
Functional phosphoproteomic analysis reveals
cold-shock domain protein A to be a Bcr-Abl
effector-regulating proliferation and transformation in
chronic myeloid leukemia
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One proposed strategy to suppress the proliferation of imatinib-resistant cells in chronic myeloid leukemia (CML) is to inhibit key
proteins downstream of Bcr-Abl. The PI3K/Akt pathway is activated by Bcr-Abl and is specifically required for the growth of CML
cells. To identify targets of this pathway, we undertook a proteomic screen and identified several proteins that differentially bind
14-3-3, dependent on Bcr-Abl kinase activity. An siRNA screen of candidates selected by bioinformatics analysis reveals cold-
shock domain protein A (CSDA), shown previously to regulate cell cycle progression in epithelial cells, to be a positive regulator
of proliferation in a CML cell line. We show that Akt can phosphorylate the serine 134 residue of CSDA but, downstream of
Bcr-Abl activity, this modification is mediated through the activation of MEK/p90 ribosomal S6 kinase (RSK) signaling. Inhibition
of RSK, similarly to treatment with imatinib, blocked proliferation specifically in Bcr-Abl-positive leukemia cell lines, as well as
cells from CML patients. Furthermore, these primary CML cells showed an increase in CSDA phosphorylation. Expression of a
CSDA phospho-deficient mutant resulted in the decrease of Bcr-Abl-dependent transformation in Rat1 cells. Our results support
a model whereby phosphorylation of CSDA downstream of Bcr-Abl enhances proliferation in CML cells to drive leukemogenesis.
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Chronic myeloid leukemia (CML) is a stem cell disease, in
which neoplastic cells carry a translocated Philadelphia
chromosome, in which a hybrid Bcr-ABL gene encodes a
fusion oncoprotein, Bcr-Abl, with constitutive tyrosine kinase
activity. Bcr-Abl induces multiple signaling pathways to
transduce the oncogenic signal, which ultimately results in
uncontrolled proliferation and neoplastic expansion.1 Bcr-Abl
also reduces adhesion of CML cells to the extracellular matrix
and stroma cells, allowing them to bypass the negative
influence these interactions have on proliferation.2,3 Further-
more, the oncoprotein is believed to inhibit the apoptotic
response to mutagenic stimuli,4 providing a survival
advantage for the leukemic clone, in addition to increasing
the likelihood of genomic instability and, therefore, further
oncogenic mutations.
Bcr-Abl-dependent pathways include PI3K, MAPK and

JAK/STAT, which ultimately control transcription. Targeting
the kinase activity of Bcr-Abl via competition with ATP for its
binding to the kinase pocket is the basis of the therapeutic
action of imatinib mesylate (IM), the preferred drug for

front-line treatment of CML.5 However, persistence of residual
disease or emergence of secondary resistance to IM is a
major cause of concern, especially in the advanced phases of
the disease.6,7

One proposed strategy to suppress the proliferation of
IM-resistant cells is to inhibit key proteins downstream of Bcr-
Abl, such as Akt. Previous reports have shown that 14-3-3-
affinity purification can be used to identify novel Akt substrates
in cells in which Akt is activated through exposure to
epidermal growth factor.8 Owing to the fact that the PI3K/
Akt pathway plays a crucial role in the leukemogenesis of
CML9,10 and 14-3-3 binds to a number of well-characterized
Akt targets in cancer signaling,11,12 we postulated that such
14-3-3 binding would significantly contribute to Bcr-Abl-
mediated leukemogenesis. We therefore utilized 14-3-3
affinity binding methodology to identify proteins that are
regulated by Akt downstream of Bcr-Abl. Here we report that
cold-shock domain protein A (CSDA) is a target of Bcr-Abl-
induced phosphorylation, regulates proliferation and is critical
for Bcr-Abl-induced transformation.
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Results

