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NF-jB-dependent response in post-ischemic injury
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The activation of nuclear factor kappa B (NF-jB) p50/RelA is a key event in ischemic neuronal injury, as well as in brain ischemic
tolerance. We tested whether epigenetic mechanisms affecting the acetylation state of RelA might discriminate between
neuroprotective and neurotoxic activation of NF-jB during ischemia. NF-jB activation and RelA acetylation were investigated in
cortices of mice subjected to preconditioning brain ischemia or lethal middle cerebral artery occlusion (MCAO) and primary
cortical neurons exposed to preconditioning or lethal oxygen-glucose deprivation (OGD). In mice subjected to MCAO and in
cortical neurons exposed to lethal OGD, activated RelA displayed a high level of Lys310 acetylation in spite of reduced total
acetylation. Also, acetylated RelA on Lys310 interacted strongly with the CREB-binding protein (CBP). Conversely, RelA
activated during preconditioning ischemia appeared deacetylated on Lys310. Overexpressing RelA increased Bim promoter
activity and neuronal cell death both induced by lethal OGD, whereas overexpressing the acetylation-resistant RelA-K310R,
carrying a mutation from Lys310 to arginine, prevented both responses. Pharmacological manipulation of Lys310 acetylation by
the sirtuin 1 activator resveratrol repressed the activity of the Bim promoter and reduced the neuronal cell loss. We conclude that
the acetylation of RelA in Lys310 dictates NF-jB-dependent pro-apoptotic responses and represents a suitable target to dissect
pathological from neuroprotective NF-jB activation in brain ischemia.
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Brain ischemia is a leading cause ofmortality and neurological
disability. During brain ischemia, nuclear factor kappa B
(NF-kB) rapidly activates in neurons and glial cells, where it
regulates inflammatory and apoptotic events characterizing
the pathophysiology of post-ischemic injury.1–4 NF-kB activa-
tion in neurons, rather than in glial cells, has a prominent role
in post-ischemic cell loss.4,5 NF-kB is a dimeric transcription
factor created by the association of different subunits: p50,
p65/RelA, p52, RelB and c-Rel. The most prevalent activated
dimer observed after occlusion of the middle cerebral artery
(MCAO) is p50/RelA.6,7 Accordingly, the MCAO-induced
infarct size is reduced in p50 knockout mice,2 as well as in
mice carrying a brain-conditional deletion of RelA.7 We
showed that activation of the p50/RelA dimer is associated
with inhibition of c-Rel-containing dimers in ischemic brain
tissues and in primary cortical neurons exposed to oxygen-
glucose deprivation (OGD).8 Selective targeting of c-Rel and
RelA revealed that activation of c-Rel-containing dimers
increases cell resistance to OGD, whereas activation of
p50/RelA contributes to the cell-death program. The effect of
c-Rel dimers relies on promoter activation of the anti-apoptotic
Bcl-xL gene8 andmediates neuroprotection induced by leptin9

