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autophagy via modulating the HIF1-REDD1-TSC1-
mTORC1-DEPTOR axis
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MLN4924, a newly discovered small molecule inhibitor of NEDD8-activating enzyme (NAE), inactivates Cullin-RING E3 ubiquitin
Ligases (CRLs) by blocking cullin neddylation. As a result, MLN4924 causes accumulation of several key substrates of CRLs and
effectively suppresses tumor cell growth by inducing apoptosis and senescence. However, the role of MLN4924 in induction of
autophagy and its biological significance are totally unknown. Here we showed that MLN4924 effectively induces autophagy in
both time- and dose-dependent manners in multiple human cancer lines, indicating a general phenomenon. Mechanistically, by
inactivating CRLs, MLN4924 causes accumulation of DEPTOR and HIF1a. The siRNA knockdown and gene KO studies showed
that DEPTOR and the HIF1-REDD1-TSC1 axis are responsible for MLN4924-induced autophagy via inhibiting mTORC1.
Biologically, autophagy is a survival signal to tumor cells, and blockage of autophagy via siRNA knockdown, gene KO and small
molecule inhibitor remarkably enhanced MLN4924-induced apoptosis. Our study reveals an uncharacterized mechanism of
MLN4924 action and provides the proof-of-concept evidence for strategic drug combination of MLN4924 with an autophagy
inhibitor for maximal killing of tumor cells via enhancing apoptosis.
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Cullin-RING ligases (CRLs) are the largest family of E3
ubiquitin ligases.1 By promoting ubiquitination and degrada-
tion of various key substrates, CRLs control several important
biological processes, including cell-cycle progression, signal
transduction, gene transcription, embryonic development,
genomic integrity and tumor suppression.1 Among eight
members of the cullin family,2 cullin-1 binds to adaptor protein
SKP1 and an F-box protein at the N-terminus, and a RING
protein, RBX1 or RBX2 (also known as ROC2 or SAG) at the
C-terminus, thus forming the Skp1, Cullin and F-box protein
(SCF) E3 complex,3 which is the largest member within the
CRL family.1 It is well-established that the substrate specificity
of the SCF complex is determined by the F-box proteins,3,4

whereas the core SCF E3 ubiquitin ligase is a complex of
cullin-1 and RBX1/2. Activity of SCF E3 ubiquitin ligases
requires (1) RING protein, RBX1 or RBX2, which binds to E2
and facilitates ubiquitin transfer from E2 to substrates,5 and
(2) cullin neddylation, which disrupts inhibitory binding by
CAND1 and retains the SCF in an active conformation.6 Like
ubiquitination, neddylation requires E1 NEDD8-activating
enzyme (NAE), E2 NEDD8-conjugating enzyme (UBC12),

and E3 NEDD8 ligase, which catalyzes the transfer of NEDD8
to a target molecule.7,8 Thus, inhibition of any neddylation
enzyme would cause deneddylation of cullins, leading to
inactivation of CRLs/SCF E3 ligases.
MLN4924 is a newly discovered investigational small

molecule inhibitor of NAE.9 MLN4924 binds to NAE to create
a covalent NEDD8–MLN4924 adduct, which cannot be further
utilized in subsequent intraenzyme reactions, thus blocking
NAE enzymatic activity.10 By blocking cullin neddylation,
MLN4924 inactivates CRLs/SCF E3 ligase and causes
accumulation of CRLs/SCF E3 substrates to suppress tumor
cell growth both in vitro and in vivo.9,10 A potential advantage
of MLN4924 over bortezomib, the first and only FDA-
approved general proteasome inhibitor for the treatment of
multiple myeloma,11 is that MLN4924 selectively inhibits
degradation of a specific set of cellular proteins regulated by
CRLs/SCF E3 ligases, whereas bortezomib blocks degrada-
tion of all proteins through the 26S proteasome, leading to
greater general cytotoxicity.11 In fact, MLN4924 was well-
tolerated when administrated to mice.9,12 With promising
preclinical efficacy, MLN4924 has been advanced to several
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Phase I clinical trials against a number of human
malignancies.8,13

Mechanistic studies of MLN4924 action in growth suppres-
sion of tumor cells revealed that MLN4924 effectively induced
apoptosis9,14–17 and senescence18–20 in several human
cancer cell lines. A potential role for MLN4924 in regulation
of autophagy, a type II-programmed cell death, is, however,
unknown. We have recently shown that DEPTOR, a naturally
occurring inhibitor of mTORC1 and mTORC2,21 is a physio-
logical substrate of SCFbTrCP E3 ubiquitin ligase and that
DEPTOR accumulation in response to glucose deprivation
inhibited mTORC1 to induce autophagy.22 We therefore
hypothesized that by inactivating SCF E3 ubiquitin ligase to
cause DEPTOR accumulation, MLN4924 may induce auto-
phagy. Here we report that MLN4924 effectively induced
autophagy in both dose- and time-dependent manners in
multiple human cancer cell lines. Mechanistic studies
revealed that via inactivating CRLs/SCF E3s, MLN4924
caused accumulation of DEPTOR and HIF1a to inhibit
mTORC1 activity directly (DEPTOR) and via the HIF1–
REDD1–TSC1 axis (HIF1a). We further demonstrated that
mTORC1 inactivation and subsequent autophagy induction
act as an overall survival signal, as abrogation of autophagy
led to an increased suppression of tumor growth by enhancing
apoptosis induction. Our study provides proof-of-concept
evidence for a novel drug combination of MLN4924 with an
autophagy inhibitor for more effective cancer therapy.

