
Resistance to ABT-737 in activated T lymphocytes:
molecular mechanisms and reversibility by inhibition
of the calcineurin–NFAT pathway
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Dynamic regulation of the intrinsic apoptosis pathway controls central and peripheral lymphocyte deletion, and may interfere
with the pro-apoptotic potency of B-cell lymphoma 2 inhibitors such as ABT-737. By following a T-cell receptor (TCR) transgenic
population of alloantigen-specific T cells, we found that sensitivity to ABT-737 radically changed during the course of
allo-specific immune responses. Particularly, activated T cells were fully resistant to ABT-737 during the first days after antigen
recognition. This phenomenon was caused by a TCR–calcineurin–nuclear factor of activated T cells-dependent upregulation of
A1, and was therefore prevented by cyclosporine A (CsA). As a result, exposure to ABT-737 after alloantigen recognition induced
selection of alloreactive T cells in vivo, whereas in combination with low-dose CsA, ABT-737 efficiently depleted alloreactive
T cells in murine host-versus-graft and graft-versus-host models. Thus, ABT-737 resistance is not a prerogative of neoplastic
cells, but it physiologically occurs in T cells after antigen recognition. Reversibility of this process by calcineurin inhibitors
opens new pharmacological opportunities to modulate this process in the context of cancer, autoimmunity and transplantation.
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B-cell lymphoma 2 (Bcl-2) inhibition represents a novel
pharmacological principle to control lymphoid malignancies
and detrimental immune responses.1,2 Of particular scientific
and potential clinical interest are the small molecule Bcl-2
inhibitors ABT-737 and its bioavailable counterpart Navitoclax
(ABT-263).3,4 ABT-737 binds with high affinity to the anti-
apoptotic Bcl-2 family members Bcl-2, Bcl-XL and Bcl-w.
By this mechanism, it prevents them from sequestering
pro-apoptotic BH3 proteins, and therefore, indirectly initiates
the apoptotic cascade. In contrast, ABT-737 has a low affinity
to Bcl-2-A1 (A1, Bfl-1), Mcl-1 and Bcl-B. These particular
molecular binding characteristics may be important for
tissue selectivity and – as a consequence – for the favorable
toxicity profile of ABT-737 and ABT-263,5 but limits their
therapeutic potency on lymphoma cells expressing A1 and
Mcl-1.6,7

The physiological regulation of apoptosis in lymphocytes
has been extensively investigated,8 and may assume a new
relevance in the context of therapeutic approaches selectively
targeting Bcl-2 proteins. Focusing on the T-cell compartment,
it has been shown that the fate of a T cell is linked to the
expression of a functional T-cell receptor (TCR)9 and its
interaction with antigen-presenting cells (APCs). The combi-
nation of signals through the TCR, co-stimulatory molecules

(such as CD28 and 4-1BB) and cytokines (such as interleukin
(IL)-2 and IL-15) dynamically modulates the intrinsic and the
extrinsic apoptosis pathway in T lymphocytes, and eventually
controls central and peripheral T-cell selection.10–15 Of
particular interest are previous reports on a TCR-dependent
upregulation of A1 in the early phase after antigen recognition,
which protects activated thymocytes and splenocytes from
apoptosis without interfering with cell proliferation.16,17 These
mechanisms are crucial for the development and mainte-
nance of a functional immune system10 and might be
influenced by drugs targeting the apoptosis pathway.
This hypothesis is supported by previous reports about the

immuno-modulatory properties of ABT-737 in several experi-
mental models: ABT-737 had a beneficial effect on auto-
immunity18 and significantly inhibited solid allograft rejection
in mice.2,19 However, immunosuppression by ABT-737 in a
collagen-induced arthritis model was only effective in a
preventive setting, but not in mice with established disease.20

Furthermore, the immunosuppressive effect of ABT-737 in a
murine skin graft model was rather limited as a single agent,
but markedly increased in combination with cyclosporine
A (CsA).19 These data suggest that the pro-apoptotic
potency of ABT-737 on lymphoid cells is altered in the context
of inflammation and T-cell activation.
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In this study, we examined the effect of ABT-737 on
alloreactive T cells in the setting of host-versus-graft (HvG)
and graft-versus-host (GvH) immune reactions. We found a
unique selectivity profile of ABT-737 on T lymphocytes over
the course of the immune response as a result of a transient,
calcineurin-, nuclear factor of activated T cells (NFAT)- and
A1-dependent resistance to ABT-737 after antigen recogni-
tion. The calcineurin inhibitor CsA blocked A1 upregulation
and prevented resistance to ABT-737 in activated T cells,
thereby offering new options for effective combination
therapies.

