
Reactive oxygen species initiate luminal but not basal
cell death in cultured human mammary alveolar
structures: a potential regulator of involution
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Post-lactational involution of the mammary gland is initiated within days of weaning. Clearing of cells occurs by apoptosis of the
milk-secreting luminal cells in the alveoli and through stromal tissue remodeling to return the gland almost completely to its pre-
pregnant state. The pathways that specifically target involution of the luminal cells in the alveoli but not the basal and ductal cells
are poorly understood. In this study we show in cultured human mammary alveolar structures that the involution process is
initiated by fresh media withdrawal, and is characterized by cellular oxidative stress, expression of activated macrophage marker
CD68 and finally complete clearing of the luminal but not basal epithelial layer. This process can be simulated by ectopic addition
of reactive oxygen species (ROS) in cultures without media withdrawal. Cells isolated from post-involution alveoli were enriched
for the CD49fþ mammary stem cell (MaSC) phenotype and were able to reproduce a complete alveolar structure in subcultures
without any significant loss in viability. We propose that the ROS produced by accumulated milk breakdown post-weaning may
be the mechanism underlying the selective involution of secretory alveolar luminal cells, and that our culture model represents
an useful means to investigate this and other mechanisms further.
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The non-lactating but mature mammary epithelium in humans
consists of a simple ductal network that is supported within the
mammary stroma. The stroma is comprised of fibroblasts that
either form dense connective tissue next to the ducts or fatty
adipocytes between the lobules of the gland.1,2 In response to
hormonal changes during pregnancy, the epithelium under-
goes massive expansion, differentiation and branching
morphogenesis to generate the complex lobulo-alveolar
structures that produce and secrete milk.3,4 Although differ-
entiation of the gland takes almost the full period of pregnancy
to occur, subsequent involution and clearing of the secretory
epithelium is initiated within several days of weaning and is
almost complete within several weeks.5

The process of involution inmousemodels involves a highly
orchestrated series of molecular and physical events that can
be divided into two distinct phases.6 Accumulation of milk in
the alveolar lumen is required to initiate the first (reversible)
phase during which the secretory cells begin to enter
apoptosis 2 days post-weaning. At around 4 days post-
weaning, the second (irreversible) phase of involution begins
when matrix remodeling enzymes are upregulated.7 Expres-
sion of matrix remodeling factors is largely restricted to the
stromal fibroblasts surrounding the lobulo-alveolar network,
and is likely to be regulated by epithelial-mesenchymal

cross-talk originating in the glandular epithelium.2,8 By 10
days post-weaning the gland is regressed almost completely
to its pre-pregnant state, with the exception of a small
population of lactation-associated cells that remains at the
basal surface and are believed to serve as a ‘memory’ for
subsequent lactations.9,10 Although there is a growing body of
knowledge of the specific signals that drive luminal but not
basal cell clearing during involution of animal models, such
pathways are poorly understood in human systems.11,12

Synthesis of milk by the secretory epithelial cells is
regulated by negative feedback, as the lumen becomes filled
with milk and prevents overfilling.13 Several mechanisms to
initiate involution have been proposed, and experiments in
animal models indicate that involution is not solely a
mechano-sensory mechanism but also a biochemical
mechanism that is driven by a component of the milk.14 In
the mammary gland and other cell types, oxidative stress
resulting from excess reactive oxygen species (ROS) has
been shown to be an initiator of apoptosis.15,16