Results

MLN4924 induces autophagy in multiple human cancer
cells. It was documented that MLN4924 effectively killed
cancer cells via inducing apoptosis9,14–17 and senes-
cence.18–20 To precisely determine the effect of MLN4924
on cell growth, we used the time-resolved video to
dynamically observe how cancer cells were killed by
MLN4924, using HeLa cells expressing EGFP-LC3. We
found that MLN4924 at 0.1 or 1mM within a period of 24 h
effectively induced autophagy in a dose-dependent manner
(Supplementary Videos A and B). We followed up this initial
observation and found that like rapamycin (a known
autophagy inducer), MLN4924 effectively induced autophagy
punctate structures23 in EGFP-LC3-expressing HeLa
(Figure 1a), SK-BR3 (Figure 1b) and MDA-MB-231 cells
(Supplementary Figure S1A). MLN4924-induced autophagy
was further demonstrated by acridine orange staining (AOS),
which measures autophagic acidic vesicular organelles in
SK-BR3 cells (Figure 1c) and U87 cells (Supplementary
Figure S1B). In addition, MLN4924 induction of autophagy
was biochemically demonstrated by a time-dependent con-
version of LC3-I to LC3-II and degradation of p62, two well-
established measurements of autophagy23 in multiple human
cancer cell lines, including HeLa, SK-BR3, MCF7, HCT116
cells (Figure 1d) and in MDA-MB-231 and U87 cells
(Supplementary Figure S1C). Furthermore, MLN4924-
induced autophagy was blocked by BAF A1 (bafilomycin A1),
an inhibitor of vacuolar (Hþ )-ATPase that inhibited
acidification and protein degradation in lysosomes,24 as
evidenced by accumulation of both LC3-I and LC3-II and
abrogation of p62 degradation in MCF7 and HCT116 cells

(Figure 1e). Finally, autophagosomes were readily detect-
able in HeLa and SK-BR3 cells upon MLN4924 exposure by
electron microscopy (Figure 1f). Taken together, these
results clearly indicated that MLN4924 is a potent and
universal inducer of autophagy in multiple cancer cell lines
derived from different tumor tissues.

MLN4924 selectively inhibits mTORC1 activity. We next
determined whether MLN4924-induced autophagy is
mediated by mTORC1, a well-established negative regulator
of autophagy.25,26 Indeed, in multiple cancer lines, MLN4924
treatment for 24 h caused a dose-dependent inhibition of
mTOR auto-phosphorylation at the S2481, and of mTORC1
activity, as reflected by a reduced phosphorylation of S6K1
and 4E-BP1 (Figure 2a). Effect of MLN4924 on mTORC2
activity, as reflected by AKT phosphorylation at S473, was
minimal, if any, among all tested cancer lines (Figure 2a). We
next determined precisely the time course of mTORC1
inactivation upon MLN4924 exposure for up to 12–24 h in
MCF7, SK-BR3, HCT116 (Figure 2b), HeLa (Supplementary
Figure S2A) and MDA-MB-231 cells (Supplementary Figure
S2B). In all the lines tested, MLN4924 remarkably inactivated
mTORC1 (reduced phosphorylation of mTOR, S6K1 and
4E-BP1), starting as early as 4–8h and lasting up to 12–24h
in the testing periods, although the extent of inactivation varied
among different lines. Furthermore, MLN4924 had little, if
any, effect on AKT phosphorylation and no effect on MAPK
activity (Figures 2a and b, and Supplementary Figures S2A
and B). Thus, MLN4924 is highly selective against mTORC1
activity. Finally, we determined directly whether MLN4924
inactivated mTORC1 kinase activity using an in vitro kinase
assay and found that mTORC1-mediated S6K1 phosphory-
lation (25-fold higher than the background noise) was
completely abrogated if mTORC1 complex was isolated
from cells pretreated with MLN4924 or rapamycin
(as positive control; Figure 2c). We concluded from these
cell-based and cell-free assays that MLN4924 effectively and
selectively inhibited mTORC1 activity. We therefore focused
on mTORC1 for the remaining experiments.

