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Although death receptors and chemotherapeutic drugs activate distinct apoptosis signaling cascades, crosstalk between the
extrinsic and intrinsic apoptosis pathway has been recognized as an important amplification mechanism. Best known in this
regard is the amplification of the Fas (CD95) signal in hepatocytes via caspase 8-mediated cleavage of Bid and activation of the
mitochondrial apoptosis pathway. Recent evidence, however, indicates that activation of other BH3-only proteins may also be
critical for the crosstalk between death receptors and mitochondrial triggers. In this study, we show that TNF-related apoptosis-
inducing ligand (TRAIL) and chemotherapeutic drugs synergistically induce apoptosis in various transformed and
untransformed liver-derived cell lines, as well as in primary human hepatocytes. Both, preincubation with TRAIL as well as
chemotherapeutic drugs could sensitize cells for apoptosis induction by the other respective trigger. TRAIL induced a strong
and long lasting activation of Jun kinase, and activation of the BH3-only protein Bim. Consequently, synergistic induction
of apoptosis by TRAIL and chemotherapeutic drugs was dependent on Jun kinase activity, and expression of Bim and Bid.
These findings confirm a previously defined role of TRAIL and Bim in the regulation of hepatocyte apoptosis, and demonstrate
that the TRAIL–Jun kinase–Bim axis is a major and important apoptosis amplification pathway in primary hepatocytes and
liver tumor cells.
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Specific and selective apoptosis induction in tumor cells is
a major goal of cancer therapy.1,2 Most currently known
treatments target in one or the other way the apoptosis
machinery of tumor cells. However, apoptosis resistance is
one of the hallmarks of cancer, and a prerequisite of
transformed cells to develop into a tumor.3 Consequently,
many tumor cells are highly resistant to a variety of antitumor
drugs, which limits the treatment option in cancer patients.
Thus, novel therapeutics, possibly targeting alternative
signaling pathways and thereby bypassing apoptosis resis-
tance, are urgently needed and the focus of intense research.
Since its discovery the tumor necrosis factor family member
TNF-related apoptosis-inducing ligand (TRAIL/TNFSF2) has
received extensive attention because of its relatively selective
induction of cell death in tumor cells.4 TRAIL promotes
apoptosis in a variety of tumors of different origin, but has
usually no effect on primary cells, at least under physiological
conditions. For example, Walczak et al.5 demonstrated that
treatment of mice transplanted with human tumor cells
resulted in growth inhibition of transplanted tumors or their
eradication. In contrast, no TRAIL-induced toxicity was
observed in tissue cells, for example, hepatocytes, suggest-
ing that TRAILmay be a useful and safe future antitumor drug.

Most chemotherapeutic drugs activate the mitochondrial
apoptosis pathway, and are thus selectively inhibited by high
levels of antiapoptotic Bcl-2 homologs frequently seen in
tumor cells. In contrast, in most cells TRAIL activates the
caspase cascade directly at the receptor complex and thereby
bypasses a potential mitochondria-restricted apoptosis resis-
tance (type I cells). TRAIL may therefore induce death in cells
that are resistant to other apoptosis-inducing drugs. Another
interesting aspect of TRAIL is its synergy with triggers of the
mitochondrial pathway, for example, chemotherapy or irradi-
ation. Although many tumor cells show relative resistance to
either TRAIL or a given chemotherapeutic drug, the combined
treatment of tumor cells with both triggers often leads to a
synergistic and efficient induction of cell death. This synergy
between the death receptor and the mitochondrial pathway
has been observed in lung cancer cells, colon carcinoma and
other types of tumors.6–8

Although the synergistic induction of apoptosis by com-
bined treatment with TRAIL and chemotherapeutic drugs is
well established, their underlying mechanisms are incomple-
tely understood. It has been suggested that DNA damage
will lead to an increase in TRAIL receptor expression via the
activation of the tumor suppressor and transcription factor

Received 28.6.10; revised 09.9.10; accepted 16.9.10; Edited by G Melino

1Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland; 2Clinic of Visceral and Transplantation Surgery, Inselspital, University
of Bern, Bern, Switzerland; 3Clinic of Thoracic Surgery, Inselspital, University of Bern, Bern, Switzerland; 4Division of Hematology and Oncology, Department of Clinical
Research, University of Bern, Bern, Switzerland and 5Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
*Corresponding author: T Brunner, Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätstrasse, Konstanz 78457,
Germany. Tel: þ 49 (0)7531/88 5371; Fax: þ 49 (0)7531/88 5372; E-mail: Thomas.brunner@uni-konstanz.de
Keywords: death receptor; mitochondria; TRAIL; liver tumors; Bcl-2 homologs; Jun kinase; hepatocytes
Abbreviations: JNK, c-Jun kinase; siRNA, small interfering RNA; TRAIL, TNF-related apoptosis-inducing ligand/TNFSF2.

