
ERK2 phosphorylation of serine 77 regulates
Bmf pro-apoptotic activity
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B-cell lymphoma 2 (Bcl-2) homology 3 (BH3)-only proteins represent a class of pro-apoptotic factors that neutralize pro-survival
Bcl-2 proteins, and, in some cases, directly activate Bax. The mechanisms of control and the role of BH3-only proteins, such as
Bcl-2 like protein 11 extra large and Bad are well studied. By contrast, relatively little is known about the regulation and role of
Bcl-2 modifying factor (Bmf). The B-RAF oncogene is mutated inB8% of human tumors. We have previously shown that Bmf is
upregulated at the transcript level and is required for apoptosis induced by targeting B-RAF signaling in tumor cells harboring
mutant B-RAF. In this study, we show that Bmf is regulated at the post-translational level by mutant B-RAF-MEK-ERK2 signaling.
Extracellular signal-regulated kinase (ERK2) directly phosphorylates Bmf on serine 74 and serine 77 residues with serine
77 being the predominant site. In addition, serine 77 phosphorylation reduces Bmf pro-apoptotic activity likely through a
mechanism independent of altering Bmf localization to the mitochondria and/or interactions with dynein light chain 2 and the
pro-survival proteins, B-cell lymphoma extra large, Bcl-2 and Mcl-1. These data identify a novel mode of regulation in Bmf that
modulates its pro-apoptotic activity in mutant B-RAF tumor cells.
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B-cell lymphoma 2 (Bcl-2) homology 3 (BH3)-only proteins
represent a class of pro-death regulators in the canonical
intrinsic mitochondrial apoptotic pathway. Outside of the BH3
domain, the overall homology varies considerably between
members of this subfamily. They act through the neutraliza-
tion of pro-survival proteins (such as Bcl-2, B-cell lymphoma
extra large (Bcl-xL), Bcl-2 like protein 2 (Bcl-w) and Mcl-1),
which in turn repress the essential pro-apoptotic proteins, Bax
and Bak. In addition, some BH3-only proteins, including Bim,
caspase-activated tBid, and possibly other BH3-only proteins,
may directly activate Bax.1–3 Activation of Bax and Bak leads
to mitochondrial outer membrane permeabilization and
the release of mitochondrial factors, such as cytochrome C,
Smac, apoptosis-inducing factor. These factors promote the
initiation of the caspase cleavage cascade, as well as
caspase-independent forms of programmed cell death.4,5

The BH3-only protein, Bcl-2 modifying factor (Bmf), was
originally identified through a yeast-2-hybrid screen with Mcl-1
as the bait.6 Subsequent reports showed that Bmf also
strongly interacts with Bcl-2, Bcl-xL and Bcl-w.7,8 Bmf is
critical for apoptosis induced by various stimuli in multiple cell
types. Bmf�/� lymphocytes are resistant to apoptosis
induced by glucocorticoids or histone deacetylase inhibition.9

Relevant to tumor biology, knockout of Bmf increases tumor
load in the Em-myc transgenic mouse model of B-cell

lymphoma.10 We have recently shown a role for Bmf in
apoptosis induced following oncogene targeting in melanoma.
B-RAF is mutated in 40–60% of melanomas. Mutant B-RAF
melanoma cells are susceptible to apoptosis in 3D collagen
when B-RAF is targeted and this process is dependent on
upregulation of Bmf, as well as Bcl-2 like protein 11 extra large
(Bim-EL).11

Early studies suggested that Bmf interacts with the actin-
based myosin V motor complex via dynein light chain (DLC)2,
which sequesters Bmf to the cytoskeleton under healthy
conditions.6 Upon certain cellular stress conditions, such as
UV radiation or loss of extracellular matrix adhesion, Bmf is
released from DLC2 and relocalizes to the mitochondria,
where it elicits pro-apoptotic activity.12,13 In addition to
alterations in its subcellular localization, Bmf is also regulated
at the transcript level. We and others have observed
upregulation of Bmf mRNA level following inhibition of
B-RAF-MEK-ERK pathway in melanoma cells, although
further mechanistic details remain elusive.11,14

Significant control of BH3-only protein activity is exerted at
the post-translation level. In this regard, the control of
Bmf is understudied compared with other BH3-only proteins.
Bim-EL and Bad are known to be phosphorylated by
extracellular signal-regulated kinase (ERK) 1/2,15–17 c-Jun
N-terminal kinase (JNK)13,18,19 and p38 mitogen-activated