Identification and comparative analysis of IM-sensitive
14-3-3 binding proteins in Bcr-Abl-positive CML
cells. To identify Bcr-Abl-dependent 14-3-3 binding
proteins, GST-14-3-3-affinity purification was utilized in
combination with mass spectrometry to identify sufficient
numbers of 14-3-3 bound proteins to detect differential
binding after inhibition of Bcr-Abl kinase activity. The affinity
purification was undertaken in whole-cell lysates from
LAMA84 CML cells cultured in the presence or absence of
IM as described in Materials and Methods (Figure 1a).
Phosphotyrosine western blots of lysate inputs for the affinity
purification displays a significant reduction in the level of
tyrosine phosphorylation of multiple proteins after treatment
with IM, confirming efficacy of the inhibitor in our assay
(Figure 1b). Furthermore, enrichment of tyrosine-
phosphorylated proteins was detected among the untreated
14-3-3 binding proteins in the pulldown (Figure 1b).
In total, 318 proteins were identified by mass spectrometry

as being bound to 14-3-3 (Supplementary Table 1). In order to

assess the robustness of the GST-14-3-3-affinity purification
technique, we performed bioinformatic analysis of published
interactions (www.hrpd.org) and confirmed that a number of
proteins that bound to 14-3-3 in our affinity purification screen
had previously been shown to bind 14-3-3 (Supplementary
Table 2). The previous identification of these proteins as
14-3-3 binding proteins was achieved through a variety of
techniques, including GST-affinity purification, Tandem-
affinity purification and immunoprecipitation.13–22 This reas-
sured us that the eluates from the GST-14-3-3-affinity
purifications were highly enriched for 14-3-3 binding proteins
and that the proteins we identified were not artifactual results
generated by the use of the GST-14-3-3-affinity purification
technique.
Of the 318 proteins, 69 bound 14-3-3 only in the absence of

IM treatment. We focused on these proteins since we were
interested only in putative Akt targets that were regulated by
Bcr-Abl activity in CML. In accord with other 14-3-3-affinity
purification screens and the critical role of PI3K/Akt signaling
in cancer cell biology,15,17,23 grouping of these proteins by
biological function, as described by the Human Protein
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Figure 1 Identification and analysis of Bcr-Abl-dependent 14-3-3-interacting proteins. (a) Schema of GST-14-3-3-affinity purification from IM-sensitive CML cells. Lysates
from LAMA84 cells untreated or treated with 5 mM for 2 h were incubated with GST-14-3-3-sepharose; bound proteins were eluted and identified by mass spectrometry as
described in Materials and Methods. (b) Aliquots of eluates from affinity purification were analyzed by Coomassie staining and western blot with phospho-tyrosine antibody.
(c) Proteins that bound 14-3-3 only in the absence of IM were grouped by biological functions as described in the text
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Reference Database (www.hrpd.org), enriched for protein
metabolism (33%), nucleic acid metabolism (20%), signal
transduction (17%), as well as energy and metabolism (16%)
(Supplementary Table 3, Figure 1c).

siRNA screen for proliferation of candidate Bcr-Abl-
dependent Akt targets. On the basis of phosphorylation-
site motif analysis for 14-3-3 binding and Akt kinase motifs
(http://scansite.mit.edu), as well as functional analysis, 20 of
the 69 proteins that bound to 14-3-3 only in cells with active
Bcr-Abl were selected for inclusion in a customized siRNA
screen for proliferation (Supplementary Table 4). Two siRNA
sequences were used for any gene that had pre-validated
siRNAs, whereas three siRNA sequences were used for
genes for which two pre-validated siRNAs were not available
(Supplementary Table 5). The K562 cell line was used for the
siRNA screen because of their relatively high transfection
efficiency as well as their wide use in studying CML. Cells

were transfected with the siRNA oligonucleotides and
proliferation assessed by MTS 48h post transfection as
described in Materials and Methods. Proliferation was
normalized to a non-targeting siRNA control and a ‘cell
death’ siRNA was included as a positive control for siRNA-
mediated decrease of proliferation (Figure 2a).
As shown in Figure 2a, transfection of three of the