Citation: Cell Death and Disease (2010) 1, e86; doi:10.1038/cddis.2010.66
& 2010 Macmillan Publishers Limited All rights reserved 2041-4889/10

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2010.66
mailto:Thomas.brunner@uni-konstanz.de
http://dx.doi.org/10.1038/cddis.2010.66
http://www.nature.com/cddis


p53, and thereby to increased sensitivity to TRAIL-induced
apoptosis.9 Indeed, TRAIL receptor 2 is a p53-responsive
target gene.10 As the synergy between TRAIL and
chemotherapy is also found in p53 mutant cells,6 the
p53-mediated induction of TRAIL receptor 2 is likely an
incomplete explanation. Other studies have suggested that
the TRAIL- and chemotherapy-induced c-Jun kinase (JNK)
pathway may have an important role in the synergistic
induction of cell death.11

Although primary cells are mostly resistant to TRAIL-
induced apoptosis, there is increasing evidence that TRAIL
can modulate and enhance apoptosis induced by other
triggers even in primary cells. Of particular interest in this
regard is the role of TRAIL in hepatocyte apoptosis. Although
in vivo administration of the TNF homolog Fas ligand causes
rapid death because of the induction of excessive liver
damage, therapeutic doses of TRAIL seem to be tolerated
well.5 We recently described that TRAIL fails to trigger
apoptosis in primary hepatocytes but enhances their sensi-
tivity to the Fas pathway.12 Synergistic induction of hepato-
cyte apoptosis in vitro and liver damage in vivo was found to
be dependent on TRAIL-induced activation of JNK and the
pro-apoptotic Bcl-2 homolog Bim. Interestingly, a similar
pathway has been described for TNFa-mediated liver
damage,13 suggesting that the JNK–Bim axis is an important
response modifier pathway.
In this study, we investigated the role of the JNK–Bim axis in

the synergistic induction of apoptosis by TRAIL and
chemotherapeutic drugs in human liver tumor cells and
hepatocytes. Our data confirm the potentiation of the
mitochondrial pathway by TRAIL in hepatoma cell lines,
hepatocellular carcinoma cell lines, immortalized hepatocytes
as well as primary human hepatocytes. TRAIL but not
chemotherapy induced a strong activation of JNK and
subsequent phosphorylation of Bim. Synergistic induction of
apoptosis by TRAIL and doxorubicin was associated with
increased binding of Bim toMcl-1, activation of Bax, release of
Cytochrome c and SMAC from the mitochondria, and
increased activation of caspases. Inhibition of JNK, knock-
down of Bim and Bid by RNA interference, or overexpression
of Mcl-1 and Bcl-xL efficiently inhibited cell death induced by
the combined treatment of cells with TRAIL and chemo-
therapy. These findings demonstrate that TRAIL-JNK-Bim
axis is a major and important apoptosis amplification pathway
in primary hepatocytes and liver tumor cells.

Results

Synergistic induction of apoptosis by TRAIL and
doxorubicin in liver tumor cells. Synergistic induction of
cell death by TRAIL and chemotherapeutics has been
described in different tumors cell lines.6–8,14 Similarly, we
have previously reported that TRAIL can enhance the
Fas-induced apoptosis pathway in hepatocytes via a
JNK–Bim-dependent pathway.12 To investigate whether the
TRAIL-initiated JNK–Bim pathway has also major role in
the induction of cell death by TRAIL and chemotherapy, we
assessed cell death induced by TRAIL and doxorubicin in
different liver tumor cell lines as well as immortalized human

hepatocytes (IHHs). Figure 1a illustrates that doxorubicin
was found to be an inefficient inducer of cell death in HepG2
and Huh7 cells, and only a weak inducer of apoptosis in
Hep3B and IHH cells. Similarly, only weak induction of cell
death was seen in these cell lines with TRAIL concentrations
up to 50 ng/ml. In marked contrast, when cell lines were
preincubated with 10 ng/ml TRAIL for 30min before the
treatment with increasing concentrations of doxorubicin a
profound sensitization and strongly increased cell death
induction was seen in all cell lines. Interestingly, an identical
sensitization was seen when cells were preincubated for
30min with 1mg/ml doxorubicin and then stimulated with
TRAIL. This synergistic induction of cell death was confirmed
by detection of caspase activity (DEVD cleavage; Figure 1b)
and annexin V staining (Figure 1c). These data confirm that
TRAIL and doxorubicin synergistically induce apoptosis in
different liver-derived cell lines.