MLN4924 caused accumulation of DEPTOR: DEPTOR is
necessary but not sufficient for MLN4924-induced
autophagy. We next determined the underlying mechanism
by which MLN4924 inactivated mTORC1. We first focused
on DEPTOR, a naturally occurring inhibitor of both mTORC1
and mTORC2,21 given very recent observations by us and
the others that DEPTOR is a substrate of SCFbTrCP

E3 ubiquitin ligase.22,27,28 We treated SK-BR3 and MDA-
MB-231 cells, which expressed very low levels of DEPTOR
(Figures 3a and b) with MLN4924 (1 mM) or DMSO for
various time points up to 36 h. In both lines, cullin-1
neddylation was inhibited at 6 h post-treatment when
DEPTOR started to increase, reaching the peak levels at
12 or 36 h in a cell line-dependent manner (Figures 3a
and b). No accumulation of DEPTOR was found in DMSO-
treated cells within the testing periods (Figures 3a and b). We
also determined whether MLN4924 altered the levels of
mTORC components, RAPTOR, RICTOR and GbL, and
mTORC1 inhibitors, TSC1 and TSC2. Although no effect was
found on GbL, TSC1 and TSC2, MLN4924 did reduce the
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Figure 1 MLN4924 induces autophagy: (a and b) Autophagy measured by appearance of punctate vesicle structure: HeLa (a) or SK-BR3 cells (b) stably expressing
EGFP-LC3 were treated with indicated concentrations of MLN4924, along with rapamycin (100 nM) as a positive control, for 24 h and 48 h before photography under a
fluorescent microscope (left panels). Cells with punctate vesicle structures of EGFP-LC3 were counted and expressed as percentage of autophagy (right panel). *Po0.05,
**Po0.01. (c) Autophagy measured by acridine orange staining (AOS): SK-BR3 cells were treated with MLN4924 at indicated concentrations for 24 h, followed by flow
cytometry (top) to quantify autophagy by AOS, using the ratio between geo-mean fluorescence intensity of red versus green fluorescence (FL3/FL1). Shown are
mean±S.E.M. from two independent experiments with statistical values listed (bottom). (d and e) Autophagy measured by LC3-II conversion and p62 degradation: Cells were
treated with MLN4924 (1 mM for SK-BR3 and MCF7, and 0.5mM for HCT116) in the absence (d) or presence of BAF (50 nM for 48 h) (e), followed by IB with indicated Abs. The
band density was quantified and expressed as fold change, compared with the control, by arbitrarily setting the control value as 1. (f) Detection of autophagosomes by EM:
HeLa and SK-BR3 cells were treated for 24 h with MLN4924 (1 mM), along with DMSO vehicle control, followed by the EM analysis. Autohpagosomes (arrows) were shown in
MLN4924-treated cells. Direct magnification: � 46 000. Size bar¼ 100 nm
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levels of RAPTOR, but to a less extent, of RICTOR, which
may also contribute to its preferred inhibition of mTORC1
activity (Figures 3a and b). In addition, we found that in cells
expressing the higher basal levels of DEPTOR, such as in
MCF7 and HeLa cells, MLN4924 had little, if any, effect on
DEPTOR levels, but in both the lines, MLN4924 reduced
RAPTOR levels (data not shown).
To determine whether DEPTOR is required for MLN4924-

induced autophagy, we silenced DEPTOR via siRNA in SK-
BR3 and MDA-MB-231 cells, and found that in both the lines,
DEPTOR knockdown partially restored mTORC1 activity, as
reflected by a partial recovery of 4E-BP1 phosphorylation, and

incompletely inhibited MLN4924-induced autophagy, as
demonstrated by partial recovery of LC3-II conversion and
p62 degradation (Figures 3c and d, lanes 7 and 8 versus 3
and 4). A similar observation, but to a lesser extent, wasmade
in HeLa cells, in which MLN4924 treatment failed to cause
DEPTOR accumulation (Supplementary Figure S3, lanes 3
and 4 versus 1 and 2; and 7 and 8 versus 3 and 4).
Interestingly, although much less effective than MLN4924,
DMSO treatment caused a moderate increase of DEPTOR to
inactivate mTORC1 (reduced 4E-BP1 phosphorylation) after
an extended culture period for 48 h, when cells became
confluent (Figures 3c and d, lanes 1 versus 2 and 3 versus 4),
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Figure 3 MLN4924 induces accumulation of DEPTOR, which is necessary but not sufficient for MLN4924-induced autophagy: (a and b) Accumulation of DEPTOR by
MLN4924. Cells were treated with 1.0mMMLN4924 or DMSO vehicle control for indicated time periods, followed by IB with indicated Abs. (c and d) Attenuation of MLN4924-
induced autophagy by siRNA knockdown of DEPTOR. Cells were transfected with siRNA targeting DEPTOR or scrambled control siRNA, for 24 h and subjected to MLN4924
(1.0mM) treatment for 1 or 2 days, followed by IB with indicated Abs. The band density was quantified and expressed as fold change, compared with the control, by arbitrarily
setting the control value as 1