20 candidates included in the screen resulted in 420%
decrease of proliferation: 5-aminoimidazol-4-carboxamide
ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC,
Entrez Gene ID 471), glucose phosphate isomerase (GPI,
Entrez Gene ID 2821) and CSDA (Entrez Gene ID 8531). The
latter has been shown to be a transcription factor, shuttling
between tight junctions and nuclei, promoting cell prolifera-
tion.24,25 We selected CSDA (also called ZONAB) for further
analysis as besides enhancing cell proliferation, it has recently
been implicated in breast cancer metastasis and shown to be
upregulated in gastric cancer.26,27 Its role in CML or other
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Figure 2 Targeted siRNA screen of selected candidate Akt effectors reveal CSDA to regulate proliferation in CML. (a) Twenty IM-sensitive 14-3-3 interactors were
selected based on biological function and presence of putative Akt phosphorylation motif for inclusion in the siRNA screen. Two or three targeting siRNA sequences to each
candidate were transfected in K562 cells for 48 h and averaged for readings of proliferation by MTS as described in Methods and Methods. The three candidates whose
silencing decreased proliferation greater than 20% are indicated. (b) Transfection of CSDA siRNA targeting sequences 1 and 3 effectively silenced protein expression on K562
cells and greatly decreased proliferation after 72 h
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hematological malignancies, however, has not been in
investigated. Two of the three siRNAs to CSDA could
effectively silence endogenous protein expression in K562
cells as shown by western blot and transfection with these
individual siRNAs for 72 h exhibited an even more profound
effect on cell proliferation (Figure 2b). We further analyzed
CSDA silenced K562 cells by Annexin V/propidium iodide (PI)
staining as well as cell cycle analysis by PI and determined
that CSDA expression regulates proliferation and not apop-
tosis (Supplementary Figure 1A) or cell cycle arrest (Supple-
mentary Figure 1B).

CSDA is phosphorylated in a Bcr-Abl-dependent manner
in CML cells and CML patient samples. Examining the
CSDA amino-acid sequence, we noted striking similarity with
the recently identified Akt site on YB-1,28 a closely related
cold-shock domain containing protein. We generated
a phospho-deficient serine to alanine construct
(CSDAS134A) targeting the putative Akt site and
expressed it along with wild-type CSDA in 293 cells.
Western blot analysis with a phospho-specific commercial
antibody (pYB1) to the homologous site on YB-1 (serine 102)
determined that this reagent could be used to detect specific
phosphorylation on serine S134 of CSDA (Figure 3a).
We next developed FLAG-CSDA-expressing stable

LAMA84 and K562 cell lines to assess Bcr-Abl-dependent
phosphorylation of CSDA in CML. As shown in Figure 3b,
immunoprecipitation of FLAG-CSDA followed by immuno-
blotting with pYB-1 of lysates from both stable cell lines
treated with IM results in profound decrease in S134
phosphorylation of CSDA, revealing Bcr-Abl-dependent
phosphorylation.
To determinewhether Bcr-Abl-dependent CSDAphosphory-

lation is detectable in actual CML, we purified CD34þ cells
from leukaphareses from CML patients or normal donors as
described in Materials and methods. Western blot analysis
(Figure 3c) revealed that lysates derived from CML
cells (sample ID 37 and 44) show Bcr-Abl expression and a
concomitant increase in phosphorylation of CrkL, a
substrate for Bcr-Abl and a widely used readout for Bcr-Abl
activity29,30 relative to lysates from healthy individuals (sample
ID 35 and 43). Tellingly, CML cells also exhibited increased
phosphorylated CSDA signal relative to CSDA expression
as compared with normal cells, indicating greater specific
phosphorylation of CSDA at serine 134 in Bcr-Abl-positive
CML.