Synergistic induction of cell death is not dependent
on preconditioning. We next investigated whether
preincubation with either doxorubicin or TRAIL was
required for the synergistic enhancement of cell death
induction by the respective other agonist. HepG2 cells were
thus pretreated with low doses of TRAIL or doxorubicin for
60min, before stimulation with increasing concentrations of
doxorubin or TRAIL. Alternatively, both triggers were added
simultaneously. Interestingly, the synergistic induction of
cell death by TRAIL and doxorubicin was as efficient when
pretreated for 60min with one agonist and then treated with
the other, or when triggers were added at the same time.
Similarly, no difference was seen whether cells were
preconditioned by TRAIL or doxorubicin (Figure 2).

TRAIL synergizes with different mitochondrial
triggers. To further explore whether this synergistic
induction of cell death was restricted to the combination
TRAIL–doxorubicin, or further extends to other apoptosis
triggers, HepG2 cells were preconditioned with medium
control or low concentrations of TRAIL, and then exposed to
staurosporin, irinotecan (CPT-11), 5 fluorouracil or cisplatin.
Remarkably, although most of these agonists alone were
relatively inefficient triggers of apoptosis in HepG2 cells,
pretreatment with TRAIL greatly sensitized cells to apoptosis
induction by these mitochondrial triggers (Figure 3). Similar
findings were made for Hep3B cells (data not shown).

Role of JNK in synergistic induction of cell death. We
previously described that in murine hepatocytes, TRAIL
synergistically enhanced the Fas apoptosis pathway via a
JNK–Bim-dependent process.12 The role of JNK activation
was thus analyzed in TRAIL-mediated enhancement of
chemotherapy-induced cell death in liver tumor cells.
HepG2 cells were treated with doxorubine, TRAIL or the
combination thereof for various time points, and the
activation of JNK was monitored by the detection of
phospho-JNK (Figure 4a). Notably, whereas both
doxorubicin and TRAIL induced JNK activation within
30min, TRAIL seemed to be a more potent inducer of JNK
activation. Combined treatment of cells with TRAIL and
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doxorubicin did not result in a substantial increase in JNK
activation.
HepG2 cells were then pretreated with increasing concen-

trations of JNK inhibitor II, and apoptosis sensitivity to the
combination of TRAIL and doxorubicin was analyzed.

Figure 1 Synergistic induction of cell death by doxorubicin and TRAIL.
(a) HepG2, Huh7, Hep3B and IHH cells were pretreated by either medium control,
10 ng/ml TRAIL (left panels) or 1 mg/ml doxorubicin (Dox, right panels), before the
exposure to increasing concentration of doxorubicin (left panels) or TRAIL (right
panels). Cell death was measured by MTT assay. Mean values±S.D. of
quadruplicates of a typical experiment (n¼ 3) are shown. (b) HepG2 cells were
treated with 1 mg/ml doxorubicin, 10 ng/ml TRAIL or the combination thereof for 6 h,
and DEVDase activity in cell lysates was measured. Mean values±S.D. of
quadruplicates were measured. n¼ 3. (c) HepG2 cells were pretreated with
medium control or 10 ng/ml TRAIL, and then exposed to increasing doses of
doxorubicin. Apoptosis was measured by Annexin V binding. n¼ 2

Figure 3 TRAIL synergizes with different chemotherapeutic drugs. HepG2 cells
were either pretreated with medium control or 10 ng/ml TRAIL, and then exposed to
increasing concentrations of staurosporin, irinotecan, 5-fluorouracil (5-FU)
or cisplatin. Cell death was measured by MTT assay. Mean values±S.D. of
quadruplicates are shown. n¼ 2