Results

Activated T cells are resistant to ABT-737. To investigate
the impact of allogeneic T-cell activation on the sensitivity to
the Bcl-2 inhibitor ABT-737, we used the transgenic
mouse strain BM3.3, which expresses on all CD8 T cells a
transgenic TCR specific for the major histocompatibility
complex (MHC) class I molecule H-2Kb and can be detected

by the clonotypic antibody Ti98. In the first experiment, we
transplanted BM3.3 bone marrow into non-lethally irradiated
CBA mice to create synchimeric mice that express the
BM3.3 TCR only on a fraction of the CD8 T-cell pool. This
well-defined homogeneous population of alloreactive CD8 T
cells could then be followed during the course of an HvG
response in the context of an otherwise physiological
immune system (Figures 1a and b). Synchimeras received
a donor-specific transfusion (DST) (20� 106 B6 splenocytes,
i.v., DST) and treatment with either ABT-737 (50mg/kg per
day) or vehicle, starting at day 2 after DST. At day 5 after
priming, mice treated with ABT-737 presented a 75%
reduction of T cells in peripheral blood (Figure 1c); CD4
and CD8 T cells were similarly affected by the treatment
(Figure 1d). After antigen recognition, the percentage of
Ti98þ cells among CD8 T cells increased in both groups,
but this effect was markedly enhanced in the
ABT-737 group compared with control (Figure 1e). This
observation is explained by a selection of activated Ti98þ
cells among CD8 T cells under the effect of ABT-737, which
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Figure 1 Alloreactive CD8 T cells are resistant to ABT-737 after DST. (a) Characterization of the BM3.3 model; after 48 h of MLR with BM3.3 responders and
CD8-depleted B6 stimulators, all responder (Ti98þ ) CD8 T cells were activated, as measured by CD25 expression in FACS. (b) Experimental setup: synchimeric mice were
generated by bone marrow (BM) transplantation from BM3.3 mice into CBA recipients after non-lethal total body irradiation (3 Gy). After 6 weeks, synchimeras expressed the
BM3.3 TCR (Ti98þ ) on about 6% of the whole CD8-positive population. The mice were primed by i.v. injection of B6 splenocytes, and 2 days later, treatment with ABT-737
was started. (c and d) Exposure to ABT-737 induced a relative and absolute reduction of CD3þ cells in peripheral blood, and similarly affected CD4þ and CD8þ T cells. (e)
The increase of the percentage of Ti98þ cells among CD8 T cells was significantly higher in mice exposed to ABT-737 (Po0.01). Statistical comparison of data registered at
baseline and at day 5 by paired t-test; *Po0.05, **Po0.01; n¼ 5. Representative results of one of two independent experiments are shown
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may be further enhanced by homeostatic proliferation in a
lymphopenic environment.
To limit the confounding effect of homeostatic proliferation,