Received 20.9.11; revised 05.12.11; accepted 07.12.11; Edited by P Salomoni

1Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA; 2Department of
Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
*Corresponding author: AE Aplin, Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107,
USA. Tel: þ 215 503 7296; Fax: þ 215 923 9248; E-mail: Andrew.Aplin@KimmelCancerCenter.Org
Keywords: Bmf; phosphorylation; melanoma; ERK2
Abbreviations: Bcl-2, B-cell lymphoma 2; Bcl-w, Bcl-2 like protein 2; Bcl-xl, B-cell lymphoma extra large; BH3, Bcl-2 homology 3; Bim-EL, Bcl-2 like protein 11 extra
large; Bmf, Bcl-2 modifying factor; CIAP, calf intestine alkaline phosphatase; DLC1/2, dynein light chain 1/2; Dox, doxycycline; ERK1/2, extracellular signal-regulated
kinase 1/2; FBS, fetal bovine serum; FMK, fluoromethyl ketone; GST, glutathione S transferase; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase;
Mcl-1, myeloid cell leukemia sequence 1; MEK, mitogen-activated protein kinase kinase; RSK, ribosome S6 kinase; siRNA, small interference RNA; SP, serine–proline;
TP, threonine–proline; WT, wild type

Citation: Cell Death and Disease (2012) 3, e253; doi:10.1038/cddis.2011.137
& 2012 Macmillan Publishers Limited All rights reserved 2041-4889/12

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2011.137
mailto:Andrew.Aplin@KimmelCancerCenter.Org
http://www.nature.com/cddis


protein kinases (MAPKs)20 and by ribosomal S6 kinase 1
(RSK).21 Bmf phosphorylation by JNK has been demon-
strated in vitro.13 The phosphorylation site was postulated to
be serine 74 based on a similarity to a JNK phosphorylated
site, serine 58, in Bim-L.13 Phosphomimetic mutation of this
site (S74D) moderately enhanced Bmf apoptotic activity
in vivo.22 Here, we demonstrate a previously unrecognized
mode of regulation of Bmf. We show that B-RAF-MEK-ERK2
signaling regulates Bmf phosphorylation at serine 74 and
serine 77. Phosphorylation of serine 77 downregulates the
pro-apoptotic activity of Bmf.

Results

Bmf induces apoptosis independent of Bim-EL in
melanoma cells. We have previously shown that targeting
mutant B-RAFV600E using small interference RNA (siRNA) or
the B-RAF inhibitor, PLX4720, induces apoptosis in primary
melanoma cell lines that is mediated extensively by the
upregulation of two BH3-only proteins, Bim-EL and Bmf.11

Although both Bim-EL and Bmf contributed to B-RAF-
targeting-induced cell death, Bmf knockdown exhibited a
stronger rescue effect than Bim-EL knockdown,11 indicating
that Bmf may have a major role in this process. To test
whether Bmf expression is sufficient to induce apoptosis, we
generated five inducible melanoma cell lines (WM793TR/HA-
Bmf, Sbcl2TR/HA-Bmf, 1205LuTR/HA-Bmf, WM115TR/HA-
Bmf and A375TR/HA-Bmf) that expressed HA-tagged
Bmf upon doxycyline treatment. Induction of HA-Bmf was
detected by western blot (Figure 1a) and all cell lines
displayed increased apoptosis following 48 h of Bmf expre-
ssion with the exception of A375TR/HA-Bmf (Figure 1b).

A recent report showed that pacilitaxel-induced
apoptosis occurs via a domino effect whereby Bmf (and
p53-upregulated modulator of apoptosis) displace Bim from
pro-survival Bcl-2 family proteins.23 To test whether Bmf-
induced apoptosis in melanoma cells was dependent on Bim,
we knocked down Bim in Bmf-induced cells. WM793TR/HA-
Bmf cells express low basal levels of Bim-EL because of its
rapid turnover mediated by ERK phosphorylation.16–18 Treat-
ment of Bim-specific siRNAs further reduced Bim-EL level
(Figure 1c). Similar levels of HA-Bmf were induced by
doxycycline (Dox) in both control and Bim knockdown cells
(Figure 1c). However, reduced Bim-EL expression failed to
rescue Bmf-induced apoptosis (Figure 1d). These data
suggest that Bmf expression is sufficient to induce cell death
independent of Bim-EL.