Figure 2 Effects of pretreatment on synergistic induction of cell death. HepG2
cells were pretreated with medium control, TRAIL (left panel, 10 ng/ml) or
doxorubicin (Dox, right panel, 1 mg/ml), either 60 min before adding increasing
doses of doxorubicin or TRAIL, or directly together with the apoptosis trigger (0 min).
Cell death was measured by MTT assay. Mean values±S.D. of quadruplicates are
shown. n¼ 2
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Although the JNK inhibitor II was found to be toxic at
concentrations 10 mM or higher, it dose dependently inhibited
the synergistic induction of cell death by TRAIL and
doxorubicin at lower doses (Figure 4b). A similar inhibition of
cell death induction by TRAIL plus doxorubicin was seen
when cells were treated with the JNK V inhibitor (Figure 4c).
These data suggested that JNK is involved in the sensitization
of cells for apoptosis induction.

TRAIL promotes Bim phosphorylation. We12 and
others13 have previously identified Bim as an important
target of JNK in murine hepatocytes. The phosphorylation of
Bim in response to doxorubicin, TRAIL, or the combination of
both was thus analyzed in HepG2 cells. Interestingly, BimEL

was hardly detectable in NP-40 lysates of untreated control
cells, but became rapidly mobilized after treatment with
doxorubicin or TRAIL (Figure 5a). Likely, this represents a
release of BimEL from intracellular (NP40-resistant) stores,
such as the cytoskeleton,15 as BimEL was detected at high
levels in SDS lysates of control cells (Figure 5b). Although
in doxorubicin-treated cells BimEL remained predominantly in
its unphosphorylated form, treatment of cells with TRAIL
resulted in a time-dependent increase of higher molecular
weight variants, indicative of BimEL phosphorylation.12,13,16

Although BimEL levels remained stable in doxorubicin- or
TRAIL-stimulated cells, combined treatment with doxorubicin
and TRAIL resulted in the disappearance of BimEL, indicating
consumption of Bim in dying cells (Figure 5b).

JNK induces activation of Bim. Previous studies have
indicated that the JNK-mediated phosphorylation represents

an activation step for BimEL and downstream apoptosis
pathway.12,13,16–18 As BimEL strongly binds and neutralizes
the antiapoptotic Bcl-2 homolog Mcl-1,19 we analyzed the
apoptosis trigger-induced binding of BimEL to Mcl-1 in the
presence of a JNK inhibitor. When Mcl-1 was
immunoprecipitated and bound BimEL was detected by
western blotting, a clear increase in BimEL binding to Mcl-1
was noted in response to TRAIL and doxorubicin treatment.
In contrast, no increase in Bim binding to Mcl-1 was found in
JNK inhibitor-pretreated cells (Figure 6a). Total BimEL and
Mcl-1 levels were similar under these conditions, apart from
reduced levels of Mcl-1 in TRAIL and doxorubicin-treated
cells in the absence of JNK inhibitor, likely representing Mcl-1
degradation in dying cells.20

TRAIL and chemotherapy synergistically activate the
mitochondrial pathway. The synergistic activation of Bim
by TRAIL and doxorubicin suggested a strong activation of
the mitochondrial apoptosis pathway. Activation of Bax, a
pro-apoptotic Bcl-2 homolog critically involved in the
permeabilization of the outer mitochondrial membrane and
the release of Cytochrome c, was therefore analyzed by
immunoprecipitation of active Bax using an anti-N-terminus
antibody under native conditions. Although no active Bax
could be pulled down in control or doxorubicin-treated cells,
and only low levels in TRAIL-treated cells, combined
treatment with TRAIL and doxorubicin resulted in a strong
increase of Bax activation (Figure 6b). This increased Bax
activation was paralleled with an increased mitochondrial
outer membrane permeabilization and release of
Cytochrome c and SMAC (Figure 6c). In agreement with an
induction of the mitochondrial apoptosis pathway, doxorubicin
plus TRAIL-induced caspase activation was efficiently blocked
by the overexpression of Mcl-1 and Bcl-xL (Figure 6d).