we performed an analogous experiment in a GvH model. The
combination of a parent to F1 model with the BM3.3
transgenic system allowed us to specifically analyze a
homogeneous population of host-reactive CD8 T cells in the
absence of rejection by the recipient and without the effect of
any conditioning regime (such as total body irradiation) that
may alter the immune response and apoptosis regulation.
We minimized the effect of T-cell proliferation by choosing a
short protocol: BM3.3 splenocytes were adoptively trans-
ferred into (CBAxB6)F1 (allogeneic stimulation) or CBA
recipients (syngeneic control). On day 1 after transfer
treatment with ABT-737 (50mg/kg per day) or vehicle was
started, and 2 days later, recipient mice were killed for
fluorescence-activated cell sorting (FACS) analysis. ABT-
737 minimally influenced the activation of Ti98þ cells
(Figures 2c and d) and similarly reduced the number of total
splenocytes in F1 and CBA recipients by about 30% reduction
(Figures 2e and f). However, in the syngeneic combination,
Ti98þ cells were equally reduced as total T cells and total
splenocytes (Figures 2e and g), whereas in F1 recipients,
alloactivated donor-reactive CD8þTi98þ cells were resis-
tant to ABT-737 (Figure 2h). As a result, the total number of
Ti98þ cells in CBA recipients was markedly reduced after
ABT-737 treatment, but no difference in the total number of
Ti98þ cells between the two groups was registered after
allogeneic stimulation (Figures 2g and h). These data strongly
suggest that resistance of activated Ti98þ T cells to ABT-737
had developed in both HvG and GvH experiments.
This hypothesis was further tested in vitro in a mixed

lymphocyte reaction (MLR) model. BM3.3 splenocytes were
cultured with CD8-depleted allogeneic B6 or syngeneic CBA
splenocytes during 48 h and then treated with ABT-737 for an
additional 12 h. Cell viability analysis by propidium iodide (PI)
exclusion in FACS revealed that a 1000- to 10 000-fold higher
concentration of ABT-737 was required to induce apoptosis
in CD8 T cells after allogeneic stimulation (Figure 3a). To
exclude a transgenic artifact, the same experiment was
repeated with B6 responders and T-cell-depleted CBA
stimulators. Activated (CD25þ ) CD8 T cells were much more
resistant to ABT-737 compared with non-activated (CD25� )
cells in the same culture and to syngeneically stimulated (non-
activated) T cells. The same phenomenon was observed for
CD4 T cells (Figure 3b). Thus, T-cell activation induces
resistance to ABT-737 in vitro and in vivo.

Molecular mechanism of resistance to ABT-737 in
activated T cells. The regulation of apoptosis is complex,
and several mechanisms may be involved in resistance to
ABT-737 after T-cell activation. In MLR experiments using
the BM3.3 system, we found that exposure to the ribosome
blocker cycloheximide during the stimulation phase pre-
vented the establishment of ABT-737 resistance, indicating
that protein synthesis was required to induce this anti-
apoptotic state (Figure 4a). Previous studies in tumor models
revealed that the expression of anti-apoptotic Bcl-2 proteins
with a low binding affinity to ABT-737, such as A1 and Mcl-1,
resulted in resistance to this compound.21 Therefore, we first

assessed the impact of T-cell activation on the expression of
various anti-apoptotic Bcl-2 factors in our system. Analyses
by quantitative RT-PCR (qRT-PCR) revealed that T-cell
activation rapidly influenced the gene expression pattern of
Bcl-2 family members (Figure 4b); among the Bcl-2 members
that are not inhibited by ABT-737, expression of A1 was nine-
fold higher in alloantigen-stimulated than in non-activated
cells. In contrast, expression of Mcl-1 did not change. When
looking at time kinetics, we found that resistance to ABT-737
is a transient phenomenon; it rapidly develops after T-cell
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Figure 2 Activated CD8 T cells are resistant to ABT-737 in a GvH model. BM3.3
splenocytes were adoptively transferred to CBA (syngeneic) or (CBA� B6)F1
(allogeneic) recipients to assess the effect of ABT-737 on GvH-reactive cells. After 3
daily injections of ABT-737 (filled circles) or vehicle (open circles), splenocytes were
analyzed by FACS. (a and b) Allogeneic CD8 T-cell activation was confirmed by
CD25 expression and (c and d) a selective analysis of Ti98þ cells indicated that
ABT-737 did not substantially influence this process. (e and f) A similar reduction in
the number of total splenocytes was registered in both groups (about 30%
reduction, please note the different total number of splenocytes in different recipient
strains). (g and h) The total number of Ti98þ cells decreased in the syngeneic, but
not in the allogeneic combination, indicating resistance to ABT-737 in allo-activated
CD8 T cells. Statistical comparison ABT-737 versus vehicle; *Po0.05, **Po0.01,
***Po0.001; n¼ 5. Representative results of one of two independent experiments
are shown
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stimulation, but progressively vanished after 4–5 days of
culture (Figure 4c). This evolution strongly correlated with
expression of A1 protein over time (Figure 4d), supporting
the hypothesis of a crucial role of this particular factor.
A selective inhibition of A1 in murine cells is complicated
because of the presence of four homologous genes for A1
in the mouse genome. Just one of them – A1-a – was
successfully targeted in a knock-out mouse,22 and selective
pharmacological A1 inhibitors are currently not available.23

