 3 MA was administered
intraperitoneally at a dose of 40mg/kg/day to inhibit autophagy induction in vivo.
Age-matched sham-operated animals were used as control (n¼ 4 in each group).
The cross clamp surgery with gene transfer and AAB was performed as previously
described in detail.33,34 Briefly, the chest was opened at midline between the
second and the fifth intercostals space. The aorta and the pulmonary arteries were
cross-clamped simultaneously and the virus (Ad-GFP versus Ad-DN-JNK)/saline
was injected into the LV. The cross clamp duration was 45 s and the adenovirus
dose used was 200 PFU/cell. After adenoviral delivery, AAB was performed and
animals were studied 2 weeks later (n¼ 4 in each group).

Echocardiography. Transthoracic echocardiography was performed using a
vivid 7 echocardiography apparatus with a 14 MHZ probe (i13L probe, General
Electric, New York, NY, USA). Long-axis parasternal views and short-axis
parasternal two dimensional (2D) views, at the mid-papillary level, of the LV were
obtained to calculate the LVEDV and LVESV volumes as well as the ejection
fraction of the LV.

Invasive pressure-volume loop measurements of the LV.
Hemodynamics were recorded subsequently through a Scisense P–V Control
Unit (FY897B, London, ON, Canada). The intrathoracic inferior vena cava was
transiently occluded to decrease venous return during the recording to obtain load-
independent P–V relationships. Linear fits were obtained for end-systolic pressure
volume relationships and EDPVR. At the end of the experiment, 50 ml of 30% NaCl
were slowly injected into the external jugular vein for ventricular parallel
conductance (Gp) measurement as previously described.35,36 Blood resistivity
was measured using a special probe (Scisense). Volume measurements were
initially obtained as blood conductance and calibrated using the Baan equation,37

and pressure sensors were calibrated as per manufacturer’s instructions.

Statistical analysis. Results are shown as mean±S.D. Statistical
significance was determined using Student–Newman–Keuls test. A P-value of
o0.05 was considered statistically significant.
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