Critical role for Bim and Bid in the synergistic induction
of cell death by TRAIL and doxorubicin. Hepatocytes and
hepatocyte-derived cells are known to require the caspase

Figure 4 Role of JNK in TRAIL plus doxorubicin-induced cell death. (a) HepG2
cells were treated for indicated time with doxorubicin (Dox, 1mg/ml), TRAIL (10 ng/ml)
or the combination of both. Phosphorylated JNK (P-JNK) and total JNK as loading
control were detected by western blot. (b) Cells were pretreated for 30 min with
increasing concentrations of JNK inhibitor (inhib.) II and then exposed to medium
control or 1mg/ml doxorubicin plus 30 ng/ml TRAIL. (c) Cells were pretreated with
0.03 uM JNK inhibitor V, and then exposed to medium control or doxorubicin plus
TRAIL. Cell death was measured by MTT assay, mean values±S.D. of
quadruplicates are shown. n¼ 3. *Po0.01 (control treated versus JNK inhibitor
treated)

Figure 5 TRAIL promotes Bim mobilization and phosphorylation. (a) HepG 2
cells were treated for indicated time with 1 mg/ml doxorubicin (Dox), 10 ng/ml TRAIL,
or the combination thereof. Bim levels in NP40 lysates were analyzed by western
blot. Detection of JNK was used for loading control. Positions of Bim and
phosphorylated Bim (P-Bim) are shown. (b) Cells were treated as indicated above
for 4 h, lyzed in SDS buffer and total Bim and JNK levels were analyzed by western
blot
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8-mediated cleavage of the BH3-only protein Bid in order to
amplify death receptor signals via the mitochondrial pathway
(type II cells).21,22 We thus investigated whether the
synergistic induction of cell death by TRAIL and
doxorubicin would also affect the caspase-mediated
cleavage and activation of Bid. Although no Bid processing
was detectable upon stimulation with TRAIL or doxorubicin
alone, the combination thereof caused a time-dependent
appearance of truncated Bid, suggesting activation of Bid
(Figure 7a).
To assess the relative contribution of the BH3-only proteins

Bid and Bim in TRAIL plus doxorubicin-induced cell death,
expression of these pro-apoptotic Bcl-2 homologs was
reduced by RNA interference (Figure 7b), and caspase
activation in response to TRAIL, doxorubicin or both was
assessed (Figure 7c). Although downregulation of Bim or Bid
alone already resulted in reduced TRAIL plus doxorubicin-
induced DEVDase activity, combined knockdown of Bid and
Bim was most efficient in preventing caspase activation,
indicating that both BH3-only proteins are involved in
mediating synergistic induction of cell death by TRAIL and
doxorubicin.

TRAIL and doxorubicin sensitize primary
hepatocytes. TRAIL has gained considerable interest for
the use in cancer therapy because of its selective apoptosis-
inducing activity in tumor but not primary tissue cells.4,5

However, we have recently demonstrated that TRAIL can
sensitize primary hepatocytes to Fas-induced apoptosis in a
JNK–Bim-dependent manner.12 As JNK and Bim seem to be

involved also in TRAIL-induced sensitization to chemo-
therapeutics in hepatocellular carcinomas, we wondered
whether TRAIL could also sensitize primary human
hepatocytes to doxorubicin-induced apoptosis. As reported
previously,4,5 TRAIL alone did not induce cell death in
primary hepatocytes even at very high concentrations (up
to 1000ng/ml). Similarly, even 3 mg/ml doxorubicin failed to
promote apoptosis. In marked contrast, even low
concentrations of TRAIL strongly sensitized human
hepatocytes to doxorubicin-induced cell death, and vice
versa (Figure 8). These findings indicate that the synergistic
induction of cell death by TRAIL and chemotherapeutics is
not restricted to immortalized and tumor cells of the liver, but
also extends to primary hepatocytes.

Discussion

Induction of apoptosis is a major goal of various antitumor
therapies,23 however, a hallmark of cancer is also the
increased resistance of tumor cells toward apoptosis induc-
tion.3 Consequently, the combined treatment of tumor cells
with an apoptosis sensitizer and an apoptosis inducer would
appear a perfect strategy to efficiently promote tumor cell
death and thus tumor regression. Particularly in this regard
TRAIL has received enormous attention. Although many
tumor cells are resistant to TRAIL or chemotherapy, various
publications in different types of tumors revealed that the
combined treatment of tumor cells with TRAIL and chemo-
therapeutic drugs substantially sensitizes them for apoptosis
induction.6–8,14 As different underlying mechanisms for this