or agonists at metabotropic glutamate receptor type 5.10 The
deleterious effect of p50/RelA in brain ischemia depends on
RelA-induced expression of pro-apoptotic Bim and Noxa
genes.7,8 However, p50/RelA is also involved in the regulation
of a variety of physiological processes. Its constitutive activity
is required for brain neuron survival and neurite elongation
during brain development.11,12 In mature neurons, p50/RelA
selectively localizes at the synaptic level, from which point it
moves to the nucleus to transmute synaptic signals into
altered gene expression, regulation of synaptic plasticity and
memory formation.13–15 Furthermore, the activation of p50/
RelA has a role in brain tolerance, the adaptive response
induced by a sublethal insult, which preserves brain health
against subsequent lethal injury.16 Thus, the opposing effects
elicited by NF-kB activation in cell survival remain to be
elucidated. Recent studies in tumor and peripheral cells have
revealed the post-translational regulation of RelA, including
reversible phosphorylation and acetylation,17 which modulate
p50/RelA transcriptional activity on target genes.18 RelA is
acetylated after cell activation by tumor necrosis factor-a,
phorbol myristate acetate or other stimuli. RelA acetylation
may occur at multiple sites, including lysines (Lys) 122, 123,
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218, 221 and 310.17 The epigenetic regulators of histone
proteins, acetyltransferases p300/CREB-binding protein
(CBP) and p/CAF, appear to have a major role in the in vivo
acetylation of RelA.19 Site-specific acetylation of RelA
regulates discrete biological actions of the NF-kB complex.
For example, acetylation of Lys218 and 221 increases the
DNA binding affinity of RelA for the kB enhancer and impairs
RelA assembly with newly synthesized IkBa,19 whereas
acetylation of RelA at Lys122 and 123 inhibits its transcrip-
tional activity.17 Acetylation of Lys310 does notmodulate DNA
binding or IkBa assembly, but markedly enhances the NF-kB
transactivation of pro-inflammatory genes. Acetylation of
Lys310 is required for the full transcriptional activity of RelA.
Abolishing Lys310 acetylation by mutating Lys310 to arginine
significantly inhibits the transactivation of NF-kB and the
expression of inflammatory cytokines,19,20 possibly by
stabilizing Set-9 factor, which leads to the methylation
of Lys314-315 and proteasomal degradation of RelA.21

Selective deacetylation of Lys310 by sirtuin 1 (SIRT1), a
class III histone deacetylase, inhibits the transcriptional
activity of RelA22 and prevents the b-amyloid-induced release
of neurotoxic factors frommicroglial cells.23 However, the role
of RelA acetylation in NF-kB-mediated neuronal injury during
brain ischemia remains elusive.
We investigated changes in c-Rel activation and RelA

acetylation in response to preconditioning or lethal ischemia
and the role of these changes in ischemia-mediated gene
transcription and neuronal cell death.

Results

Neuronal activation of NF-jB p50/RelA in preconditioning
and lethal ischemia. It has been shown that as an early
response to ischemic brain injury, NF-kB p50 and RelA
rapidly activate and drive post-ischemic neuronal apoptosis.
4,5,7,8 We previously showed that in primary mouse cortical
neurons exposed to OGD apoptosis precedes necrosis, as
indicated by the early TUNEL-positivity displayed by the
cells within 6 h after the OGD and the parallel release
of cytochrome c in the cytosol in absence of lactate
dehydrogenase (LDH) release. Subsequent necrosis
causes progressive elevation of extracellular LDH level that
becomes clearly detectable in the medium 24h after the
OGD exposure.8 Thus, we here measured delayed LDH level
as a final marker of cell death. Either in primary cortical
neurons or in mouse ischemic cortices, enhanced activation
of p50/RelA correlates with the diminished activation of RelA/
c-Rel, an event that contributes to neuronal vulnerability.
In order to analyze and compare the NF-kB dimers induced
by preconditioning or lethal OGD, we set up an ischemic
preconditioning (IPC) model by exposing the cortical neurons
to 1 h OGD and, the next day, to 3 h OGD. The 1 h OGD
condition did not affect cell viability per se and completely
abolished the cell death induced by longer OGD applied 24 h
later (Figure 1a). Enzyme-linked immunosorbent assay
(ELISA) analysis of NF-kB showed similar increases
in RelA and p50 DNA-binding activity in nuclear extracts of
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Figure 1 (a) Primary cortical neurons were exposed to 1 h OGD and then 24 h later to 3 h OGD. The next day, cell viability was measured by LDH assay. Sub-lethal
ischemic injury totally prevented the 3 h OGD-mediated neurotoxicity. Bars are means±S.E.M. of three separate experiments run in triplicate; *Po0.01 versus the
corresponding control value. (b) Activation of p50 and RelA was evaluated by ELISA analysis in nuclear extracts from cortical cells exposed to 1 or 3 h OGD. Bars are
means±S.E.M. of three separate experiments; *Po0.05 versus the corresponding control value. (c) Representative picture of co-immunoprecipitation analysis of p50, RelA
and c-Rel dimers in nuclear extracts from primary cortical neurons showed a high level of p50/RelA complex activation after 1 or 3 h OGD, whereas the activation of c-Rel
dimers decreased slightly
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cells exposed to 1 and 3h OGD (Figure 1b). The co-
immunoprecipitation analysis of heterodimers composed of
p50, RelA and c-Rel revealed superimposable increases in
levels of p50/RelA under both conditions. No increase was
evident in the levels of p50/c-Rel and RelA/c-Rel complexes
(Figure 1c). These results indicate that p50/RelA, but not
c-Rel dimers contribute to NF-kB activation in cells exposed
to preconditioning, as well as lethal OGD.