Therefore, we applied a reversed approach using different
Bcl-2 inhibitors with a defined binding profile. We found that
T-cell activation induced resistance to Bcl-2 inhibition by
ABT-737 (no binding of A1 and Mcl-1) and by Antimycin A
(no binding of A1 only), but had no impact on the pro-
apoptotic potency of the pan-Bcl-2 inhibitor obatoclax
(Figure 4e). Thus, A1 upregulation is the crucial factor
determining resistance to ABT-737 in activated T cells.

T-cell activation and resistance to ABT-737. According
to the three-signal concept, physiological T-cell activation
is determined by the concurrent stimulation of the TCR
(signal 1), together with a costimulatory signal through CD28
and CD154 (signal 2), and by the effect of cytokines such as
IL-2 and IL-15 (signal 3).24 The link between resistance to
ABT-737 and the different pathways involved in T-cell
activation was investigated dissecting the T-cell activation
process by blockade of different pathways during the
stimulation phase (24 h). We found that resistance to ABT-
737 was prevented by blocking signal 1 with the calcineurin
inhibitor CsA. In contrast, blocking of CD28 signaling by
CTLA4Ig or of CD40 signaling by MR1 or using CD40 knock-
out stimulators (data not shown), and blocking of mTOR
signaling by rapamycin at a concentration that efficiently
inhibited MLR in the same combination, did not influence
resistance to ABT-737 (Figure 5a). An important role of the
TCR–calcineurin–NFAT (signal 1) cascade was further
confirmed by using the alternative calcineurin inhibitor
tacrolimus and the cell permeable NFAT-inhibitor VIVIT-
R.25 The blockade of this pathway at any level increased
the percentage of apoptotic cells in allogeneic, but not in

syngeneic cultures (data not shown), and it prevented
resistance to ABT-737 (Figure 5b), thereby excluding an
off-target effect of CsA and indicating a crucial role for NFAT
in preventing T-cell apoptosis in the early phase after antigen
recognition. The correlation of these findings with the
inhibition of upregulation of A1 by CsA was confirmed at
the mRNA and protein level (Figures 5c and d). Thus, antigen
recognition induced an NFAT-dependent upregulation of A1
that determined resistance to ABT-737 in alloantigen-
activated CD8 T cells, and CsA completely prevented this
resistance to ABT-737 in activated cells in vitro.

Reversibility of ABT-737 resistance by CsA in vivo. The
critical role of signal 1 for ABT-737 resistance offers the
opportunity to prevent resistance to ABT-737, using clinically
well-established calcineurin inhibitors. We tested this option
using a combination of CsA and ABT-737 in the GvH and HvG
models introduced before. For the GvH experiments, BM3.3
splenocytes were transferred to F1 mice under treatment with
low doses of CsA (10mg/kg per day). Similar to the previous
experiment (Figure 2), ABT-737 (50mg/kg per day) was
administered at day 1 and 2 after cell transfer, and on day 3,
mice were killed for spleen FACS analysis. Concurrent with the
in vitro results, the selection of activated donor-reactive CD8þ
Ti98þ cells observed in mice treated with ABT-737 alone was
completely prevented by the addition of CsA (Figure 6a).
Because of the general lymphopenia induced by ABT-737, this
resulted in a much more pronounced depletion of alloreactive
T cells in the combination group (Figure 6b). This effect was
even more pronounced in the HvG model, where treatment
was continued for 5 days after DST, and the immunosuppres-
sive effect of CsA simultaneously contributed to the inhibition of
the allogeneic immune response (Figure 6c). Thus, resistance
to ABT-737 after antigen recognition was successfully over-
come by combination with low doses of CsA.