Figure 6 TRAIL plus chemotherapy activates the mitochondrial apoptosis pathway. (a) HepG2 cells were pretreated with or without JNK inhibitor (Inh) and the stimulated
with medium control (Ctl) or doxorubicin (Dox; 1 mg/ml) plus TRAIL (10 ng/ml). Cells were lysed, Mcl-1 was immunoprecipitated and Bim bound to Mcl-1 was detected by
western blot. Bim, Mcl-1 and tubulin levels in total cell lysates were analyzed for comparison. (b) Cells were treated with doxorubicin, TRAIL or both, and active Bax was
immunoprecipitated and detected by western blot. Bax in total lysates was analyzed for comparison. (c) Cells were treated with doxorubicin, TRAIL or both, and cytoplasmic
(C) and mitochondrial fractions (M) were isolated. Cytochrome c (Cyto c), SMAC and for comparison tubulin in the different fractions were analyzed by western blot. (d) Cells
were transfected with control plasmid, Mcl-1, Bcl-xL or both, and then exposed to medium control or doxorubicin plus TRAIL. After 6 h DEVDase activity in cell lysates was
analyzed. Mean values±S.D. of quadruplicates are shown. n¼ 3. *Po0.005, **Po0.001, compared with control transfection
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sensitization have been proposed, it is often not clear which
one is the sensitizer and which one is the apoptosis inducer.
Likely this distinction is even difficult to be made, or not
relevant, as the sensitization to efficient apoptosis induction
depends on both, the sensitizer and the apoptosis inducer.
In this study, we have shown that different hepatocellular

tumor cells, as well as immortalized and primary hepatocytes,

are greatly sensitized to apoptosis induction by combined
treatment with TRAIL and chemotherapeutic drugs. In line
with the above discussed distinction, we have observed
that pretreatment with either TRAIL or doxorubicin sensitized
tumor cells for apoptosis induction by the respective
other trigger. Cell death induction was even comparable
when both triggers were added simultaneously, indicating
that the sensitizing event occurs rapidly enough to enhance
the apoptosis-inducing step. Although this sensitization
worked reproducibly in a number of different hepato-
cellular tumor cell lines, we also found that primary human
hepatocytes were equally sensitized to apoptosis induction
by the combined treatment with TRAIL and doxorubicin. This
was particularly remarkable as none of the triggers alone
promoted cell death alone, in line with the reported insensi-
tivity of hepatocytes to TRAIL and chemotherapy.5,24 This
finding points out a potential adverse liver-damaging side
effect of combinational tumor therapy with chemotherapeutic
drugs and TRAIL. In support of this observation is a recent
report demonstrating that the antineoplastic agent 5-azacyti-
dine sensitizes primary human and murine hepatocytes for
death receptor-induced apoptosis.25 Similarly, we have
previously demonstrated that Fas-induced hepatocyte apop-
tosis and liver damage is strongly enhanced by TRAIL.12

Furthermore, Koschny et al.26 described that primary human
and murine hepatocytes are sensitized to TRAIL-induced
apoptosis by the proteosome inhibitor bortezomib, though
higher concentrations of bortezomib were needed than in
hepatocellular carcinoma cells. Regarding the combination
doxorubicin and TRAIL we observed a comparable sensitiza-
tion pattern in hepatocellular tumor cells and primary
hepatocytes (Figures 1 and 8). Clearly, all of the findings
support the idea that TRAIL plus an additional trigger is
required to promote efficient apoptosis in primary hepato-
cytes. This stands in contrast with the finding of Jo et al.,27

who described that TRAIL alone was sufficient to promote
apoptosis in primary human hepatocytes. Differential
preconditioning of hepatocyte preparations in the respective
donor or by isolation techniques, and associated stress
signals, could at least in part explain the observed sensitivity
to TRAIL alone.

Figure 7 Role of Bid and Bim in TRAIL plus doxorubicin (Dox)-induced cell
death. (a) HepG2 cells were treated with doxorubicin, TRAIL or both for indicated
time intervals and Bid cleavage was analyzed by western blot. (b) HepG2 cells were
transfected with control (Contr.) siRNA, Bim or Bid specific siRNA or the
combination of both. Downregulation of Bim and Bid was analyzed by western blot.
Tubulin was used as loading control. (c) Cells were treated with siRNA as indicated
above and apoptosis sensitivity to doxorubicin (1mg/ml), TRAIL (10 ng/ml) or both
was analyzed by DEVDase clevage assay. Mean values±S.D. of quadruplicates
are shown. n¼ 3. *Po0.005, **Po0.0005 compared with control siRNA. tBid,
truncated Bid