Figure 2 MLN4924 inhibits mTORC1 activity: (a) Dose and (b) time dependent: Cells were treated with various concentrations of MLN4924 for 24 h (a) or with 1.0mM
MLN4924 for MCF7 and SK-BR3 cells, or 0.5mMMLN4924 for HCT116 cells (b) for indicated time periods, followed by IB with indicated Abs. (c) The in vitromTORC1 kinase
activity assay. HA-tagged S6K1 was transfected into 293 cells, followed by immune-affinity purification by IP using bead-conjugated HA antibody. After elution with HA peptide,
HA-S6K1 was added into a kinase reaction mixture containing mTORC1 complex, which was immunoprecipitated by an mTOR Ab from HCT116 cells after a 24-h treatment
with MLN4924 (0.5mM), along with rapamycin control (100 nM). The reaction mixture was incubated for 90min at 301C with constant shaking, followed by IB with indicated
Abs. The whole-cell extract (WCE) of HCT116 cells were also subjected to IB with indicated Abs to show expected effects of MLN4924 and rapamycin. LEX, longer exposure.
The band density was quantified and expressed as fold change, compared with the control, by arbitrarily setting the control value as 1
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suggesting that high cell density could also trigger DEPTOR
expression to inactivate mTOR proliferation signals.21 Taken
together, these results indicate that DEPTOR is necessary but
not sufficient to mediate MLN4924-induced autophagy,
suggesting the involvement of additional regulators of
mTORC1.

MLN4924 causes the accumulation of HIF1a but not
REDD1 and TSC2. We next focused on other known
substrates of CRL/SCF E3 ligases in the mTOR signaling
pathway for additional regulators that may mediate
MLN4924-induced autophagy. Although mTOR itself and
mTOR inhibitor TSC2 were reported to be degraded by
SCF-FBXW729 and Cul4A-DDB1-FBXW5,30 respectively, we
did not observe any accumulation of mTOR and TSC2 upon
MLN4924 treatment in multiple cancer cell lines (Figures 2
and 3 and Supplementary Figure S2), thus, excluding their
involvement. We then measured HIF1a, a well-known
substrate of Cul2-VHL-RBX1 E331 which negatively regu-
lates mTORC1 signal via REDD1–TSC1/2 axis.25 Indeed,
MLN4924 inhibited cullin-2 neddylation and caused a
remarkable accumulation of HIF1a in a dose-dependent
manner (Figure 4a). As MLN4924 at 0.1mM is sufficient to
deneddylate Cul2 and inactivate Cul2-VHL-RBX1 E3, we
used this low drug concentration and determined the time
course (up to 24 h) of HIF1a accumulation. As shown in
Figures 4b–d and Supplementary Figures S4A and B, in all
the five cancer lines tested, MLN4924 caused a time-
dependent accumulation of HIF1a, although the peak
induction varied among the lines. Thus, HIF1a is likely
involved in the process of MLN4924-induced autophagy.
Surprisingly, although REDD1 was reported to be a hypoxia/
HIF1 downstream target32,33 and a known substrate of
Cul4A-DDB1 E3 ligase,34 we did not observe any MLN4924-
selective REDD1 accumulation in all the five cancer lines
tested, even MLN4924-induced Cul4A deneddylation is
evident (Figures 4b–d and Supplementary Figures S4A and B).
However, consistent with a previous report that REDD1
increased under high cell-density condition,32 we did observe
increased REDD1 levels in DMSO-treated cells at later time
points when cell density became high (Figures 4b–d and
Supplementary Figures S4A and B). Thus, REDD1 may not
be a direct target of CRL ligases. Rather, the expression of
REDD1 is very sensitive to the culture conditions.

HIF1a–REDD1–TSC1 axis contributes to MLN4924-
induced autophagy. We next determined whether the
HIF1a–REDD1–TSC1 axis causally affected MLN4924-
induced authophagy using siRNA knockdown and gene-
knockout approaches. HIF1a knockdown in SK-BR3 and
MCF7 cells partially restored mTORC1 activity (as reflected
by partial recovery of S6K1 and 4E-BP1 phosphorylation),
and partially abrogated MLN4924-induced autophagy (as
demonstrated by partial inhibition of LC3-II conversion and
p62 degradation) (Figure 5a, lanes 3 and 4 versus 7 and 8;
and 11 and 12 versus 15 and 16). Likewise, we used paired
Hif1aþ /þ versus Hif1a� /� MEFs35 and found a reduction of
MLN4924-induced autophagy in Hif1a� /� MEF cells, as
compared with the Hif1aþ /þ control cells, particularly after
3-day MLN4924 treatment, as MEFs are more resistant than

cancer cells to MLN492418 (Figure 5b, lanes 3 and 4 versus 7
and 8; and 11 and 12 versus 15 and 16). We confirmed the
identity of Hif1aþ /þ versus Hif1a� /� MEFs by PCR
genotyping35 and RT-PCR (Supplementary Figures S5A
and B), and showed Hif1a accumulation by MLN4924 at the
earlier time points in Hif1aþ /þ but not in Hif1a� /� MEFs
(Supplementary Figure S5C). Furthermore, siRNA knock-
down of REDD1 partially restored mTORC1 activity and
inhibited MLN4924-induced autophagy in SK-BR3 and MCF7
cells (Figure 5c, lanes 3 and 4 versus 7 and 8; and 11 and 12
versus 15 and 16), and to a lesser extent in HCT116 cells,
likely due to less effective REDD1 knockdown (Supplementary
Figure S5D, lanes 3 and 4 versus 7 and 8). Lastly, using
paired Tsc1þ /þ versus Tsc1� /� MEF cells, we found that
both the MLN4924-induced mTOR inactivation and autop-
hagy induction were largely abrogated in Tsc1-null cells
(Figure 5d, lanes 1–4 versus 5–8). Taken together, these
results indicated that the HIF1a–REDD1–TSC1 axis also
contributes to MLN4924-induced mTORC1 inactivation and
autophagy induction.