We questioned whether ROS produced by the breakdown
of the accumulated milk might be involved in the induction of
apoptosis in the first phase of mammary involution. In this
study, we show in vitro that involution of mammary epithelial
alveoli occurs by the accumulation of ROS after media
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1School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia; 2School of Surgery,
The University of Western Australia, Perth, Western Australia, 6009, Australia; 3St. John of God Pathology, Subiaco, Western Australia, 6008, Australia and 4Centre for
Microscopy, Characterization and Analysis, QEII Medical Centre, The University of Western Australia, Perth, Western Australia, 6009, Australia
*Corresponding author: E Thomas, School of Biomedical, Biomolecular and Chemical Sciences, Bayliss Building (M310), The University of Western Australia,
Nedlands 6009, Western Australia, Australia. Tel: þ 61 8 6488 4429; Fax: þ 61 8 6488 7086; E-mail: libby.thomas@uwa.edu.au
Keywords: mammary epithelium; involution; apoptosis; basal/stem cell; reactive oxygen species
Abbreviations: MaSC, mammary stem cell; ROS, reactive oxygen species; PMEC, primary mammary epithelial cells; HMFG, human milk fat globule; MW, media
withdrawal; a-Lac, a-lactalbumin; b-cas, b-casein; Prl, prolactin; CK18, cytokeratin 18; CK14, cytokeratin 14; DCFDA, dichlorofluoroscein diacetate; NAC, N-acetyl
cysteine; ECM, extracellular matrix

Citation: Cell Death and Disease (2011) 2, e189; doi:10.1038/cddis.2011.69
& 2011 Macmillan Publishers Limited All rights reserved 2041-4889/11

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2011.69
mailto:libby.thomas@uwa.edu.au
http://www.nature.com/cddis


withdrawal in a pattern similar to post-weaning in vivo, and
targets cell death in the luminal but not basal population.
Furthermore, we show that involution can be induced by
addition of ectopic ROS to fresh culture media. At the onset of
irreversible luminal cell death, a population of cells expressing
the macrophage marker CD68 emerges in the luminal
population. We propose that ROS is a signal to initiate cell
death in the ROS-sensitive luminal population, whereas the
ROS-insensitive population is preserved, and that completion
of clearing is maintained by a signal originating in the CD68þ

luminal population.

Results

Primary mammary epithelial cells (PMEC) from lactating
human tissue form differentiated, functional alveoli in
culture. We generated alveolar structures in reconstituted
biomatrix using a multipotent human primary mammary
epithelial cell line (PMEC) isolated from lactating tissue via
breastmilk (Figure 1a).17,18 This multipotent population

expresses the mammary stem cell marker CD49f, and in
culture around 40% of CD49fþ cells were able to produce
differentiated alveolar structures; however, cell viability and
alveolar size decreased with passage number (Figure 1b).
Differentiated structures consisted of a basal layer of CD49fþ

cells and a luminal layer of CK18þ cells (Figure 1c). Overall
growth of the alveolar units reached a plateau after around
12 days in culture, and with repetitive media changes could be
maintained for over 1 month in homeostasis. At this stage
luminal cells represented approximately two thirds of the total
cell number per alveolus (Figure 1d). In response to prolactin
treatment, subsets of the CK18þ luminal cells produced
hallmark milk proteins b-casein, a-lactalbumin and human milk
fat globule (HMFG) protein (Figure 1e). Both b-casein and
a-lactalbumin appeared localized in the luminal cells; however,
HMFG appears to be actively transported into the luminal
space from the polarized luminal cells (Figure 1f).