Bcr-Abl-induced CSDA phosphorylation is independent
of Akt, but dependent on MEK/RSK pathway. Bcr-Abl
activates a number of downstream signaling pathways
besides PI3K/Akt. To investigate whether Bcr-Abl-induced
CSDA phosphorylation is dependent on Akt activity, we
co-expressed CSDA with either empty vector or Bcr-Abl in
293 cells, and treated them with control vehicle or a specific
Akt inhibitor (Akti VIII). Western blot analysis revealed that
Akt inhibition is effective in decreasing the basal CSDA
phosphorylation in vector control cells, but not in Bcr-Abl-
transfected cells (Figure 4a).
In order to determine which kinases are responsible for

Bcr-Abl-induced CSDA phosphorylation, we co-transfected

293 cells with CSDA and empty vector or Bcr-Abl, and treated
them with control vehicle, mTOR inhibitor (rapamycin), PI3K
inhibitor (LY294002), active MEK inhibitor (U0126), MEK
inhibitor (PD98059) or p38 MAPK inhibitor (SB203580). As
shown in the top panel of Figure 4b, treatment with the PI3K
inhibitor but not the other inhibitors reduced basal CSDA
phosphorylation. Similar to our findings with Akt (Figure 4a),
PI3K inhibition did not affect Bcr-Abl-induced CSDA phos-
phorylation (Figure 4b, bottom panel). Strikingly, both MEK
inhibitors were ineffective in reducing basal phosphorylation
(Figure 4b, top panel), but robustly reduced Bcr-Abl-induced
CSDA phosphorylation.
Sequence analysis led us to expect that MEK does not

directly phosphorylate CSDA at serine 134. However, the p90
ribosomal S6 kinase (RSK) was recently reported to phos-
phorylate the conserved site on YB-1 and RSK signaling
downstream of MEK activity is well established.31,32 Tellingly,
treatment with an RSK inhibitor (SL0101) blocked Bcr-Abl-
induced CSDA phosphorylation as effectively as MEK
inhibition (Figure 4c). These data suggest that although Akt
phosphorylates CSDA at serine 134 in non-CML cells, Bcr-Abl
activity results in MEK-dependent RSK phosphorylation of
CSDA at the same site.
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Figure 3 CSDA is phosphorylated at serine 134 in a Bcr-Abl-dependent manner
in CML cell lines and CD34þ -purified primary CML cells. (a) The 293 cells were
transfected with empty vector, pCMV2B-CSDA or pCMV2B-CSDAS134A for 48 h
and lysates analyzed by western blot with pYB-1 antibody to detect CSDA
phosphorylation as described in the text. (b) LAMA84 and K562 cells were stably
transfected with empty vector or pBABE_flagCSDA and treated or not (DMSO) with
1mM IM for 2 h. Lysates were immunoprecipitated with FLAG M2 beads and inputs
and eluates were analyzed by western blot for the expression of phosphorylated
CSDA and of total CSDA by anti-ZONAB. (c) CD34þ -purified cells from
leukaphareses from normal individuals (sample ID 35, 43) or CML patients (sample
ID 37, 44) were lysed and analyzed by western blot for the expression of Bcr-Abl by
anti-c-Abl, phosphorylated CrkL, phosphorylated CSDA, CSDA and tubulin
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RSK inhibition specifically blocks proliferation in
Bcr-Abl-positive cell lines and primary CML cells. We
investigated whether RSK activity is selectively critical in
Bcr-Abl-positive cells by undertaking a proliferation assay

comparing K562 and Ramos cell lines. As expected,
treatment with IM selectively blocked proliferation in K562
CML cells while having negligible effect on the Bcr-Abl-
negative, Ramos Burkitt’s lymphoma line, whereas Akt
inhibition decreased proliferation in both cell lines
(Figure 5a). Strikingly, similar to IM, RSK inhibition reduced
proliferation only in the K562 cells (Figure 5a). We assessed
whether the difference in sensitivity to RSK inhibitor may be a
function of differential S6 kinase activity in these cells.
Indeed, although Ramos and K562 cells express similar
levels of both RSK1 and RSK2, the K562 CML lines exhibit
markedly increased S6 kinase activity as detected by an
antibody specific to S6 kinase phosphorylated at Thr389
(Figure 5b).
To determine whether specificity to RSK inhibition is also