Abrogation of autophagy enhanced MLN4924-induced
apoptosis. Finally, we determined whether manipulation of
autophagy by approaches including siRNA knockdown, gene
knockout and small molecule inhibitors would affect apopto-
sis, given the fact that apoptosis is a well-known mechanism
for MLN4924-induced growth suppression.9,14–17 Using a
paired Atg5þ /þ versus Atg5� /� MEF cells in the ATP-lite
cell growth assay, we found that autophagy-deficient Atg5� /�

cells36 were much more sensitive than autophagy-
competent Atg5þ /þ cells to MLN4924-induced growth
suppression with Bthreefold lower IC50 value (3mM in
Atg5� /� versus 8 mM in Atg5þ /þ cells) (Figure 6a). Inter-
estingly, MLN4924 at 2–2.5 mM (which induced autophagy in
Atg5þ /þ MEF cells, see Figure 6b) stimulated the growth up
to 30% in autophagy-competent Atg5þ /þ MEFs, but not at
all in autophagy-deficient Atg5� /� MEFs (Figure 6a),
suggesting that induction of autophagy have a survival role.
To determine the nature of enhanced growth suppression in
Atg5� /� MEFs, we first confirmed that MLN4924 at 2.5mM
indeed induced autophagy in autophagy-competent Atg5þ /þ

MEFs, but not in autophagy-deficient Atg5� /� MEFs, as
demonstrated by LC3-I to LC3-II conversion and p62
degradation (Figure 6b, top three panels, lanes 1–4 versus
5–8). We then used western blotting to determine the
cleavage of PARP and caspase-3 as the readouts for
apoptosis, and found that MLN4924 induced apoptosis in
Atg5� /� but not in Atg5þ /þ MEFs (Figure 6b, panels 4–6,
lanes l–4 versus 5–8). Furthermore, we used FACS analysis
and showed that MLN4924 induced remarkably more
apoptosis in Atg5� /� MEFs than that in Atg5þ /þ cells, as
reflected by a much higher fold induction of sub-G1
population in Atg5� /� MEFs (Figure 6c, top panel, a
representative FACS profile; and bottom panel, fold change,
n¼ 3). Similar results, but to a lesser extent, were seen in
MCF7 cells when ATG5 was partially silenced to B50%
levels (Figures 6d and e). Lastly, we used BAF A1 to further
demonstrate that blockage of autophagy would enhance cell
killing via switching to apoptosis. Although BAF A1 at
nanomolar concentration remarkably increased the levels of
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LC3 and p62 (Figure 6f and Supplementary Figure S6, top
two panels) as expected, it had minor, if any, effect on
inducing apoptosis (Figure 6f and Supplementary Figure S6,
lanes 8 and 9). Combination of BAF A1 with MLN4924

significantly increased MLN4924-induced apoptosis in a
dose-dependent manner, as evidenced by increased clea-
vage of PARP and caspase-3/7 (Figure 6f and Supplementary
Figure S6, lanes 4–7 versus 2 and 3 and 8 and 9). Note that
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MCF7 cells lack the expression of caspase-3 and the
cleavage/activation of caspase-7 was used instead. Taken
together, these results indicated that induction of autophagy
in this setting is an overall survival signal for tumor cells, and
autophagy abrogation increases growth suppression by
MLN4924 via enhancing apoptosis.

Discussion

MLN4924 is an investigational small molecule currently in
several Phase I clinical trials as a novel agent against 4–5
types of human cancers.8,13 MLN4924 was identified in a
chemical screening for inhibitors of NAE, an enzyme which
catalyzes the first-step reaction of protein neddylation.9 By
inhibiting NAE activity via forming a covalent binding,10

MLN4924 blocks cullin neddylation, a process required for
CRL E3 ligase activity,7,8 and inactivates CRLs. Subsequent
accumulation of several key regulatory substrates of CRLs,
such as IkBa and CDT1, causes the suppression of tumor
growth mainly by inducing apoptosis.9,14–17 Few recent
studies also showed that MLN4924 induced senescence18–20

via inducing p21.18 Involvement of MLN4924 in other types of
cell death, such as autophagy, was totally unknown. In this
study, we reported our novel finding that MLN4924 is a
general inducer of autophagy in all tested human cancer lines
derived from carcinomas of breast, colon, cervix and brain
(Figure 1 and Supplementary Figure S1).
Autophagy is a stress-responsive cell survival program by