ERK2 signaling regulates the mobility of Bmf indicative
of phosphorylation. When expressing Bmf in melanoma
cells, we consistently observed a slower-migrating population
of Bmf by SDS-PAGE (Figure 1a) indicating the presence of
post-translational modification. Other BH3-only proteins,
Bim-EL and Bad, are known to be phosphorylated by
ERK1/2,15–17 JNK,13,18,19 p3820 and RSK1.21 Treatment
with calf intestine alkaline phosphatase (CIAP) reduced the
slower-migrating Bmf population in Bmf immunoprecipitates
from induced A375TR/HA-Bmf cells, an effect that was
reversed with phosphatase inhibitors (Figure 2a). Thus, we

tested for kinase signaling pathways that regulate Bmf by
treating induced WM793TR/HA-Bmf cells with kinase
inhibitors that target the RAF (PLX4720), MEK1/2 (U0126),
p38 (SB203580), JNK (SP600125) or phosphatidylinositol 3
kinase (LY294002) pathways. The effect on the electro-
phoretic mobility of Bmf was analyzed. All these inhibitors
efficiently blocked corresponding pathways, as demonstrated
by western blotting of downstream cognate targets
(Figure 2b). Treatment with the RAF inhibitor, PLX4720, or
the MEK inhibitor, U0126, completely eliminated the
electrophoretic mobility shift of Bmf, whereas SP600125
(JNK inhibitor) and LY294002 (phosphatidylinositol 3 kinase
inhibitor) treatment showed no effect. The p38 inhibitor,
SB203580, partially decreased the mobility shift of Bmf, and
also partially reduced ERK1/2 signaling. These results
suggested that Bmf may be phosphorylated by MEK-ERK1/
2 and possibly p38 signaling in melanoma cells.

To further investigate the role of MAPKs in the Bmf mobility
shift, we used specific siRNAs to knock down ERK1, ERK2
and p38a individually in Dox-treated WM793TR/HA-Bmf cells.
ERK2 but not ERK1 knockdown significantly reduced Bmf
mobility shift comparable to U0126 treatment (Figure 2c).
p38a siRNA did not affect the mobility shift of Bmf (Figure 2c)
but did decrease phospho-p38 levels (Figure 2d), suggesting
that p38a is the major p38 isoform in WM793 cells. Therefore,
ERK2, but not ERK1 or p38 signaling contributes to the
mobility shift/phosphorylation of Bmf in melanoma cells. RSKs
are downstream effectors of ERK signaling and have been
shown to phosphorylate Bim-EL.21 Treatment with the RSK
inhibitors, fluoromethyl ketone (FMK),24 failed to reduce Bmf
mobility shift (Figure 2e), arguing against a direct role of RSKs
in Bmf phosphorylation.

To further test whether ERK2 signaling can phosphorylate
Bmf, we ectopically expressed HA-Bmf alone or in combina-
tion with wild-type ERK2 (ERK2 WT) or constitutive active
ERK2 (ERK2 CA) in 293FT cells. The basal MEK/ERK
pathway activity is low in 293FT cells and no apparent
electrophoretic mobility shift was detected when Bmf was
expressed alone or together with ERK2 WT (Figure 2f).
Notably, co-expression of HA-Bmf and ERK2 CA significantly
increased mobility shift of Bmf further supporting a role for
activated ERK2 to phosphorylate Bmf.

ERK2 directly phosphorylates Bmf on serine 74 and
serine 77. Serine–proline (SP) and threonine–proline (TP)
motifs are most common targets of ERK2 phosphorylation.
Scanning the Bmf protein sequences identified two
phylogenetically conserved SP sites, serine 74 and serine
77 (Figure 3a), but no TP sites. To test these two candidate
phosphorylation sites, we generated WM793TR cell lines
that inducibly express HA-Bmf with alanine substitutions at
serine 74 (HA-Bmf S74A) or serine 77 (HA-Bmf S77A) or
both serine 74 and serine 77 (HA-Bmf AA). Replacement of
individual serine residue at serine 74 or serine 77 with
alanine partially reduced the electrophoretic mobility shift of
Bmf, whereas a double mutation completely eliminated the
mobility shift (Figure 3b). Loss of serine 77 had a stronger
impact on the mobility shift of Bmf than loss of serine 74.
Conversely, replacement of serine 74 or serine 77 with the
phosphomimetic residue, aspartic acid (S74D or S77D), was
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sufficient to induce a mobility shift (Figure 3b). Importantly,
the effects of alanine replacement of S74 and S77 on the
electrophoretic mobility shift of Bmf were recapitulated in
other two melanoma cell lines, 1205Lu and A375 (Figure 3c),
indicating these post-translational modifications on Bmf
are not cell line specific. To further test whether the
electrophoretic mobility shift is associated with S74/S77
phosphorylation, we treated Bmf-expressing WM793 cells
with the serine/threonine phosphatase inhibitor, okadaic acid.
Short-term treatment of this inhibitor increased the level of
phospho-MEK and led to accumulation of the slow-migrating

population of the WT Bmf (Figure 3d). The okadaic acid
induction of slower-migrating forms of Bmf was not observed
with the S74A/S77A mutant form, further supporting that Bmf
is phosphorylated at S74 and S77 sites.