evidenced in primary CML cells, we compared the prolifera-
tion rate of normal and CML CD34þ progenitors treated with
IM, Akt inhibitor or RSK inhibitor. Similar to what we observed
in the cell lines (Figure 5a), IM-induced Bcr-Abl inhibition and
RSK inhibition affected growth only of CML progenitor cells,
whereas Akt inhibition abrogated proliferation in both CML
and normal cells (Figure 5c). These data indicate that
inhibition of RSK specifically reduces proliferation in
Bcr-Abl-positive cells, both in cell lines and primary CML.

CSDA expression and S134 phosphorylation regulates
Bcr-Abl-dependent transformation. We have shown that
CSDA expression and RSK activity are both critical for
proliferation in CML (Figures 2b and 5). We have also
discovered that CSDA is phosphorylated at serine 134
downstream of Bcr-Abl in an RSK-dependent manner
(Figure 4). To determine whether CSDA S134 phosphory-
lation is critical for Bcr-Abl-dependent transformation, we
generated stable lines expressing empty vector or co-
expressing Bcr-Abl and empty vector, CSDA or the
CSDAS134A phospho-deficient mutant in Rat1 cells to
employ in soft agar colony formation assays.33,34

After selection, we validated the expression of Bcr-Abl and
CSDA constructs (Figure 6a). Furthermore, using phospho-
specific antibodies to CrkL and CSDA, we confirmed that
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expressed Bcr-Abl was active, and that expressed CSDA, but
not CSDAS134A protein, exhibits increased phosphorylation
at serine 134A with Bcr-Abl co-expression (Figure 6a). As
shown in Figure 6b, cells stably expressing Bcr-Abl generated
significantly greater number of colonies when cultured in soft
agar than cells only expressing empty vector. Colony
formation was further and significantly enhanced from cells
co-expressing Bcr-Abl and CSDA, but not the phospho-
deficient CSDAS134A construct compared with Bcr-Abl and
empty vector (Figure 6b). In fact, co-expression of Bcr-Abl and
CSDAS134A resulted in lower number of colonies than Bcr-

Abl alone. These findings reveal that CSDA phosphorylation
as well as expression is critical for Bcr-Abl-mediated
malignant transformation.

Discussion

We showed that CSDA is specifically phosphorylated at
serine 134 downstream of Bcr-Abl in CML cell lines and
primary progenitor cells from CML patients (Figure 3).
However, we unexpectedly determined that CSDAS134
phosphorylation is dependent on Akt in the absence of
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Bcr-Abl, but dependent on MEK/RSK downstream of Bcr-Abl
(Figure 4). RSK targets such as S6 are key regulators of
translation and S6 phosphorylation downstream of MEK
activity was shown to be via RSK rather than mTOR to
stimulate cap-dependant translation.35,36 Although CSDA has
been reported to function as a transcription factor, activating
target genes such as PCNA and cyclin D1 that regulate
proliferation and morphogenesis in epithelial cells,24,37 we did
not detect significant changes in specific luciferase activity of
either PCNA- or cyclin D1-luciferase constructs, co-ex-
pressed with Bcr-Abl and either CSDA or CSDAS134A
constructs (data not shown).
It may be that Bcr-Abl-MEK-RSK signaling induces CSDA

to regulate translation rather than transcription to promote
proliferation in CML. Interestingly, the closely related cold-
shock domain-containing protein, YB-1, has been shown to
regulate translation in breast cancer progression by repres-
sing cap-dependent and promoting cap-independent
mechanisms, with Akt phosphorylation at serine 102 resulting
in decreased cap-complex binding of YB-1, and thus
decreased translational repression in breast and other
epithelial cells.28,38–40 It will be interesting to determine if
there are similar cap-dependent and -independent differences
in RSK versus Akt phosphorylation of CSDA at serine 134
(homologous to serine 102 in YB-1) in regulating translation in
CML- and Bcr-Abl-negative leukemias, and if blocking
CSDAS134 phosphorylation can be exploited to specifically
target CML.
We also showed that inhibition of RSK activity specifically