which cytoplasmic materials, including dysfunctional orga-
nelles and misfolded proteins, reach lysosomes for degrada-
tion.37 Autophagy is involved in many physiological and
pathological processes.23,37 Although multiple signaling path-
ways and associated proteins are known to regulate
autophagy, either positively or negatively,38 the mTOR
pathway is a well-established negative regulator of autop-
hagy, given that mTORC1 inhibits autophagosome formation,
whereas mTORC2 represses the expression of some
autophagy-related genes and other autophagy regula-
tors.25,26 Likewise, rapamycin, a potent inhibitor of mTORC1,
is commonly used as an autophagy inducer.25 Our mechan-
istic study revealed that MLN4924-induced autophagy is
largely mediated by inactivation of mTORC1 (reflected by
reduced mTOR/S6K1/4E-BP1 phosphorylation), but unlikely
by inactivation of mTORC2 (reflected by lack of major change in
AKT phosphorylation; Figure 2 and Supplementary Figure S2).
We validated a causal effect of mTORC1 inactivation on
autophagy induction by both genetic and pharmaceutical
approaches, including siRNA knockdown, gene KO and small
molecule inhibitors (Figures 3, 5 and 6, and Supplementary
Figures S3, S5 and S6). We further demonstrated mechan-
istically that mTORC1 inactivation by MLN4924 mainly
involves (1) DEPTOR, a direct inhibitor of mTORC1, and (2)
the HIF1–REDD1–TSC1 axis, a known negative regulatory

pathway of mTORC1. Furthermore, downregulation of RAP-
TOR (Figure 3), an mTORC1 component essential for its
activity,39 may also contribute to mTORC1 inhibition, although
the underlying mechanism is unclear.
DEPTOR is a recently discovered naturally occurring

inhibitor of mTOR, which directly binds to mTOR and inhibits
activities of both mTORC1 and mTORC2.21 By doing so,
DEPTOR acts in general as a tumor suppressor via inhibiting
protein synthesis, cell proliferation and survival effects of AKT.
However, under certain circumstances, DEPTOR could act as
an oncogene by relieving the feedback inhibition from S6K1 to
PI3K, thus activating AKT.21 This could also explain why
DEPTOR appears to be associated with suppression of
mTORC1, but not mTORC2, in our study. As a physiological
substrate of SCFbTrCP E3 ligase,22,27,28 DEPTOR was
accumulated upon MLN4924 exposure in tumor cell lines
expressing a low basal level (Figures 3a and b), but not in
other lines with a high basal expression (data not shown). The
underlying mechanism likely involves either deficiency of SCF
E3 components or inactivation of DEPTOR kinases (RSK1
and S6K1)22 in high expressing lines. Functionally, we found
that DEPTOR is necessary but not sufficient for MLN4924-
mediated mTORC1 inhibition and autophagy induction in both
low and high expressing lines (Figures 3c and d and
Supplementary Figure S3), as only a partial rescue of
mTORC1 inactivation and autophagy induction were
observed upon DEPTOR knockdown.
In addition to DEPTOR, we found that the HIF1–REDD1–

TSC1 axis is actively involved inmediatingmTORC1 inhibition
and autophagy induction by MLN4924. As a well-known
substrate of Cul2-VHL E3,31 HIF1a was remarkably accumu-
lated by MLN4924. Unexpectedly, however, MLN4924 failed
to cause REDD1 accumulation in any of the five lines tested
(Figures 4b–d and Supplementary Figures S4A and B),
although REDD1 is a known hypoxia and HIF-1 target,32,33

and a known substrate of Cul4A-DDB1 E3 ligase.34 By
contrast, we observed a lower REDD1 level in MLN4924-
treated cells than that in DMSO-control cells. Given the
observation that REDD1 was induced at high cell density,32

it is likely that MLN4924-induced growth suppression pre-
vented density-dependent REDD1 induction in MLN4924-
treated cells. Although REDD1 levels were not accumulated
upon MLN4924 treatment, REDD1, as well as HIF1 and
TSC1, was found to be necessary for mTORC1 inactivation
and autophagy induction by MLN4924, as demonstrated by
the rescuing experiments using siRNA knockdown of REDD1
or HIF1a, and gene knockout of Hif1a or Tsc1 (Figure 5 and
Supplementary Figure S5). Thus, both DEPTOR and the
HIF1–REDD1–TSC1 axis are responsible for MLN4924-
mediated mTORC1 inactivation and autophagy induction.
Unlike apoptosis, which directly kills tumor cells, autophagy

could, in addition to cell killing, allow survival of tumor cells
under a nutrient-poor environment by providing free amino

Figure 5 The HIF1–REDD1–TSC1 axis is required for MLN4924-induced autophagy. Cancer cells were transfected with siRNA targeting (a) HIF1a, (c) REDD1 or
scrambled control siRNA, for 24 h and subjected to 1.0 mMMLN4924 treatment for 1 (M1) or 2 (M2) days, using DMSO vehicle as the control for 1 (D1) or 2 (D2) days. Paired
MEF cells of (b) Hif1aþ /þ versus Hif1a� /� or (d) Tsc1þ /þ versus Tsc1� /� were treated with 2.5mM MLN4924, or DMSO control for up to 3 days (M1-3/D1-3). Cell
lysates were then prepared and subjected to IB with indicated Abs. M, MLN4924; D, DMSO; LEX, longer exposure. The band density was quantified and expressed as fold
change, compared with the control, by arbitrarily setting the control value as 1
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acids andmetabolites from degraded proteins and subcellular
organelles.37,38 It becomes clear that apoptosis and auto-
phagy are intertwined processes, and cross-talk between
them determines overall fate of the cell.40 Indeed, in some
cases, autophagy potentiates and enhances apoptosis,
whereas in other cases, autophagy is cytoprotective and
offers drug resistance. Under the later situation, autophagy
inhibition potentiates apoptosis and sensitizes cancer cells to
anticancer drugs (for review, see Chen andWhite37 and Notte
et al.41). In this study, we showed that MLN4924-induced
autophagy has a survival role, as its abrogation via various
approaches increases growth suppression via enhancing
apoptosis.
In summary, our study supports the following model. By