Discussion

The regulation of the intrinsic apoptosis pathway in
lymphocytes assumes a novel relevance after the advent of
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small-molecule Bcl-2 inhibitors. Here we present evidence
that sensitivity to ABT-737 in T lymphocytes dynamically
changes during the course of an immune response; that is,
activated T cells are transiently resistant to ABT-737 during
the first days after antigen recognition, because of a signal-1-
dependent, NFAT-dependent upregulation of A1. As a
result, ABT-737 displayed a unique selectivity profile in its

pro-apoptotic potency, depleting naive lymphocytes, but
sparing T cells after antigen-specific activation.
A1 is upregulated in the first hours after T-cell activation and

protects activated thymocytes and splenocytes from prema-
ture death.16,17 A1-dependent resistance to ABT-737 has
been previously reported in lymphoma cells.6,7,26 Here we
show for the first time that physiological upregulation of A1
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after antigen recognition and ABT-737 resistance in normal
(non-neoplastic) T cells are linked. More precisely, T-cell
activation resulted in a 1000- to 10 000-fold resistance to
ABT-737, a finding reminiscent of the results obtained by
Vogler et al.26 in B-cell lymphoma cells cultured with
CD154-expressing fibroblasts and IL-2. Mechanistic analyses
revealed that the TCR–calcineurin pathway controlled the A1
upregulation, and that NFAT was the crucial transcription
factor in this context,16 thereby mimicking the mechanism
regulating A1 in mast cells after IgE receptor stimulation.27

Interestingly, fundamentally different pathways were involved
in resistance to ABT-737 in CLL cells (which was signal 2- and
3-dependent and NFkB-mediated), suggesting a different
regulation of A1 in B and T lymphocytes. In the complex
system of apoptosis regulation, it is possible that additional
factors may influence the sensitivity of T cells to Bcl-2
inhibition during the course of the immune response (e.g.,
Mcl-1 protein stabilization28). However, we demonstrated that
blocking A1 was critical to prevent resistance to ABT-737, and
inhibiting signal 1 of T-cell activation achieves this goal.

The synergistic effect of CsA and ABT-737 is partially
paradoxical because of the anti-apoptotic properties of CsA,
which have been previously related to a stabilization of the
mitochondrial membrane.29,30 This effect is presumably of
limited relevance in combination with ABT-737. In contrast,
the inhibition of the A1-dependent strong anti-apoptotic signal
provided by the Ca2þ -calcineurin–NFAT pathway was crucial
to prevent resistance to ABT-737 in activated T cells, as
shown by the similar effect obtained with tacrolimus and
VIVIT-R. Interestingly, a dysregulation of the Ca2þ–calci-
neurin–NFAT pathway has been described in several
lymphatic and solid tumors, and may therefore influence the
anti-neoplastic effect of Bcl-2 inhibitors.31 The most important
consequence of the signal 1 dependency of ABT-737
resistance described here is the possibility to easily prevent
it by well-established drugs such as calcineurin inhibitors.
Characterization of ABT-737 resistance in physiological
processes is relevant to find pharmacological strategies to
potentiate the effect of Bcl-2 inhibitors, and although the use
of immunosuppressive drugs to control cancer may be
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counterintuitive and potentially dangerous, we speculate that
the combination of calcineurin inhibitors with ABT-737 might
be beneficial in selected cases.
Because of the different molecular affinities of small-