To test whether ERK2 signaling regulates phosphorylation
at these two sites, we knocked down ERK1, ERK2 or p38a in
Dox-treated WM793 HA-Bmf S74A and WM793 HA-Bmf
S77A cell lines. Indeed, siRNA-mediated ERK2 depletion
efficiently reduced Bmf mobility shift in both cell lines, whereas
ERK1 and p38a knockdown showed no effect (Figure 3e),
consistent with previous results. Therefore, ERK2 signaling
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Figure 1 Bmf induces apoptosis in melanoma cells independent of Bim-EL. (a) WM793TR/HA-Bmf, Sbcl2TR/HA-Bmf, 1205LuTR/HA-Bmf, WM115TR/HA-Bmf and
A375TR/HA-Bmf cells were treated with or without 100 ng/ml doxycycline for 7 h. Cell lysates were analyzed by western blotting using HA-tag and actin (loading control)
antibodies. (b) As for a, except that cells were induced with or without 100 ng/ml doxycycline for 48 h. Cells were then stained with annexin-V-APC for flow cytometry analysis.
Quantitated are the mean percentages of annexin-V-positive cells from three independent experiments. Error bars: standard deviation. (c) WM793TR/HA-Bmf cells were
transfected with control or Bim siRNA for 72 h. Cells were then treated with or without 100 ng/ml doxycycline for additional 24 h before lysis for western blot analysis. (d) As in
c except that after 24 h of doxycycline treatment, cells were subject to annexin-V staining and flow cytometry analysis. Representative flow traces from two independent
experiments flow traces are shown. x axis, fluorescence intensity; y axis, cell numbers
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but not ERK1 or p38a signaling regulates Bmf phosphorylation
at serine 74 and serine 77. Next, we performed in vitro protein
kinase assays using activated ERK2 and bacterially ex-
pressed glutathione S transferase (GST)-Bmf fusion protein
variants including GST-Bmf WT, GST-Bmf S74A, GST-Bmf
S77A and GST-Bmf AA (Figure 3f). Efficient phosphorylation
was detected with WT, S74A GST-Bmf. By contrast,
phosphorylation was inefficient in the S77A mutant and not

detected in GST-Bmf AA, indicating ERK2 directly phosphor-
ylates both serine 74 and serine 77 in Bmf but that serine
77 is the major site.

Phosphorylation of serine 74 and/or serine 77 does
not affect Bmf protein stability. Phosphorylation of
BH3-only protein, Bim-EL, by ERK on serine 69 has been
shown to promote its targeting by proteasome-dependent
degradation.17,25 To test whether phosphorylation of serine
74 and/or serine 77 would similarly reduces Bmf protein
stability; we treated melanoma cells expressing HA-Bmf with
actinomycin D and measured Bmf protein levels at different
time points (Figure 4). A time-dependent decrease in the Bmf
protein level was observed in all four melanoma cell lines that
express WT, S74A, S77A or AA HA-Bmf, respectively. The
half-life of Bmf protein is B4 h and no apparent difference in
the turnover rate was observed among the Bmf variants,
suggesting that phosphorylation of serine 74 and/or serine 77
has no influence on Bmf protein stability.