inactivation of CRLs/SCF E3 ligases, MLN4924 causes
accumulation of DEPTOR and HIF1a, two well-known
substrates of Cul1-bTrCP and Cul2-VHL E3s. DEPTOR
directly binds to and inhibits mTORC1 (occurring relatively
late—12–24h post treatment, Figures 3a and b),
whereas HIF1a activates REDD1–TSC1 axis to block
mTORC1 (occurring relatively early—4h post treatment,

Figures 4b–d), leading to induction of survival autophagy.
Blockage of autophagy sensitizes tumor cells to apoptosis
induced by MLN4924 (Figure 7). Our most recent results
showed that inactivation of CRL E3 ligase by MLN492442 or by
RBX1 knockdown43 could also induce protective autophagy in
two human liver cancer cell lines. Taken together, our study
reveals that MLN4924 can effectively target mTOR pathway in
cancer cells44 and suggests a rational drug combination of
MLN4924 with an autophagy inhibitor for effective tumor cell
killing, likely leading to an increased efficacy of cancer therapy.

Materials and Methods
Cell lines. The following human cancer cell lines were obtained from ATCC
and used in this study: HeLa, human cervical cancer cells; SK-BR3, MCF7, MDA-
MB-231 human breast cancer cells; HCT116, human colon cancer cells; U87
human glioblastoma cells; and 293 human embryonic kidney cells. Cells were
cultured in DMEM, supplied with 10% fetal calf serum. All MEFs cells with various
gene knockout were also cultured in the same 10% DMEM.

Establishment of EGFP-LC3 lines and MLN4924 treatment.
Several stable lines expressing EGFP-LC3 were established after transfection
with an expression vector encoding EGFP-LC3 and puromycin or hygromycin
selection. Cells were treated with MLN4924 (a gift from Millennium Pharmaceu-
ticals, Inc., Cambridge, MA, USA) at various concentrations for various periods of
time, followed by photography under fluorescence microscopy.

Acridine orange (AO) immunofluorescent staining. Quantification
of autophagy by AO staining using flow cytometry was performed. Briefly, cells after
being treated with MLN4924 at different concentrations for 24 h were stained with
1mM AO for 15min at 371C, trypsinized, washed and collected in phenol red-free
growth medium. Green (510–530 nm) and red (650 nm) fluorescence emission from
cells illuminated with blue (488 nm) excitation light was measured by flow cytometry.
Depending on their acidity, autophagic lysosomes appeared as the orange/red
fluorescent cytoplasmic vesicles, while nuclei were stained green. Autophagy was
quantified as a ratio between geomean fluorescence intensity of red versus green
fluorescence (FL3/FL1), and the data are presented as the fold changes with an
arbitrary setting of autophagy in cells treated with DMSO control as 1.

Transmission electron microscopy. HeLa and SK-BR3 cells were
treated with MLN4924 at 1 mM for 24 h, respectively, and rinsed with 0.1 M
Sorensen’s phosphate buffer (pH 7.4) before fixing with 2.5% glutaraldehyde in
Sorensen’s phosphate buffer at room temperature for 30min. The cell dishes were
then processed at the Microscopy and Image-analysis Core at the University of
Michigan for TEM analysis with photos taken at various magnifications.

Immunoblotting analysis. After the indicated treatments, cells were lysed
in a Triton X-100 or RIPA buffer with phosphatase inhibitors.45 The antibodies
were purchased as follows: CUL1, human HIF1a, S6K1, mTOR (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), b-actin, HA, (Sigma, St. Louis, MO, USA),
DEPTOR, ATG5 (Millipore, Billerica, MA, CA, USA), Phospho-4E-BP1, 4E-BP1,
Phospho-ERK1/2 (Thr202/Tyr204), ERK1/2, Phospho-S6K1 (Thr389), Phospho-
AKT (Ser473), AKT, LC3-I/II, p62, mTOR, phosphor-mTOR-S2481, RICTOR,
RAPTOR, GbL, TSC1, TSC2, Cul4A, PARP, caspase-3 and caspase-7
(Cell Signaling Technology, Danvers, MA, USA), Cul-2 and human HIF1a
(BD Biosciences, San Jose, CA, USA), REDD1 (Proteintech, Chicago, IL, USA),
and mouse HIF1a (Novus Biologicals, Littleton, CO, USA). The band density in
western blots was quantified by Image J software.46