RelA acetylation and interaction with CBP differentiate
p50/RelA activation in neuronal cells during lethal as
opposed to preconditioning ischemia. We checked the
possibility of diverse RelA acetylation in two ischemic
conditions, 1 and 3 h OGD. RelA was immunoprecipitated
from nuclear extracts and its acetylation was checked using a
specific anti-Acetyl-RelA Lys310 antibody (RelA Ac-K310) in
comparison with an anti-Acetyl-Lys antibody recognizing
general RelA acetylation. We observed that acetylation
at Lys310 was reduced after 1 h OGD but increased
significantly after 3 h OGD, in spite of reduced levels
of overall RelA acetylation (Figure 2a and b). The diverse
acetylation states of RelA correlated with diverse levels of
interaction with the histone acetyl transferase CBP. RelA
showed higher association with CBP after lethal OGD, but
not after preconditioning ODG (Figure 2a and b). Similar

results were obtained in an in vivo mouse model of brain
ischemia and IPC.24 Mice were exposed to diverse ischemic
insults: (i) 5min bilateral common carotid arteries were
occluded (BCCAO) (preconditioning ischemia); (ii) 20min
MCAO; and (iii) IPC, that is, BCCAO followed by MCAO the
next day. Ischemic areas (Figure 3a) and infarct volumes
(Figure 3b) were evaluated 3 days later. BCCAO induced no
brain damage, but it significantly reduced the ischemic
volume in mice subjected to MCAO (Figure 3b). We tested
RelA acetylation in cortical nuclear extracts prepared 4 h
after mice were exposed to the various conditions
(Figure 3c). Higher RelA activation was evident in BCCAO,
MCAO and IPC extracts, but acetylation at Lys310 increased
only in mice exposed to MCAO. Concomitantly with Lys310
acetylation, RelA also displayed higher interaction with CBP
in the MCAO extracts (Figure 3c and d). These results show
that RelA acetylation on Lys310 discriminates between RelA
activation after neurotoxic ischemia and that induced
by preconditioning ischemia.