Phosphorylation of Bmf on serine 77 reduces its
apoptotic activity. Phosphorylation of BH3-only proteins
often modulates their pro-apoptotic activities.16,26 It has been
previously shown that the phosphomimetic S74D mutation
of Bmf enhanced its apoptotic activity in vivo.22 Therefore,
we examined the apoptotic activity of WT Bmf and its alanine
or aspartic acid substiution variants in melanoma cells.
Expression of WT Bmf in WM793 cells for 16 h induced
apoptosis with aB25% of the cells displaying annexin-V
positivity (Figure 5a). Replacement of serine 74 with alanine
(S74A) only slightly increased Bmf-induced apoptosis,
whereas alteration of serine 77 (S77A) alone or together
with serine 74 (AA) enhanced apoptosis to a significantly
higher level (Figure 5a). These data suggest that inability
to phosphorylate S77 augments Bmf’s apoptotic activity.
Consistent with others’ findings, the phosphomimetic S74D
Bmf mutant displayed increased apoptosis over WT or S74A
Bmf, confirming that phosphorylation of S74 may enhance
Bmf apoptotic activity. Conversely, the phosphomimetic
S77D mutant restored Bmf-induced cell death to the WT
level (Figure 5a). Given the differing effects between S77D
and S77A, it is likely that phosphorylation of S77, instead of
the S77 residue itself, reduces Bmf apoptotic activity.
Interestingly, the dual aspartic acids replacement mutant
(DD) had a higher death rate than the WT or S77D,
suggesting that the apoptosis-enhancing effect of S74
phosphorylation counteracts the apoptosis-dampening
effect of S77 phosphorylation. Extended Dox treatment
(24 and 32 h) increased cell death in all Bmf variants but with
the same overall pattern, that is, S74A and AA elicited high
levels of apoptosis and S77D was equivalent to WT Bmf
(Figures 5b and c).

Phosphorylation of Bmf on serine 74 and/or serine
77 does not alter its association with DLC2 or
mitochondrial localization. In healthy cells, Bmf is
retained in cytoplasm through binding to DLC2.6 Pro-
apoptotic signals can cause Bmf to dissociate from DLC2
and translocate to mitochondria.6,14 Serine 74 is located
within the DLC2-binding domain in Bmf and serine
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Figure 2 ERK2 signaling regulates Bmf phosphorylation. (a) A375TR/HA-Bmf
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ERK2 (ERK2 CA) or empty vector in 293FT cells. The effect of ERK2 on Bmf
mobility shift was examined by western blot analysis
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77 adjacent to it; hence, we hypothesized that
phosphorylation of serine 74 and serine 77 may stablize
the Bmf association with DLC2 and cause its cytoplasmic
retention. To test this notion, we examined the binding of Bmf
mutants to DLC2 in 293FT cells expressing B-RAFV600E to
activate MEK-ERK signaling. Ectopic expression of
BRAFV600E led to phosphorylation of Bmf variants (WT,
S74A, S77A, AA and DD HA-Bmf) in a manner similar to that
in melanoma cells (Figure 6a). However, all Bmf variants
associated with DLC2 at a similar level (Figure 6a) indicating

that serine 74/77 phosphorylation does not affect Bmf
binding to DLC2. We then examined the effect of serine
74/S77 phosphorylation on Bmf subcellular localization. In
WM793 cells, Bmf colocalizes with mitochondria as shown by
immunofluoresence, and this subcellular localization is not
altered by replacement of serine 74 and/or serine 77 with
alanine (Figure 6b). Consistently, all Bmf variants (WT,
S74A, S77A, AA and DD) were detected in the mitochondria-
enriched fraction (Figures 6c and d) and the ratio between
the phosphorylated and non-phosphorylated Bmf population
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was comparable between total lysates and the mitochondria
fraction, indicating the status of serine 74 and serine
77 phosphorylation does not affect Bmf translocation to
mitochondria.

Phosphorylation of Bmf on serine 74 and/or serine 77
does not affect Bmf association with pro-survival
Bcl-2 family proteins. Bmf was known to bind various
pro-survival Bcl-2 family proteins including Mcl-1, Bcl-2 and
Bcl-xL. Therefore, we asked whether loss of S74 and/or S77
phosphorylation would affect Bmf interaction with these
binding partners. As expected, WT Bmf coimmuno-
precipitated with Bcl-xL, Bcl-2 and Mcl-1 (Figures 7a–c).
However, its binding affinity with these Bcl-2 proteins was not
affected by the status of S74 and/or S77 phosphorylation
(Figures 7a–c). These data indicate that the apoptotic effects
of serine 74 and serine 77 phosphorylation are likely
not mediated through altered association with Bcl-xL, Bcl-2
and Mcl-1.