blocks proliferation, similarly to CSDA silencing, in an
established Bcr-Abl-positive cell line as well as in primary
progenitor cells from CML patients (Figure 5). Furthermore,
we showed that CSDA, but not the RSK phospho-site
mutant, enhances Bcr-Abl-dependent transformation. In fact,
co-expression of CSDAS134A blocks Bcr-Abl-dependent
transformation. However, it is probable that other RSK
phosphorylation targets, both known and undiscovered, are
also critical for tumorigenesis, and future work will determine if
particular substrates are relevant for specific cancers.
Unsurprisingly, proteins involved in protein synthesis, proces-
sing and fate were enriched in our bioinformatics analysis of
14-3-3 binding proteins in our initial proteomic screen for Bcr-
Abl effectors in CML (Figure 1c).
In this study, we selected CSDA for further investigation

based on its previous known function in regulating cell cycle
progression and upregulated expression in epithelial
cancers,24,26,27 as well as its scoring highly in a secondary
targeted siRNA screen for proliferation in K562 CML cells
(Figures 2a). Gene ontology analysis of the Bcr-Abl-depen-
dent 14-3-3 binders revealed enrichment for proteins involved
in energy and metabolism (Supplementary Table 3,
Figure 1c). Interestingly, the other two proteins that scored
highly in the siRNA proliferation screen, ATIC, which
catalyzes the last two steps of de novo purine biosynthesis,
and GPI, which catalyzes the reversible isomerization of
glucose-6-phosphate and fructose-6-phosphate, are both key
metabolic enzymes linked to hematological malignancies41,42

(Figure 2a). Therefore, metabolic regulation downstream of
Bcr-Abl can also be targeted in CML, as it has been in therapy
for other cancers.43,44 The findings in this study indicate that

CSDA phosphorylation and RSK signaling in general may
offer an alternative to PI3K/Akt inhibition in targeting Bcr-Abl-
dependent leukemogenesis.

Materials and Methods
Cell culture, transfection and treatment. LAMA84, K562 and Ramos
cell lines were cultured in suspension in RPMI 1640 medium (Invitrogen, Paisley,
UK), supplemented with 10% heat-inactivated fetal calf serum (Harlan Sera-Lab Ltd,
Loughborough, UK), 5000 IU/ml penicillin, 5000mm/ml streptomycin and 200mM
L-glutamine. The 293T and Rat1 cell lines were cultured in Dulbecco’s modified
Eagle’s media (Invitrogen) supplemented as above.

Transfections of cDNA in 293T and Rat1 cells were performed with Effectene
(Qiagen, Crawley, UK) according to the manufacturer’s instructions. Rat1 stable cell
lines were generated with co-selection in G418 and puromycin (Invitrogen).
Retroviral infections of LAMA84 and K562 were performed as described
previously,45 and stable cell lines were generated with selection in puromycin.
siRNA transfection in K562 and Ramos cells were performed with Interferin
(Polyplus, Illkirch, France) according to the manufacturer’s instructions.

IM was kindly provided by Dr. E Buchdunger (Novartis Pharma, Basel,
Switzerland). Akt inhibtor VIII, LY294002, rapamycin, U0126, PD98059 and
SB203580 were all purchased from Calbiochem (Nottingham, UK). Cells were
treated with inhibitors at the concentrations detailed in the figure legends.