Oxidative stress is associated with luminal-specific cell
death in involuting alveoli. When media changes were
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Figure 1 Epithelial cells isolated from human breastmilk form differentiated alveolus-like structures that secrete milk proteins in vitro. (a) Bright-field image of alveolus-like
structures in three-dimensional Matrigel culture. (b) Number of alveoli formed per 100 single cells plated in Matrigel and mean alveolus size from early to late passage primary
cells. (c) Differentiation of CD49fþ (yellow) cells in Matrigel from day 4 into a bilayer with a luminal layer of CK18þ (magenta) cells by day 12. Scale¼ 20mM. (d) Proportion of
basal (CD49fþ ) and luminal (CK18þ ) cells per total alveolar cell number. (e) Percentage of luminal cells expressing secretory markers b-casein, a-lactalbumin and HMFG.
(f) Localization of secretory marker proteins in alveolar structures. Scale¼ 100mM (b-casein and a-lactalbumin) and 20mM (HMFG). ***P¼ 0.001. Graphs represent
mean±S.D. of at least 20 alveoli from each of five independent experiments
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Figure 2 Luminal but not basal cells regress in response to fresh media withdrawal. (a) Regression of luminal (magenta) but not CD49fþ basal (yellow) compartment from day 12
(withdrawal of media changes or application of ectopic ROS) to day 26. Scale¼ 100mM. (b) Quantitative count of luminal cell regression per alveolus from day 12 to day 26 when media
changes are withdrawn on day 12 in the presence of 15mM, 20mM, 25mM or 30mM hydrocortisone (HC). (c) Bright-field (top panel) images of alveoli on days 12, 14 and 16 after media
withdrawal on day 12. Corresoponding heat maps (bottom panel) show relative oxidative stress (red¼ high ROS; blue¼ low ROS). Scale¼ 80mM (days 12, 14 and 16) or 60mM (day
14 zoom). (d) Quantitative count of luminal cell regression per alveolus from day 12 to day 26 when media changes are withdrawn on day 12 in the presence of 5mM, 10mM, 15mM or
20mM N-acetyl cysteine (NAC). Graphs represent mean±S.D. of at least 20 alveoli from each of 12 independent cultures distributed evenly across three separate experiments
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withdrawn after complete differentiation at day 12, the
cultures began to show signs of partial degradation by day
18, coinciding with a drop in extracellular pH. By day 26 the
alveolar structures consisted of a single CD49fþ epithelial
layer (Figure 2a). Absolute cell counts of CK18þ luminal
cells indicate that the rate of cell death was not constant, and
a massive loss in luminal cell integrity occurred at day 20 of
culture (Figure 2b). The rate of luminal cell death could be
delayed to day 22 by at least a 25-mM increase in the
concentration of hydrocortisone, a known inhibitor of
involution in vivo.6,19 Accumulation of milk is a known pre-
requisite for the initiation of involution, and during the
breakdown of this milk ROS are produced. As ROS can
induce apoptosis in sensitive cell types, we questioned
whether this mechanism could also be involved in the
involuting epithelial cells. Indeed, when fresh media was
withdrawn alveolar cells began to undergo oxidative stress
within 2 days as shown by the marker DCFDA, which is
oxidized in the presence of ROS, generating a fluorescent
product (Figure 2c). Notably, oxidative stress was not
restricted to the luminal population (far right panel
Figure 2c) and in fact occurred first in the basal cell
population. Nevertheless, we only observed cell death in
the luminal cells and not in the basal population. To test
whether cell death was mediated by increased ROS and not
other by products of cell metabolism or expiring media, we
treated cultures with the reactive oxygen scavenger N-acetyl
cysteine (NAC) after media withdrawal on day 12. At a
minimum concentration of 5 mM NAC, initiation of luminal cell
death was delayed to day 22, and this was extended with
increasing concentrations of NAC (Figure 2d).

Ectopic addition of ROS simulates luminal cell death by
fresh media withdrawal. To further investigate the response
to increasing ROS concentration, we supplemented differenti-
ated alveoli with hydrogen peroxide at day 12 of growth but
continued fresh media changes. Minimal cell death occurred
below 12mM H2O2, but increased across the range to 18mM
where cell death occurred specifically in the luminal population
at a rate similar to media withdrawal (Figure 3a). Increasing the
concentration further to 24mM induced cell death in both the
luminal and basal compartments within 4 days. To test if this
simulated cell death induced by media withdrawal we
supplemented either 24mM HC or 20mM NAC to cultures
treated with 18mM H2O2 on day 12. Compared with control
cultures treated with H2O2 but not HC or NAC, HC-treated
cultures showed a delay in initiation but not subsequent rate
of luminal cell death to day 22, as observed in cultures with
media withdrawn (Figure 3b). Conversely, NAC-treated
cultures did not show significant luminal cell death through to
day 30 of culture as observed for healthy cultures with fresh
media changes. When cells isolated from media-withdrawal
(MW) or H2O2-treated (ROS) alveolar cultures were
subcultured into fresh ECM, a subtle but significant loss in
ability to form new alveoli and a decrease in alveolar size was
observed, and this could be rescued by NAC-treatment but not
HC (Figure 3c).