Cullins

MLN4924

mTORC1

DEPTOR

Autophagy

Apoptosis

HIF1α

REDD1

TSC1/2

Figure 7 A model for MLN4924 induces protective autophagy (see text for
details)

Figure 6 Inhibition of autophagy enhances MLN4924-induced apoptosis: (a–c) Autophagy deficient cells are more sensitive to MLN4924-induced apoptosis. Paired MEFs
(Atg5� /� versus Atg5þ /þ ) were treated with MLN4924 at various concentrations, along with DMSO control, for up to 3 days, followed by ATPlite cell proliferation assay
(a, mean±S.E.M., n¼ 3, *Po0.05; **Po0.01), IB (b, 2.5mM) or FACS analysis for sub-G1 apoptotic population (c, Top, a representative FACS profile and bottom, fold of
change, mean±S.E.M., n¼ 3, *Po0.05). LEX, longer exposure. (d and e) siRNA knockdown of ATG5 sensitizes MCF7 breast cancer cells to MLN4924-induced apoptosis.
MCF7 cells were transfected with siRNA oligo targeting ATG5, along with scrambled control siRNA for 24 h, then subjected to MLN4924 treatment for 1 or 2 days, followed by
ATPlite cell proliferation assay (d, mean±S.E.M., n¼ 3) *Po0.05 or IB (e). (f) Blockage of autophagy sensitizes MCF7 cells to MLN4924-induced apoptosis. MCF7 cells
were treated with MLN4924 alone or in combination with BAF A1 (after 24-h pre-treatment with MLN4924) for another 24 h, followed by IB. The band density was quantified
and expressed as fold change, compared with the control, by arbitrarily setting the control value as 1
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The in vitro kinase assay. The in vitro kinase assay was performed as
described.47 Briefly, HA-tagged S6K1 was transfected into HEK293 cells; after
48 h, the cells were treated with 20mM LY294002 for 1 h (without medium change)
before cell harvesting and lysis. HA-tagged S6K1 was pulled down by bead-
conjugated anti-HA Ab and eluted with HA peptide. The mTORC1 complex was
isolated and purified from HCT116 cells pretreated with MLN4924 (1mM),
rapamycin (100 nM, as positive control) or DMSO vehicle control for 24 h by
immunoprecipitation using anti-mTOR antibody. A kinase reaction was initiated by
incubating bead-conjugated mTORC1 complex with HA-S6K1 in a kinase reaction
buffer (25mM HEPES (pH 7.4), 50mM KCl, 10mM MgCl2, 250 mM ATP) at 301C
with constant vortexing for 90min. Phosphorylation of HA-S6K1 by mTORC1 was
detected by IB with anti-S6K1 phospho-specific Ab.

Genotype and RT-PCR analysis of Hif1aþ /þ and Hif1a� /� MEF
cells by PCR. Identification of Hif1a� /� and Hif1aþ /þ MEF was confirmed
by genotyping as described35 and RT-PCR analysis.48 For genotype, the
sequences for wild-type Hif1a were 50-TGTAGTCTCCTGCTAAAAG-30 (forward)
and 50-TTATTCGAGTTAAGACAAAC-30 (reverse). The PCR condition was as
follows: annealing at 941C for 4min, followed by 32 cycles of amplification at 941C
for 30 s, 521C for 25 s, and 721C for 25 s, and extension at 721C for 7 min. The
sequences for mutant allele were 50- ACTGGCTGCTATTGGGCGAAGTG-3’
(forward) and 50-GTAAAGCACGAGGAAGCGGTCAG-30 (reverse) with the PCR
condition of annealing at 941C for 4min; amplification for 32 cycles at 941C for 30 s,
671C for 25 s, and 721C for 25 s; and extension at 721C 7 for min. For RT-PCR, the
sequences of the primer sets are as follows: Hif1a, 50-AGATGAGTTCTGAACGTCG
AAA-30 (forward) and 50-TCACTGTCTAG ACCACCGGC-30 (reverse); GAPDH,
50-GTATGACTCCACTCACGGCAAA-30 (forward) and 50-GGTCTCGCTCCTGGAA
GATG-30 (reverse).

SiRNA silencing. Cells were transfected with the following siRNA
oligonucleotides by Lipofectamine 2000. ATG5: 50-GGATGAGATAACTGAAAGG-
30; REDD1: 50-GTGGAGACTAGAGGCAGGAGC-30; HIF1a: 50-CTAACTGGACACA
GTGTGT-30; DEPTOR: 50-GCCATGACAATCGGAAATCTA-30; and siCont: 50-ATTG
TATGCGATCGCAGACTT-30.

ATPlite cell proliferation assay. Cells were seeded in 96-well plates and
treated with various concentrations of MLN4924 for 72 h, followed by ATP-lite
assay for cell proliferation.18 The results from three independent experiments,
each run in triplicate were plotted.

FACS (fluorescence-activated cell sorting) analysis. Cells were
treated with various concentration of MLN4924 for 24 or 48 h, followed by flow
cytometry, as described.12

Statistical analysis. Paired or homoscedastic two-tailed Student’s t-test was
performed.
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