Acetylation of RelA on Lys 310 is required for toxic
effects elicited by NF-jB activation. The relevance of
RelA acetylation on Lys310 in the NF-kB-mediated neuro-
toxicity after acute ischemic injury was initially investigated in
neuronally differentiated SK-N-SH cells. Under exposure to
retinoic acid (RA), SK-N-SH neuroblastoma cells switch from
a non-neuronal to a neuronal-like phenotype25 and express
vulnerability to OGD by NF-kB RelA activation.8 Neuronal
cells were exposed to OGD for 1, 2 and 4 h. Western blot
analysis of nuclear extracts confirmed increased acetylation
of RelA on Lys310 after 4 h ODG, as observed in primary
cortical neurons (Figure 4a). The neuronal cultures were
transiently transfected with control empty vector (pSG5) or
with expression plasmids coding for human wild-type RelA
or RelA carrying a mutation from Lys310 to arginine
(RelA-K310R). As arginine has the same polar side chain
and charge as lysine but cannot be acetylated, this mutated
form of RelA was used as a negative control to test the
biological effects of specific Lys310 acetylation.19 Around
24 h after transfection, the nuclear translocation of RelA and
its acetylation were verified by immunoblot analysis in
nuclear extracts of cells exposed to 4 h OGD. We found
that OGD promoted a marked upregulation of nuclear RelA in
cells transfected with empty vector, as well as in cells
overexpressing wild-type RelA or RelA-K310R (Figure 4b
and c). As expected, the concomitant increase in acetylation
on Lys310 after OGD was evident in control and RelA-
overexpressing cells, but negligible in the RelA-K310R-
transfected cells (Figure 4b and c). In order to test the
possibility that this unique modification was specifically
responsible for the regulation of neuronal injury, transfected
cells were exposed to OGD for 15 h and cell viability
was measured by LDH release in the medium 24h later.
Cells transfected with the empty vector were vulnerable to
OGD and the overexpression of wild-type RelA significantly
increased cell death (Figure 4d), in line with previous
findings.8 Instead, the RelA-induced enhancement of
OGD-mediated neurotoxicity was completely abolished in
cells overexpressing the RelA-K310R mutant construct.
Similar experimental conditions were used to analyze the
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Figure 2 (a) Immunoprecipitation analysis of RelA acetylation and association
with CBP in nuclear extracts of primary cortical neurons exposed to 1 or 3 h OGD.
RelA Lys310 acetylation decreased after 1 h OGD and increased after
3 h OGD. Total RelA acetylation was not altered by 1 h OGD but was reduced by
3 h OGD. RelA association with CBP increased in nuclear extracts of cells subjected
to 3 h OGD. The signal given by IgG(H) was used as a control for the quality of the
immunoprecipitation. Similar results were obtained in at least four separate
experiments. (b) Values from densitometric analysis of immunoblot bands are
expressed as a percentage of the corresponding control value. Error bars depict
means±S.E.M.; *Po0.05 versus control
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NF-kB-dependent activation of mouse Bim promoter-
luciferase plasmid in cortical neurons during 3 h OGD
followed by 4h recovery, a time during which neurons
express Bim and undergo apoptosis.7,8 We previously
showed that OGD induces the activity of the Bim promoter
but not the activity of BimDkB plasmid carrying a mutation at
the kB site, demonstrating that Bim transcription during OGD
is NF-kB specific.8 The OGD-induced Bim promoter was
significantly enhanced by RelA overexpression, but fell to
basal levels in cells overexpressing RelA-K310R (Figure 4e).
These results show that NF-kB-mediated Bim transcription is
completely dependent on Lys310 acetylation of RelA. This
mechanism is pivotal in driving the deleterious effects of NF-
kB activation during lethal ischemia.

Resveratrol-mediated neuroprotection is associated
with inhibition of RelA acetylation at the Lys310
residue as well as with the inhibition of Bim promoter
activity. Deacetylation of Lys310 by the class III histone
deacetylase SIRT1 inhibits the transcriptional activity of
RelA.22 To determine whether pharmacological manipulation
of RelA acetylation could repress NF-kB-mediated
pro-apoptotic transcription during OGD, we tested the
SIRT1-activating molecule resveratrol. Cortical neurons
were exposed to OGD for 3 h and then treated for 24 h with
resveratrol (1, 3 and 30 mM). Even when added during the
post-ischemic period, resveratrol showed significant

neuroprotective activity at a concentration of 30 mM
(Figure 5a). Immunoprecipitation analysis of RelA in
nuclear extracts confirmed that after OGD, the acetylation
of Lys310 increased and total acetylation decreased.
Treatment with 30 mM resveratrol for 2 h after OGD only
partially reduced RelA activation, weakly affected general
RelA acetylation and completely deacetylated the Lys310
residue (Figure 5b). In line with this drastic effect on Lys310
acetylation, resveratrol repressed the Bim promoter
activity to levels below the baseline (Figure 5c). These
results represent further evidence that during ischemia, the
neurotoxic activation of NF-kB is associated with RelA
acetylation at Lys310. Drugs that deacetylate RelA at
Lys310, similar to the actions of resveratrol, can block
post-ischemic transcription and neurodegeneration.