Discussion

BH3-only protein activity is frequently modulated by post-
translational alterations. The effects of phosphorylation on the
activity of Bim-EL and Bad and the kinases that are
responsible have been studied in depth.13,15–20 By contrast,
mechanisms that regulate Bmf are poorly understood. Here,
we demonstrate that ERK2 phosphorylates serine 74 and
serine 77 in Bmf and that serine 77 phosphorylation down-
regulates Bmf pro-apoptotic function. Serine 74 and serine
77 are highly conserved within Bmf across species (Figure 3a)
but are poorly conserved within other BH3-only proteins.
Our findings demonstrate that ERK2 controls Bmf activity via

phosphorylation and, thus, regulates Bmf by mechanisms
additional to transcript control.11

Our study shows a previously unrecognized ability of ERK2
to phosphorylate Bmf. A previous study showed that JNK was
able to phosphorylate recombinant Bmf in vitro.13 The site of
phosphorylation is likely serine 74 based on a similarity to a
JNK phosphorylated site, serine 58, in Bim-L.13 Our studies
were performed in melanoma cells, in which signaling through
the ERK1/2 pathway is constitutively elevated due to acti-
vating mutations in B-RAF and N-RAS.27,28 Although both
serine 74 and serine 77 are phosphorylated in Bmf, serine
77 appears to be the major phosphorylation site of the two.
Phosphorylation of serine 74 increased Bmf pro-apoptotic
activity in melanoma cells, a finding in line with the work of
others that was based on decreased numbers of B and T cells
in the spleen of Bim�/�, BmfS74D/S74D compared with Bim�/�
mice.22 By contrast, phosphorylation at serine 77 is asso-
ciated with decreased apoptotic activity in melanoma cells
demonstrating functional relevance of this regulation.

Loss of serine 77 phosphorylation in Bmf enhances its pro-
apoptotic function but the mechanism of enhanced activity is
less clear. Bmf, similar to Bim-EL, contains a conserved DLC-
binding motif. In Bmf, this motif promotes association with
DLC2 and the actin cytoskeleton,6 whereas the DLC-binding
motif in Bim interacts with DLC1 and enhances Bim
localization to the microtubule network. JNK phosphorylation
at threonine 56 within the DLC motif of Bim-L, dissociated
Bim-L from DLC1 and enhanced its apoptotic activity.13 We
show that ERK2 phosphorylation of serine 74 (within the DLC
motif) and serine 77 (adjacent to the DLC motif) did not alter
the association of DLC2 with Bmf. These data complement
studies showing that the pro-apoptotic activity of a Bmf mutant
that does not bind to DLC2, Bmf A69P, is potentiated by MEK
inhibition.14 Furthermore, the ability of Bmf to localize to the
mitochondria is unaltered by mutation of these phosphoryla-
tion sites. In addition, we did not observe that MEK-ERK-
regulated phosphorylation of Bmf altered its protein turnover.
This lack of effect on Bmf turnover is in stark contrast to the
action of ERK1/2-mediated phosphorylation of Bim-EL, which
promotes ubiquitin-mediated degradation of Bim-EL. The
likely underlying reason is that serine 69 in Bim-EL, which is
phosphorylated and mediates ERK1/2 effects, is not con-
served in Bmf. Finally, no apparent differences were observed
in the binding affinities of Bmf with its anti-apoptotic partners,
Bcl-xL, Bcl-2 or Mcl-1. As all Bmf variants (WT, S74A, S77A
and AA) translocate to mitochondria outer membrane shortly
after induction (Figures 6b and c), the effect of S77
phosphorylation is likely mediated through some Bmf-inter-
acting factors within mitochondria.

Our studies relate to cell survival mechanisms in mutant
B-RAF melanomas with elevated MEK-ERK1/2 pathway
activity. Targeting B-RAF with either the RAF inhibitor
PLX4720 or knockdown approaches sensitizes mutant B-
RAF melanoma cells to apoptosis.11 Notably, Bmf is required
for this process11 although additional input can be provided by
Bim-EL, Bim-S and Bad.29–32 Here, we show that expression
of Bmf is sufficient to induce apoptosis in mutant B-RAF cells
and one mutant N-RAS line (Sbcl2). These effects were
observed in regular 2D culture conditions and were enhanced
in 3D (data not shown). Notably, one line (A375) did not show
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Figure 4 Serine 74 and serine 77 phosphorylation does not affect Bmf protein
stability. WM793TR/HA-Bmf cell lines (WT, S74A, S77A and AA) were individually
treated with 100 ng/ml doxycycline. After 1 h, cells were washed in fresh medium
and cultured with medium containing 1 mg/ml actinomycin D but without doxycycline
for additional 10 h. During this time course, cell samples were removed after 4, 6, 8
and 10 h for western blot analysis using HA-tag and actin antibodies. The relative
intensities of HA-Bmf bands (normalized against actin) were shown below the
HA-Bmf blot
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enhanced annexin-V staining following Bmf expression. A375
cells display high intrinsic resistance to apoptosis induced by
PLX4720,11 despite the ability of Bmf to localize to the
mitochondria in these cells (data now shown). The mechan-
isms that act either in a parallel manner or in a downstream of
Bmf mitochondrial localization to promote resistance to Bmf in
A375 cells warrant further investigation, as they may be
pertinent to the observed intrinsic resistance to PLX4032 in
melanoma patients.33 Our data also indicate that ‘switching
on’ Bmf expression alone may not be the most efficient
strategy to trigger apoptosis in melanoma cells, as ERK2-
mediated phosphorylation acts to down-modulate Bmf