molecule Bcl-2 inhibitors to different members of the Bcl-2
family,1 their immuno-modulatory effect strictly depends on
the expression of different members of the Bcl-2 family in
distinct lymphocyte subpopulations and during the different
phases of an immune response. Myeloid cells express high
levels of Mcl-1 and are not affected by ABT-737; in contrast,
ABT-737 efficiently induces apoptosis in naive lympho-
cytes.19,20 Here we demonstrate that the physiological
mechanisms that protect T cells from apoptosis in the initial
phase after antigen recognition dramatically influence their
sensitivity to ABT-737. Particularly, the low affinity of ABT-737
to A1 determines a selection of antigen-specific T cells in the
first days after activation. This explains why ABT-737 as an
immunosuppressive agent is not effective during the first days
after transplantation and in the acute phase of an autoimmune
disease,20 but may find a clinical application for induction
therapy before solid organ or stem cell transplantation.
In contrast, we speculate that an opposite result would be
obtained with a selective A1 inhibitor, but none of the currently
available Bcl-2 inhibitors selectively binds to A1. However, the
fact that ABT-737, in combination with CsA, efficiently
depleted activated T cells in a GvH and an HvG model
explains the synergistic effect of ABT-737 and CsA, which we
previously observed in a skin graft model,19 and is a
reasonable option to potentiate the immunosuppressive effect
of Bcl-2 inhibitors.
Finally, the unique selectivity profile of ABT-737 may find a

useful application for cell-based immunotherapy. The experi-
mental selection of antigen-specific cells after a short activation
time is difficult to achieve and largely limited to the use of
transgenic systems. ABT-737 allows selecting polyclonal anti-
gen-specific cells after antigen recognition in vitro and in vivo,
with a wide experimental application in the field of infection and
cancer immunology, that is, for the generation of virus- or tumor
antigen-specific T cells presented by the host MHC. As
resistance to ABT-737 depends only on signal 1 activation,
antigen-specific T cells can be further influenced by ILs to
generate particular subsets of T cells in vitro, such as donor-
reactive regulatory T cells or CMV-reactive cytotoxic T cells.32

Thus, in this study, we first described, characterized and
found a way to overcome resistance to ABT-737 in activated T
lymphocytes. Moreover, we propose a link between the well-
established resistance to ABT-737 in tumor cells, and
physiological lymphocyte activation after antigen recognition.
These findings are relevant for a potential clinical application
of Bcl-2 inhibitors as immuno-modulatory and anti-neoplastic
agents.

Materials and Methods
Mice. C57BL/6 (B6, H-2b), CBA (H-2k), (CBAxB6)F1 (F1, H-2b/k) and BM3.3
(CBA background, H-2k) mice were housed in specific pathogen-free conditions at
the University of Zürich. The BM3.3 mouse,33 which expresses on all CD8 T cells
a transgenic TCR selective for a naturally processed octapeptide bound to the
allogeneic MHC class I molecule H-2Kb, was kindly provided by A.-M. Schmitt-
Verhulst.34 All animal experiments were performed according to protocols
approved by the legal authority (Veterinary Office, Canton of Zürich, Switzerland).

Synchimeras and GvH reaction model. Synchimeric animals were
generated as previously described.35,36 Briefly, 5� 106 bone marrow cells from
BM3.3 mice were transplanted into naive CBA mice irradiated with 3 Gy on the
same day. After 6–10 weeks, B6 splenocytes were injected, and treatment with
ABT-737 (50 mg/kg per day, intraperitoneally (i.p.)) or vehicle was started
according to the experimental protocol. Donor-reactive BM3.3 CD8 T cells
were monitored in blood using the Ti98 antibody, which selectively binds to the
BM3.3 TCR.37

GvH reactions were studied in a parent to F1 model. The F1 mice were generated
by breeding CBA females and B6 males, and expressed H-2k and H-2b. After
adoptive transfer of 20–25� 106 BM3.3 splenocytes (H-2k background and
therefore not rejected by the host, and selectively reacting against H-2Kb), the GvH-
reactive cells were analyzed in the spleen using the Ti98 antibody.

Fluorescence-activated cell sorting. FACS analyses were performed
with a BD-FACSCanto II (Becton Dickinson, Basel, Switzerland). Anti-mouse CD3-
FITC, CD4-PE, CD8-APC and PI were purchased from eBioscience (Frankfurt,
Germany), anti-mouse CD25-PE/Cy7 from Biolegend (Uithoorn, The Netherlands).
The Ti98 antibody was kindly provided by A.-M. Schmitt-Verhulst.37 A secondary
PE rat anti-mouse IgG was purchased from Becton Dickinson.