Discussion

Here, we report that although activation of NF-kB c-Rel dimers
promotes neuronal resistance to environmental noxae,8–10

NF-kB activation following preconditioning OGD does not
involve c-Rel-containing dimers. Moreover, the p50/RelA
complex is activated in preconditioning, as well as in lethal
OGD. The aberrant activation of p50/RelA dimer in neuronal
cells, responsible for pro-apoptotic events in the post-
ischemic period,6–8 is characterized by RelA acetylation at
the Lys310 residue. It is unknown whether the acetylation of
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other lysine residues is also involved, though the increase
of Lys310 acetylation occurred in spite of decreased total
RelA acetylation. Moreover, acetylation of RelA on Lys310
differentiated the p50/RelA activation during lethal ischemia
from that induced by preconditioning ischemia. The level of
acetylation in Lys310 during OGD paralleled the increased
interaction of RelA with CBP, in line with evidence that RelA
acetylation on Lys310 is strictly dependent on the histone
acetyltransferase activity of CBP/p300.19 Similar results were
obtained in a model of in vivo brain ischemia and IPC. RelA is
highly activated in cortices of mice exposed to either BCCAO
or MCAO, as previously shown.16 Notably, the nuclear RelA
level was high also in mice exposed to 1-day IPC, that is,
BCCAO followed by MCAO on the next day. This result is
in contrast to what was observed in models of 3-day IPC, in
which severe ischemia induced 3 days after sublethal

ischemia elicited weaker NF-kB activation as a consequence
of enhanced IkBa expression during the 3-day interval.16 Our
data support the idea that brain tolerance does not impair
NF-kB translocation, but does affect RelA acetylation and
transactivation. Thus, compared with BCCAO or IPC mice,
the MCAOmice displayed a higher level of Lys310 acetylation
that correlated with increased interaction of RelA with CBP.
To elucidate the relevance of Lys310 acetylation to

RelA-mediated effects during ischemia, we transfected the
neuronally differentiated SK-N-SH cells that were displaying
RelA-dependent vulnerability to OGD8 with the RelA-K310R
mutant construct. We found that OGD greatly enhanced
Lys310 acetylation in control cells, as well as in cells
transfected with RelA, whereas acetylation did not increase
in cells overexpressing RelA-K310R. This result confirmed
that the mutation of lysine to arginine in the RelA sequence
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impairs acetylation of the RelA 310 residue.19 Thus, OGD-
mediated cell death was enhanced in RelA-overexpressing
cells,8 but was completely impaired in RelA-K310R-trans-
fected cultures. The occurrence of cell death at levels
even lower than those observed in cells expressing
empty vector suggests that deacetylated RelA-K310R
can compete with native Acetyl-RelA Lys310 to maximally
reduce neuronal vulnerability, as observed in the pre-
conditioned cells.
NF-kB fine-tunes cell survival by regulating transcription of

Bcl2 family genes endowed with either anti-apoptotic activity,
as the Bcl-xL, or pro-apoptotic activity, as the BH3-only
members Bim and Noxa.26 It has been shown that Bim and
Noxa genes, being under the transcriptional control of RelA,
are significantly induced 6 h after MCAO and their upregula-
tion is abolished in mice carrying a brain-conditional deletion
of RelA.7 Evidence that cortical neurons exposed to lethal
OGD display NF-kB-dependent induction of Bim, but not
Bcl-xL promoter, highlights the transcriptional specificity of
p50/RelA activation during anoxic injury.8 Bim, similar to other
BH3-only proteins, contributes to increase the mitochondrial
permeability and activation of caspase cascade by directly
activating pro-apoptotic Bax and Bak27 or by releasing
Bax and Bak from their complexes with pro-survival Bcl-2
homologs.28,29 Bim represents a converging point of diverse
pro-apoptotic pathways during brain ischemia. In addition to

NF-kB, Bim can be transcriptionally induced by Forkhead
transcription factors (FOXO)3a as downstream target of the
PTEN–Akt–FOXO3a pathway activated in ischemic brains.30