activity. The development of Bmf-like BH3-mimetics to
combine with and enhance the pro-apoptotic activity of
PLX4032 should be considered. PLX4032 induces tumor
shrinkage in the majority of B-RAFV600E melanoma patients,
indicating that cell death occurs in vivo, but the effects are
often short-term (an average of 7–8 months of clinical
benefit).33 Thus, the need to optimize PLX4032 activity
to improve response rates in melanoma is a critical avenue
of investigation.

Materials and Methods
Chemicals and inhibitors. PLX4720 was kindly provided by Dr. Gideon
Bollag (Plexxikon Inc., Berkeley, CA, USA). U0126 and LY294002 were purchased
from Cell Signaling Technology (Beverly, MA, USA). SB203580, SP600125
and okadaic acid were from Sigma-Aldrich (St. Louis, MO, USA). p90RSK
inhibitors, FMK, have been previously described.25 Dox, isopropyl b-D-1-
thiogalactopyranoside and CIAP were from Fisher Scientific (Pittsburgh, PA, USA).

Cell culture. Melanoma cells were cultured in MCDB 153 containing
20% Leibovitz L-15 medium, 2% fetal bovine serum (FBS), 5mg/ml insulin and
penicillin/streptomycin. Human embryonic kidney 293 FT cells were grown in DMEM
supplemented with 10% FBS, 1% non-essential amino acids and penicillin/
streptomycin.

Western blotting. Western blotting was performed as previously described.11

Immunoreactivity was detected using peroxidase-conjugated secondary antibodies
and chemiluminescence substrate (Pierce, Rockford, IL, USA). Chemiluminescence
was visualized using a Versadoc Imaging system (Bio-Rad, Hercules, CA, USA).

Antibodies. The following antibodies were purchased from Cell Signaling
Technology: HA-tag (#2367), p38a (#9212), phospho-ERK1/2 (Thr202/Tyr204,
#4377), phospho-p38 (T180/Y182, #9211), phospho-Akt (Ser473, #9271),
phospho-HSP27 (Ser82, #2406), phospho-c-JUN (Ser73, #9164), phospho-RSK
(Ser380, #9341), GAPDH (#2118). ERK2 (sc-1647) and ERK1/2 (sc-094)
antibodies were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA, USA). Anti-actin (A2066) and anti-FLAG-tag (F3165) antibodies were obtained
from Sigma-Aldrich. Anti-Bim (AAP-330) was from Stressgen (San Diego, CA,
USA).

siRNA transfection. Cells were transfected with siRNAs at a concentration of
25 nM for 72 h using Oligofectamine (Invitrogen, Carlsbad, CA, USA), as previously
described.34 Non-targeting control (50-UGGUUUACAUGUCGACUAA-30), ERK1
(50-GACCGGAUGUUAACCUUUA-30), ERK2 (50-CCAAAGCUCUGGACUUAUU-30),
p38a (50-GGAAUUCAAUGAUGUGUAU-30) siRNAswere purchased from Dharmacon
(Chicago, IL, USA). Bim siRNA (50-GACCGAGAAGGUAGACAAUUG-30) was from
Cell Signaling Technology.

Annexin-V staining. Staining was performed as described previously11 and
analyzed by flow cytometry on a FACSCalibur (BD Biosciences, San Jose, CA,
USA) in the KCC Flow cytometry shared resource facility. Data were analyzed using
Flowjo software (Three Star, Inc., Ashland, OR, USA).