Patient sample preparation. Peripheral blood cells were obtained by
leukapheresis from newly diagnosed patients with CML or from normal donors. These
cells were portions of leukaphereses processed by the Stem Cell Laboratory,
Hammersmith Hospital (London, UK), in excess of clinical requirements. Informed
consent for the use of cells for research was obtained with approval from the
Hammersmith and Queen Charlotte’s and Chelsea Research Ethics Committee
Institutional Review Board. CD34þ cells were labeled using MiniMACS technology
according to the manufacturer’s instructions (Miltenyi Biotec, Bisley, UK). Cells were
resuspended in 350ml of MACS buffer (phosphate-buffered saline (Gibco, Paisley,
UK), 0.5% bovine serum albumin (PAA Laboratories, Pasching, AT) and 2mM EDTA
(Sigma, Gillingham, UK) per 108 cells with 100ml FcR blocking reagent and 50ml of
microbeads conjugated to monoclonal anti-CD34 antibody (QBEND10) and incubated
for 15min at 41C. The cells were then washed and resuspended in 2ml of MACS
buffer per 108 cells. Labeled cells were then passed through a pre-washed MiniMACS
column mounted on a magnet. Following this, the column was washed four times with
MACS buffer, removed from the magnet and the cells eluted with 2ml MACS buffer.
The purity of the CD34þ fraction was consistently above 96% as determined by flow
cytometry (FACScalibur, Becton Dickinson, Oxford, UK) with anti-CD34 staining.
Aliquots were immediately frozen for subsequent lysis for western blot analysis or
cultured in leukemic cell growth media for proliferation assays.

Plasmids. pGEX6P1/14-3-3t was generated by subcloning the open-reading
frame of human 14-3-3t into pGEX6P1 (Amersham Biosciences, Little Chalfont,
UK). pCLAmpho and pcDNA3.1Bcr-Abl were described previously.46,47

pCMV2B_CSDA was generated by subcloning the open-reading frame of human
CSDA (Origene, Rockville, MD, USA) into pCMV_Tag2B (Stratagene, La Jolla, CA,
USA). pBabe_flagCSDA was cloned by PCR-mediated addition of a 50 BamHI
restriction site and FLAG tag sequence (DYKDDDDK) and
30 EcoRI restriction site. The CDS with 50 FLAG tag was then ligated with
BamHI- and EcoRI-digested pBabe. Construction of all vectors was confirmed by
both restriction digestion and DNA sequencing CSDAS134A point mutant was
constructed by site-directed mutagenesis kit (QuickChange XL, Stratagene)
according to the manufacturer’s instruction using the following primer synthesized
by SigmaGenosys (Gillingham, UK): 50-ACGGAAATATCTGCGCGCTGTAGGA
GATGGAGAAA-30. Point mutation was confirmed by DNA sequencing.

Western blotting and immunoprecipitation. Cells were lysed in ice-
cold buffer containing 1% (v/v) Triton X-100, 0.05% (v/v) SDS,10mM NaH2PO4,
150mM NaCl, 5 mM EDTA, 10mM NaF, 1mM NaVO3, 5 nM molybdic acid, 100 nM
okadaic acid, 1 mM DTT, 1� Protease Inhibitor Cocktail (PIC) (Roche, Burgess Hill,
UK), 1�PhosSTOP phosphatase inhibitor cocktail (Roche) and resolved by
SDS-PAGE transferred to PVDF membrane (Hybond-P, GE Healthcare, Little
Chalfont, UK). Anti-phosphotyrosine antibody (4G10) was a kind gift from Professor
B Druker (Oregon Health & Science University, Portland, OR, USA) and anti-CSDA
(ZONAB) antibody was a kind gift from Professor Karl Matter (UCL, London, UK).
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Anti-FLAG (M2) antibody was purchased from Sigma, and anti-c-Abl (Ab3) was
purchased from Calbiochem. Anti-PCNA (sc-25280), anti-tubulin (sc-53140), anti-
RSK1 (sc-231), anti-RSK2 (sc-9986) and anti-YB1 (sc-101198) were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-phospho-CrkL (3181),
anti-phospho-p70S6 kinase (9206) and anti-phosphoYB-1 (2900) were purchased
from Cell Signalling Technology (Hitchin, UK). All antibodies were used at 1:1000
dilution. Anti-FLAG immunoprecipitation was performed with M2 agarose beads
(Sigma) according to the manufacturer’s instructions.