The interaction of Bimwith the c-JunN-terminal protein kinase
(JNK), enhances Bim affinity to Bax and increases both
proteins translocation to the mitochondria.31,32 Intriguingly,
JNK and FOXO3a signaling can be negatively modulated by
the crosstalk with NF-kB in pro-survival pathways33,34 raising
additional queries about the mode of Bim regulation by NF-kB
in brain ischemia. Here, we show that Bim transcription
during OGD strictly depends on Lys310 acetylation of RelA.
Bim transcription increased during OGD, it was enhanced in
cortical neurons overexpressing RelA, but was completely
inhibited in RelA-K310R-expressing cells. This result
suggests that RelA acetylation on Lys310, through the
recruitment of the coactivator CBP/p300, is a mechanism
evolved to regulate inducible pro-apoptotic genes during
ischemia in neuronal cells. Notably, the transactivation
potential of c-Rel was reported not to be influenced by the
CBP/p300 interaction.35 This difference may also account for
diverse regulation of NF-kB target genes by c-Rel and RelA
during ischemia.8 The specific RelA acetylation on Lys310
represents amolecular target tomodify gene transcription and
neuronal resilience to ischemic injury.
Yeung and colleagues22 originally demonstrated that the

histone deacetylase SIRT1 can interact with RelA to inhibit
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gene transcription by deacetylating RelA at Lys310, without
modifying the other lysine residue. These results suggested
that acetylated Lys310might form a platform for the binding of
a bromodomain-containing protein that is required for full
transcriptional activity of RelA.36 Interestingly, SIRT1 protects
against neurodegeneration, and SIRT1 levels rise rapidly in
various neurotoxic and neurodegenerative conditions; these
results suggest SIRT1 may represent a stress sensor
molecule that is important for the neuroprotective adaptation
response.37 We checked the effects induced in cortical
neurons by resveratrol, a pharmacological activator of
SIRT1.22 In line with previous evidence,37,38 resveratrol
protected neuronal cells in a concentration-dependent man-
ner, even if added after exposure to OGD. This effect
correlated with the capability of the compound to abolish
Lys310 acetylation, in spite of a modest inhibition of RelA
nuclear translocation and a minor reduction in total RelA
acetylation. As a consequence of specific RelA deacetylation,
resveratrol repressed the acetyl-RelA Lys310-dependent
transcription of Bim promoter during OGD. We cannot rule
out the fact that additional targets of SIRT1 deacetylase
activity, including FOXO3, p53 and peroxisome proliferator,
activated receptor gamma co-activator 1a (PGC-1a) tran-
scription factors,37,39 as well as mechanism other than SIRT1
activation38 may contribute to the neuroprotection by resver-
atrol. Nonetheless, the present data are consistent with
the hypothesis that the use of pharmacological agents
modulating SIRT1 activity affects the acetylation status of
RelA protein at Lys310, as well as its pro-apoptotic trans-
activation potential.
The issue of RelA acetylation has been thought to explain

the pro-inflammatory activity of p50/RelA in immune cells,40,41

reactive astrocytes42 and microglial cells.23 Here, we demon-
strate that in neuronal cells does the acetylation of RelA
at Lys310 function as an intranuclear molecular switch that
discriminates between the neurotoxic and the neuroprotective
NF-kB pathway in brain ischemia. The acetylation of RelA at
Lys310may represent a new drugable target to reproduce the
preconditioning-induced activation of NF-kB.