Generation of melanoma cell lines that inducibly express
HA-Bmf variants. NH2-terminal HA-tagged WT Bmfs were amplified from
human Bmf cDNA plasmid pBabe-HA-human Bmf (Addgene Inc., Cambridge,
MA, USA) using the KOD Hot Start DNA polymerase kit (Novagen, Madison, WI,
USA) and the primers, forward 5-CACCATGTACCCCTACGACGTGCC-3 and
reverse 5-TCACCTAGGGCCTGCCCCGTTCC-3. The HA-Bmf WT PCR fragments
were then cloned into pENTR/D-TOPO vector (Invitrogen) to generate entry plasmid
pENTR/HA-Bmf WT. Entry plasmids harboring mutant Bmf alleles, including S74A,
S77A, S74A/S77A (AA), S74D and S77D, were constructed using Quickchange
site-directed mutagenesis kit (Agilent Techonologies Inc., Santa Clara, CA, USA)
and pENTR/HA-Bmf WT as template. Primers used in mutagenesis PCR are
available on request. Bmf entry plasmids were individually recombined with a pLenti/
TO/V5-DEST containing the puromycin resistance cassette using the LR Clonase II
kit and protocol (Invitrogen) to generate corresponding destination plasmids
(pLentipuro/TO/HA-Bmf WT, S74A, S77A, AA, S74D, S77D). Lentiviruses were
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generated using the ViraPower Lentiviral Gateway Expression kit (Invitrogen), as
described previously.30 WM793, SbCl2, WM115, 1205Lu and A375 cells that stably
express tet repressor (TR30) were infected with lentivirus for 72 h before selection
with 10mg/ml puromycin. Expression of the inducible transgene was induced by
addition of Dox (100 ng/ml) to the medium, as previously described.35,36

Transient transfection. All transient transfections in 293FT cells were
performed using Fugene 6HD (Roche, Indianapolis, IN, USA) according to the
manufacturer’s guidelines. The plasmids used pCMV5 His-ERK2 WT and pCMV
His-ERK L73P/S151D (constitutive active ERK2) were gifts from Dr. Melanie Cobb

(University of Texas Southwestern) and Dr. Natalie Ahn (University of Colorado),
respectively.37

Construction and purification of GST-HA-BmfDC26 fusion
proteins. HA-Bmf WT and mutant alleles were individually PCR amplified
using aforementioned Bmf entry vectors as template and the primers,
BamHI Bmf F (50-CGCGTGGATCCATGTACCCCTACGACGTGC-30) and EcoRI
BmfDC26 R (50-CGCGTGAATTCTCAACGATTTTGGTTCTGCTGGTG-30). To increase
the solubility of GST-HA-Bmf fusion protein, the C-terminal 26 amino acids of Bmf
(putative transmembrane domain) was deleted during PCR.38 The HA-BmfDC26
amplicons were digested with BamHI and EcoRI, cloned into pGEX-KG vector
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(Addgene) to form GST-HA-BmfDC26 fusions and transformed into BL21 (DE3)
cells. Bacterial cells harboring GST-HA-BmfDC26 fusion constructs were grown to
OD600¼ 0.5 and induced with 0.1 M isopropyl b-D-1-thiogalactopyranoside for 3 h.
Cells were pelleted, resuspended in PBS supplemented with protease inhibitors and
lysed by addition of 0.5% triton X-100 followed by sonication. After centrifugation,
supernatant was collected and incubated with pre-washed glutathione-agarose
beads for 2 h. Next, glutathione S-agarose beads were collected by centrifugation
and washed in PBS. GST-HA-BmfDC26 fusion proteins were eluted from washed
beads using elution buffer (10mM reduced glutathione, 50mM Tris-HCl, pH 8.0, 5%
glycerol).

In vitro kinase assay. Purified GST-HA-BmfDC26 WT or mutants were
incubated with [g-32P]-ATP and activated recombinant ERK2 (New England
BioLabs., Ipswich, MA, USA) in NEBuffer (New England BioLabs) at 30 1C for
30min. The reaction products were diluted in SDS-PAGE loading buffer, separated
on SDS polyacrylamide gel and the gel exposed to film.

Immunoprecipitation. Transfected 293FT cells were lysed in NP40 buffer
(150mM NaCl, 1% NP40, 50mM Tris-HCl, pH 8.0). supplemented with protease
inhibitor cocktail (Roche). Cell debris were removed by centrifugation and
the supernatant was collected and pre-cleared with protein A/G agarose beads.
Pre-cleared lysate was incubated with specific antibodies overnight and
subsequently with protein A/G agarose beads for another 2 h. Protein A/G beads
were pelleted, washed in NP40 buffer and resuspended in Laemmli sample buffer
for western blot analysis.

CIAP treatment. A375TR-HA-Bmf WT cells were treated with 100 ng/ml Dox
for 24 h and lysed in NP40 buffer for immunoprecipitation as described above using
HA-tag-specific antibody. The immunoprecipitates were incubated with CIAP only or
in combination of phosphatase inhibitor cocktail (Roche) for 1 h at 30 1C. The
samples were then diluted with 4� SDS sample buffer for western blot analysis.
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