Subpopulations of luminal cells express macrophage
marker CD68 coinciding with the onset of irreversible

involution. Recent evidence has indicated that in vivo a
proportion of the luminal cell compartment adopt phagocytic-
like properties during involution and participate in clearing of
the gland.8,20 Some of the phagocytic population also begins
to express the activated macrophage marker CD68.8,21

To investigate this process in the clearing of luminal cells in
cultures after media changes are withdrawn (natural ROS) or
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Figure 3 Luminal cell loss can be simulated by ectopic addition of ROS.
(a) Quantitative count of luminal cell regression per alveolus from day 12 to day 30
when media was supplemented with 12 mM, 18mM or 24mM H2O2 on day 12.
(b) Quantitative count of luminal cell regression per alveolus from day 12 to day 30
when media was supplemented with 18 mM H2O2 without inhibitor (control) or with
20mM HC or 15mM NAC on day 12. (c) Cells isolated from alveolar cultures with
media withdrawal (MW; top panels) or treated with H2O2 (ROS; bottom panels) and
supplemented with either HC or NAC were subcultured into fresh culture. Charts
show quantitative changes in size of alveoli generated and percentage of cells
capable of forming new alveoli compared with controls (healthy cultures with fresh
media changes). Graphs represent mean±S.D. of at least 20 alveoli from each of
12 independent cultures distributed evenly across three separate experiments.
*P¼ 0.01, ***P¼ 0.001
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media changes are supplemented with H2O2 (ectopic ROS),
we co-stained for CD68þ cells along with the basal and
luminal markers. We observed that on day 14 (2 days after
withdrawal of media or application of ectopic ROS) a
proportion of the luminal layer adopted a CK18þCD68þ

phenotype (Figure 4a). In the proceeding days while CK18þ

expression decreased, the number of CD68þ cells remained
relatively constant until days 22–26, when luminal cells were
cleared to leave only a CD49fþ layer (Figure 4b). Ki67
staining of the same cultures shows that no proliferation in
basal or luminal cells occurred during this process (not
shown), but that there was an increase in apoptosis as
indicated by an increase in the number of apoptotic cells
shown by JC-1 assay (Figure 4c).

Discussion

Collectively the data presented in this study provide evidence
of a response of specific alveolar cell types to increasing
concentrations of ROS, as would be present at the onset of
involution at weaning. We propose that the luminal-specific
cell death we observed in response to increased ROS
supports our hypothesis that ROS-induced cell death is a
potential initiator of involution in the post-weaning gland.
Although increased ROS represents a mechanism to initiate

luminal cell death, it is clear that completion of clearing is
mediated by other pathways, as it is irreversible after a specific
timepoint post-initiation, evenwhenectopicROSarewithdrawn
(data not shown). This temporal switch has been implicated
previously in vivo and in vitro in other models.6,22We speculate
that this timepoint may be determined by a signal originating in
the CD68þ population, as this population outlives the luminal
population and its emergence coincides with the timepoint at
which clearing becomes irreversible.
The basal population of cells that remained after involution

of the cultures was significantly less sensitive to ROS-
associated cell death than the luminal population. However

upon sub-cultivation it is clear that this population suffers
some side effects including reduced viability and differentia-
tion capacity. In vivo it seems that the basal cells that remain
after involution survive unaffected, as they are capable of
giving rise to sequential healthy lactations. It is possible that
the effects we observed in culture may be alleviated if the cells
were recovered for a longer time in fresh media before
subcultivation. The ability of these cells to survive and recover
from the stress of involution is a priority of our future research,
as cells that survive but may sustain damage or mutations
could be targets for transformation and tumor formation in
some circumstances.
It is known that the tumor microenvironment has a high