Materials and Methods
Cell culture
Primary cultures of mouse cortical neurons. Cortical neurons were
prepared from 15-day-old embryonic mice, harvested with cesarean section from
anaesthetized pregnant C57Bl/6 dams (Charles River, Italy) and cultured as
previously described.8 Experiments were carried out at 11 days in vitro (DIV).
SK-N-SH cell culture. The human SK-N-SH neuroblastoma cell line was
purchased from American Type Culture Collection (Rockville, MD, USA). Cells were
grown at 371C in a humidified atmosphere of 5% CO2, 95% O2 in Dulbecco’s
modified Eagle’s medium (DMEM) (Euroclone, Milan, Italy) supplemented with fetal
calf serum, 4 mM glutamine and 100 U/ml penicillin/streptomicin. The addition of
50mM RA (Sigma, St. Louis, MO, USA) for 10–12 days induced mitotic arrest and
differentiation into a neuronal-like phenotype.25

Cerebral ischemia models
Transient middle cerebral artery occlusion (MCAO). Procedures
involving animals were approved by the Institutional Animal Care Committee in
compliance with the Italian guidelines for animal care (DL 116/92) and the European
Communities Council Directive (86/609/EEC). C57Bl/6 male mice (Harlan, Milan,
Italy) were exposed to IPC and/or transient (20min) MCAO as previously
described.24 For IPC, mice (n¼ 9) were anesthetized, and bilateral common carotid
arteries were occluded (BCCAO) for 5min with microclips. After 24 h, mice

underwent 20min MCAO as reported.24 Parallel groups were subjected to BCCAO
(n¼ 9) or MCAO (n¼ 9) alone. Infarcts were measured 3 days later to rule out
transient neuroprotection. Examination of infarct volume was performed in brains
frozen in liquid nitrogen to avoid post-mortem changes. To prepare nuclear extracts,
mice were killed by decapitation 4 h after BCCAO (n¼ 3), MCAO (n¼ 3) or BCCAO
and MCAO (IPC) (n¼ 3).
OGD. Primary cortical neurons at 11 DIV were exposed to OGD as previously
described,8 for 1 or 3 h. Cells recovered for 24 h in culture medium and were
typically aerated in the incubator for the evaluation of cell viability. Resveratrol (1, 3
and 30mM) (Calbiochem, Beeston Nottingham, UK) was added in the post-ischemic
period. Nuclear proteins were extracted at the end of OGD or after an additional 2 h
incubation with resveratrol. SK-N-SH neuronal cells were exposed to 1 to 4 h OGD
for analysis of NF-kB in nuclear extracts. Cells were exposed to 15 h OGD and
replaced in fresh DMEM without serum for 24 h for analysis of cell viability. Neuronal
injury was evaluated by measuring the amount of LDH (Promega, Madison, WI,
USA) released relative to total releasable LDH.8

Co-immunoprecipitation and western blot analyses. Nuclear
protein extracts were prepared as previously described8 from primary cortical
neurons and from differentiated SK-N-SH cells, immediately after OGD exposure or
after an additional time as indicated, or from the cortices of mice exposed to 5min
BCCAO followed by 4 h reperfusion, 20min of MCAO followed by 4 h reperfusion,
5 min BCCAO and 24 h later, 20 min MCAO (IPC) and 4 h reperfusion.

Co-immunoprecipitation studies and immunoblot analyses were carried out as
previously described.8 In total, 20mg of nuclear extracts were incubated at 41C
overnight with 2mg/ml of goat polyclonal anti-RelA antibody (sc-372G, Santa Cruz
Biotechnology, Santa Cruz, CA, USA) and co-immunoprecipitated proteins were
detected by immunoblotting using the following antibodies: rabbit polyclonal
anti-p50 (1 : 500, ab7971 Abcam, Cambridge, UK), rabbit polyclonal anti-c-Rel
(1 : 50, sc-71X Santa Cruz Biotechnology), rabbit polyclonal anti-RelA (1 : 200,
sc-372, Santa Cruz Biotechnology), rabbit polyclonal anti-Acetyl-RelA (Lys310)
(1 : 500, #3045, Cell Signaling, Danvers, MA, USA), rabbit polyclonal anti-Acetyl-Lys
(1 : 500, #06-933 Upstate-Millipore, Billerica, MA, USA) and rabbit polyclonal anti-
CBP (1 : 500, sc-583 Santa Cruz Biotechnology). For immunoblot analyses, nuclear
proteins (25mg proteins/sample) were resolved by 10% SDS/polyacrylamide gel.
Immunodetection was performed by incubating the membrane overnight at 41C,
with the following primary antibodies: rabbit polyclonal anti-Acetyl-RelA (Lys310)
(1 : 500, #3045 Cell Signaling), rabbit polyclonal anti-RelA (1 : 200, sc-372 Santa
Cruz Biotechnology), rabbit polyclonal anti-histone H3 (1 : 1000, #9715 Cell
Signaling) and rabbit polyclonal anti-C23 nucleolin (1 : 300, sc-13057 Santa Cruz
Biotechnology). Quantification of protein expression was performed by densitometry
analysis of immunoblots, using Gel Pro.3 analysis software (MediaCybernetics,
MD, USA).