GST-14-3-3-affinity purification. Recombinant GST-14-3-3 was produced
from pGEX6P1/14-3-3t transformed in BL21-DE3 bacteria (Stratagene) and
purified by binding to glutathione–sepharose beads (GE Healthcare). LAMA84 cells
(5� 109) were left untreated or treated with 2 mM IM and lysed in buffer containing
50mM Tris-HCl (pH 7.5), 1 mM EDTA, 1 mM EGTA, 1% (v/v) Triton X-100, 10mM
b-glycerophosphate, 50mM NaF, 1mM sodium orthovanadate, 5 mM sodium
pyrophosphate, 100 nM okadaic acid, 0.27M sucrose, 1mM DTT and 1�PIC.
Lysates were clarified and incubated with GST-14-3-3 sepharose beads and 14-3-3
binding proteins eluted with 0.5% Empigen after stringent washing. Eluates were
desalted in Zeba columns (Pierce, Cramlington, UK) and concentrated in YM-10
centrifugal concentrator (Microcon, Watford, UK) and resolved by 4–12% SDS-
PAGE (NuPAGE, Invitrogen). Gels were either stained with Gelcode (Pierce)
colloidal Coomassie for total protein expression or transferred for western blot
analysis with anti-phosphotyrosine antibody (4G10).

Mass spectrometry. Entire sample lanes from Coomassie-stained gels were
sectioned into equivalent-sized bands and digested with trypsin. Resultant peptides
were subject to LC-MS/MS (Q-TOF, Waters, Elstree, UK) at the Protein Analysis
Unit (WHRI, Barts and The London School of Medicine and Dentistry, London, UK;
QMUL). Spectra were analyzed using MS/MS Ion Search feature of the MASCOT
search engine (Matrix, www.matrixscience.com). Bioinformatic analyses were
performed using the Scansite (www.scansite.mit.edu) and Human Protein
Reference Database (HPRD, www.hprd.org) on-line software programs.

siRNA screen. Ninety-six-well plates with siRNA targeting sequences
(annotated in Supplementary Table 5) to 20 selected candidates (Supplementary
Table 4) were custom ordered from Qiagen. A total of 2� 104 K562 cells were
transfected with 0.5ml Interferin and 10 nM final siRNA concentration according to
the manufacturer’s instructions.

Cell proliferation. Proliferation was assessed with MTS reagent (Promega,
Madison, WI, USA) according to the manufacturer’s instructions. Cells were
analyzed at 48 h for siRNA screen and 72 h for individual CSDA siRNAs, post-
transfection. For inhibitor treatments, 2� 104 K562 or Ramos and 5� 104 CD34þ
progenitor primary cells were treated 24 and 16 h, respectively, after seeding with
inhibitors at indicated concentrations and cultured for 72 h before MTS reading.

Apoptosis. Cells were analyzed for apoptosis by Annexin V/PI staining as
before.48 Cells were analyzed at 72 h post-transfection with control and individual
CSDA siRNAs.

Cell cycle. Cells were harvested 72 h post-transfection with control and
individual CSDA siRNAs and fixed in 75% ice-cold ethanol at 41C for 2 h. Then, cells
were stained with PI (Molecular Probes, Eugene, OR, USA) and analyzed by flow
cytometry.

Cell transformation. After selection of the transfected stable cell lines,
1� 104 Rat1 cells were added to 1.5 ml of growth medium with 0.35% agar and
layered onto 2 ml of 0.5% agar base in six-well plates. Cells were fed with 2ml of
medium every 3 days for 4 weeks, after which colonies were stained with MTT
(0.5 mg/ml) for 30min and counted. Colonies visible under a microscope were
counted as positive for growth.

Statistics. We performed statistical analysis using ANOVA. Results were
considered significant at Po0.05.
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