Mixed lymphocyte reaction. MLR were performed in 96-well plates with
responder splenocytes stimulated by T-cell-depleted (or CD8 T-cell-depleted)
splenocytes from allogeneic and syngeneic mice at a final concentration of 4� 106

cells/ml in RPMI medium containing 10% fetal bovine serum, penicillin 100 U/ml,
streptomycin 100 mg/ml, 2-mercaptoethanol 50 mM. Splenocytes were sorted by
automatic magnetic cell separation using an autoMACS pro separator according to
the protocols of MiltenyiBiotec (Bergisch Gladbach, Germany) to allow a selective
analysis of responder CD4 and CD8 T cells in FACS.

Reagents and drugs. ABT-737 was provided by Abbott Bioresearch
(Worcester, MA, USA); for in vitro experiments, ABT-737 was dissolved in
dimethyl sulfoxide (DMSO) at a concentration of 5 mM, and then diluted in culture
medium. For in vivo applications, ABT-737 was dissolved in polyethylene glycol,
Tween 80, dextrose solution and DMSO, and injected i.p. at 50 mg/kg per day.
Antimycin A, CsA, rapamycin and tacrolimus were purchased from EnzoBiochem
(Farmingdale, NY, USA), cycloheximide from Sigma-Aldrich (Buchs, Switzerland),
VIVIT-R from Calbiochem (Merck, Darmstadt, Germany), obatoclax (GX15-070)
from Selleck (Houston, TX, USA). CTLA4Ig (abatacept) was provided by
Bristol-Myers Squibb (Princeton, NJ, USA). The anti-CD154 (CD40L) antibody
MR1 was purchased from BioXCell (West Lebanon, NH, USA). For in vivo
application, CsA was dissolved in ethanol and cremaphor EL (Sigma-Aldrich), then
diluted in PBS and injected subcutaneously (s.c.).

Quantitative RT-PCR. Reverse transcription and qPCR were performed as
reported earlier.38 Pre-developed TaqMan reagents were used for mouse Bcl-2
(Mm00477631_m1), Bcl-XL (Mm00437783_m1), Mcl-1 (Mm01257352_g1) and for
the housekeeper gene 18S rRNA (Applied Biosystems Europe, Rotkreuz,
Switzerland). For mouse A1, the following oligonucleotide primers and probe were
designed to simultaneously detect Bcl-2A1a, Bcl-2A1b and Bcl-2A1d: sense
primer 50-ATG GAG GTT GGG AAG ATG G-30, anti-sense primer 50-GAG CCA
AGG TTC TCT CTG GTC-30, fluorescence-labeled probe (FAM) 50-GGC TGG
CTG ACT TTT CTG CAG ATG A-30. The expression of candidate genes in
alloantigen-stimulated cells of culture was normalized by 18S rRNA and compared
with syngeneically stimulated cells.

Western blot. For western blot allo- and syngeneically stimulated lymphocytes
were harvested with Ripa buffer and complete protease inhibitor cocktail (Roche,
Mannheim, Germany) at different time points after stimulation in vitro. Extracted
proteins were boiled in loading buffer for 5 min, resolved by 15% SDS-PAGE, and
transferred to an Immobilon-P membrane (Millipore, Eschborn, Germany).
Membranes were blocked overnight with Tris-buffered saline (TBS)/5% fat-free
skim milk, then incubated with a polyclonal anti-A1 antibody (Cell Signaling
Technology, Danvers, MA, USA) diluted 1 : 1000 overnight at 4 1C and rinsed with
TBS that contained 0.1% Tween 20. For detection, an HRP-linked goat anti-rabbit
antibody (1 : 4000, 30 min at room temperature; Cell Signaling Technology) and
enhanced chemiluminescence substrate (Proteinsimple, Santa Clara, CA, USA)
were used. Membranes were also probed with anti-actin antibody (A2066,
1 : 1000, Sigma-Aldrich) as internal loading control.
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Statistics. Student’s t-test, Mann–Whitney test and paired t-test were used to
compare values between groups as appropriate. IC50-values were calculated
using a log (inhibitor) versus response model. Po0.05 was considered significant.
Graph Pad Prism Software Version 5.0 was used for calculations (GraphPad
Software Inc., La Jolla, CA, USA).
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