concentration of ROS and that many tumor cells are
resistant to this exposure.23,24 It has been proposed that
some cancers may arise from mutations in the stem cell
population (cancer stem cell hypothesis).25 In the model, we
propose in Figure 5, a ROS-resistant basal stem cell that has
escaped normal cell-cycle regulation can selectively survive
and proliferate to form a tumor.
The luminal progenitor population has also been shown to

give rise to breast tumors.26–28 It has been shown that small
populations of progenitor cells that proliferate to fuel glandular
expansion during pregnancy remain in the post-involution
gland. It is possible that these cells remain because they have
retained the property of ROS-resistance during differentiation.
These cells are subject to monthly stimulation of growth with
each menstrual cycle and also underlie the massive increase
in cells during pregnancy.29,30 It is therefore possible that
some tumors, particularly those associated with pregnancy,
are derived from these cells and further study of them is
warranted.
In conclusion it is clear that there are distinct differences

between the basal and luminal populations in response to
alveolar clearing during involution. Our method represents a
valuable tool to begin to translate the mechanistic explana-
tions for this from animal models to human systems.
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Materials and Methods
Cell culture. Cells were isolated from expressed human breastmilk by
centrifugation and propagated in adherent monolayer culture as previously
described. The purified epithelial monolayer was qualified by expression of the
epithelial specific antigen EpCAM and absence of fibroblast marker vimentin. Cells
were maintained in monolayer culture in T75 adherent cell flasks (Sarsdedt,
Germany) in HuMEC Ready Media (Invitrogen, Mulgrave, Victoria, Australia) and
incubated at 371C and 5% CO2. Three-dimensional alveolar cultures were
generated by subcultivation of monolayer cells into Matrigel by the ‘on-top’ method.
Lee 200718 In brief, a thin coat of Matrigel is applied to Co-Star ultra-low binding
culture plates (Sigma, Sydney, New south wales, Australia) and allowed to gel at
371C for 20 min before a single-cell suspension in HuMEC media is applied. Cells
are allowed to settle for 1 h at 371C before addition of an equal volume of 10%
Matrigel in HuMEC media. Fresh media changes were carried out every 4 days with
10% Matrigel in HuMEC. All experiments were carried out on at least five biological
replicates derived from the same primary cell line.

Three-dimensional cell isolation. Cell structures were isolated from
extracellular matrix (ECM) culture by addition of 50 mg/ml dispase dissolved in
phosphate-buffered saline (PBS) in a volume equivalent to the culture media in the
well. Cultures were incubated at 371C for 30 min–1 h (depending on volume of
culture) with gentle agitation every 5 min. When intact cell structures were clearly
dissociated from the surrounding matrix by gentle pipetting, the cell suspension was
added to a 15-ml polypropylene centrifuge tube with 2� volumes of 10 mM EDTA
in PBS. Suspensions were mixed by inversion for 1 min then centrifuged at 300� g
for 10 min. The supernatant was carefully aspirated with a serological pippete and
the cell pellet (consisting of intact alveolar structures and single cells) was
resuspended in 1 ml of 10 mM EDTA, transferred to a microfuge tube and
centrifuged at 500� g for 5 min. The washed cell pellet was fixed by resuspending
cells in 1 ml of 10% formaldehyde (Sigma) in PBS for 10 min at room temperature.
Fixed cells were isolated by centrifugation at 500� g for 5 min and washed once in
PBS before transfer to a fresh tube for antibody staining.