NF-jB activation. The binding of mouse p50 and RelA to the NF-kB-binding
consensus sequence was measured in nuclear extracts using the ELISA-based
Mercury TransFactor kit (BD Biosciences, San Jose, CA, USA) as previously
described.10 Data are expressed as the absorbance difference observed in the
presence of nuclear extracts and that observed in the absence of nuclear extracts.

Expression plasmids and transfections. The wild-type RelA plasmid8

was used as a template to produce the Lys-to-arginine mutant construct RelA-
K310R using the Quick change site-directed method (Stratagene, La Jolla, CA,
USA), and Pfu DNA Polymerase. The primers sequence synthesized for the
mutagenesis were the following: RelA-K310R for 50-AGGACATATGAGACCTTCAG
GAGCATCATGAAGAAGAG-30; RelA-K310R REV 50-CTCTTCTTCATGATGCTCC
TGAAGGTCTCATATGTCCT-30 (nucleotide substitution is in bold). The results of
mutagenesis were confirmed by sequencing clones with the following internal
primer, K310R 50-GCCTGCAGGCTCCTGTGCGT-30. Restriction map analysis was
further carried out to verify construct integrity, and expression was confirmed by
immunoblotting with the anti-RelA antibody in differentiated SH-N-SK cells, using
the following antibodies: rabbit polyclonal anti-RelA (1 : 200, sc-372, Santa Cruz
Biotechnology) and mouse monoclonal anti-b-tubulin (1 : 1500, NeoMarkers,
Fremont, CA, USA).

Transfection of differentiated SK-N-SH cells was carried out according to the
manufacturer’s instructions with Lipofectamine 2000 Reagent (LF 2000, Invitrogen
Corp., Carlsbad, CA, USA), as previously described.8 Cells were transfected with
expression plasmids encoding RelA, RelA-K310R or empty expression vector pSG5
as a negative control, for 24 h, before undergoing the OGD experiments.
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Reporter gene assays. In order to evaluate mouse Bim promoter activity
during OGD, cortical neurons were transfected at 10 DIV using LF 2000 Reagent
with 0.2mg/well of the Bim-pGL3 plasmid and 0.8mg/well of RelA or RelA-K310R
mutant construct or empty expression vector pSG5 as negative control, as
previously described.8 To normalize the transfection efficiency, 0.02mg/well Renilla
luciferase (phRLTK) control plasmid (Promega) was used. After 24 h, neurons were
exposed to 3 h OGD as described above. At the end of incubation, during the 4 h
recovery in Neurobasal medium with 0.4% B27 supplement (Invitrogen Corp.), the
cells expressing pSG5 were treated with resveratrol (30 mM). Cells were then
harvested, and firefly and Renilla luciferase were measured by using Dual
Luciferase Reporter Assay (Promega).

Statistics. NF-kB ELISA data were analyzed using one-way analysis of
variance (ANOVA), followed by Dunnett’s post hoc analysis to determine statistical
significance. Po0.05 was considered significant. Columns represent the
means±S.E.M. of at least four values. Data describing cell survival were
analyzed by Kruskal–Wallis non-parametric ANOVA with adjustment for multiple
comparisons. Data relative to densitometry analyses and luciferase reporter activity
were analyzed using Student’s t-test for independent data. Po0.05 was considered
as significant.
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