Immunofluorescent antibody staining. Fixed cells were stained in
solution in 1.5-ml microfuge tubes, and incubations were carried out on a rotating
rocker at 41C in the dark. Antibody dilutions and washes were carried out in staining

solution consisting of 2% normal goat serum (NGS; Invitrogen) in 0.1% Triton-X
(Sigma) in PBS. Cells were initially blocked and permeabilized in 10% NGS in 0.1%
Triton-X in PBS for 30 min, then incubated in 500ml of primary antibody diluted
1 : 250 overnight. Cells were washed twice for 20 min per wash, then incubated in
500ml of secondary antibody diluted 1 : 500 plus 2 mM Hoescht 33342 (Molecular
Probes, Mulgrave, Victoria, Australia) for 6 h. Finally cells were washed three times
in 0.1% Triton-X in PBS for 20 min per wash then mounted in ProLong Gold Antifade
Reagent (Molecular Probes) on glass microscope slides and sealed with number 1.5
glass coverslips (ProSciTech, Kirwan, Queensland, Australia). Mounted cells were
allowed to cure overnight at room temperature before storage at 41C in a sealed
container. Primary antibodies used were all monoclononal anti-human antibodies
from AbCam (Cambridge, MA, USA) including rat CD49f, rabbit CK18, mouse
b-casein, mouse a-lactalbumin, mouse human milk fat globule (HMFG) and rabbit
CD68. Secondary antibodies used were all goat antibodies purchased from
Molecular Probes including anti-rat AF680, anti-rabbit AF488 or AF547, and anti-
mouse AF488 or AF547.

Oxidative stress analysis. H2DCFDA general oxidative stress indicator was
used as previously described.31 Briefly, growth medium was removed from cultures
and replaced with CM-H2DCFDA (Invitrogen) diluted to 100mM in MEM. Cells were
incubated for 30 min at 371C and 5% CO2 in the dark, then washed three times in
PBS before transfer to a 30-mm imaging dish with coverslip bottom (Mattek,
Ashland, MA, USA). Cells were allowed to settle for 30 min in the microscope live-
imaging chamber (Tokai Hit, Japan) at 371C and 5% CO2 before confocal sections
were collected with excitation at 488 nm and emission at 530 nm. Cellular oxidative
stress was quantified by the mean fluorescence intensity in the non-nuclear
cytoplasmic space and expressed relative to extracellular space by heat mapping in
Image J (National Institutes of Health, Bethesda, MD, USA) software.

Cellular apoptosis assay. JC-1 membrane potential indicator dye was used
as previously described.31 Briefly, media was removed from cultures and replaced
with 10mg/ml JC-1 reagent (Invitrogen) diluted in MEM. Cells were incubated for
10 min at 371C and 5% CO2 in the dark, then washed once in PBS before transfer to
a 30-mm imaging dish. Cells were allowed to settle for 30 min in the microscope live-
imaging chamber at 371C and 5% CO2 before confocal sections were collected with
excitation at 488 nm and simultaneous emission at 530 nm (monomer) and 590 nm
(J-aggregate). Image J software was used to calculate the ratio of monomer/
J-aggregate by dividing each 8-bit 530 nm image by its corresponding 8-bit 590 nm
image. Mitochondria area was defined using the 530 nm image and all three images
were integrated to compute mean pixel intensity.

Fluorescent microscopy and cell analysis. Stained cells were
visualized using a Nikon (Melville, NY, USA) confocal microscope and data were
collected with the Nikon NIS Elements (Melville, NY, USA) software package. Raw
images were exported to 8-bit TIFF files and analyzed using Image J software.
Positively expressing cells were validated using light intensity cutoffs relative to
positive and negative control cell samples. Autofluorescence and background was
removed by normalizing the light offset to no-primary antibody controls. Automated
positive-cell counts per optical confocal section were collected after adjusting the
light intensity threshold for each wavelength empirically on a minimum of three
positive and three negative control samples. Total cell counts per section were
collected on the Hoescht channel and marker-positive cell counts were expressed
as a proportion of this.

Statistical analysis. Cell count data were expressed as the mean±S.D.
Statistical comparisons were carried out by GraphPad Prism5 (La Jolla, CA, USA)
software. The students’ t-test was used for two-group comparisons. The statistical
difference between samples for multiple groups was determined using analysis of
variance followed by Tukey’s multiple-comparison tests.
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