Figure 8 TRAIL plus doxorubicin (Dox) induces cell death in primary human
hepatocytes. Primary human hepatocytes were pretreated with 10 ng/ml TRAIL
and then exposed to increasing doses of doxorubicin (left panel), or pretreated with
1mg/ml doxorubicin and then stimulated with increasing doses of TRAIL. Cell death
was analyzed after 16 h by MTT assay. Mean values of quadruplicates±S.D. are
shown. n¼ 2
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Although it is well established that chemotherapeutic drugs
and death ligands strongly synergize in various cell types, the
respective mechanisms of sensitization or synergy are not
always clear, or may differ from cell type to cell type. Possible
mechanisms of chemotherapy-induced enhancement of
death receptor-induced apoptosis include p53-induced death
receptor expression (e.g., Fas and TRAIL-R2)28,29 or
enhanced death receptor signaling complex assembly and
thus increased downstream caspase activation.30,31 More
recent evidence suggests that TRAIL and chemotherapeutic
drugs target a common signaling pathway, which involves a
JNK-mediated activation or induction of Bim. The BH3-only
molecule Bim has an essential role in various forms of
apoptosis in different cell types. For example, Bim has been
implicated in glucocorticoid receptor-, chemotherapy-, irradia-
tion- and growth factor withdrawal-induced apoptosis in tumor
cells and primary cells, such as thymocytes.32 Treatment of
cells by apoptosis triggers often leads to an induction of Bim
expression, either in an AP-1 or Foxo3a-dependent
manner.33–35 This induction of Bim is particularly evident
in glucocorticoid- and T cell receptor-induced apoptosis
in thymocytes,36,37 and Bim-deficient thymocytes show
increased resistance to T cell receptor and glucocorticoid-
induced apoptosis. However, as many cells constitutively
express relatively high levels of Bim in the apparent absence
of apoptosis, it is very likely that post-translational modifica-
tions significantly contribute to the regulation of Bim-mediated
cell death. Thus, it was shown that in unstressed cells Bim is
sequestered by the dynein motor complex and released upon
exposure of cells to apoptosis triggers.15,18 In line with this
finding, we observed that Bim was hardly detectable in cells
lysed with NP40, but became rapidly mobilized (within 30min)
after treatment with TRAIL or doxorubicin (Figure 5). As total
Bim levels remained unchanged (in SDS lysates), it is feasible
to believe that apoptosis triggers promote a mobilization and
redistribution of Bim within the cell, likely promoting transloca-
tion of Bim to the mitochondrial membrane, in which it
engages other Bcl2 homologs and promotes apoptosis.15,18

Another important level of regulation is the phosphorylation
of Bim by either ERK or JNK. Whereas phosphorylation of
BimEL by ERK promotes its degradation via the proteosome
and thereby enhances cell survival, phosphorylation of BimEL

by JNK seems to enhance its apoptotic activity.16,17,38

Analysis of apoptosis sensitivity of cells from mutant mice
with targetedmutation of the ERK or JNK phosphorylation site
in BimEL supported this model. Fibroblasts with mutated ERK
phosphorylation sites showed increased BimEL stability and
increased growth factor withdrawal-induced apoptosis,
whereas thymocyte with a mutated JNK phosphorylation site
in BimEL were found to be less sensitive to anti-CD3 and
dexamethasone.38 In line with this notion, we recently
observed that Fas-induced hepatocyte apoptosis and liver
destruction is substantially regulated via a TRAIL-initiated
JNK-mediated activation of Bim.12 Absence or inhibition of
either TRAIL, JNK or Bim resulted in significantly reduced
hepatocyte apoptosis. Along these lines, Kaufmann et al.13

found that TNFa-mediated liver destruction was similarly
enhanced via the JNK-Bim axis.
In this study, we provide further evidence for the

importance of the death receptor–JNK–Bim axis in regulating

mitochondrial apoptosis in transformed and primary liver cells.
Although we found that both doxorubicin and TRAIL alone
were able to promote Bim mobilization from intracellular
stores, only combined treatment of cells with TRAIL and
chemotherapeutic drugs efficiently triggered cell death. TRAIL
treatment of cells resulted in JNK activation and phosphoryla-
tion of BimEL, and in agreement with their respective role in
promoting cells death, apoptosis was blocked by JNK
inhibitors or knocking down Bim. As TRAIL alone failed to
promote apoptosis, this Bim activation step is likely not
sufficient, and efficient induction of cell death may require the
simultaneous activation of different BH3-only molecules. In
agreement with this idea we have seen that Bid was also
involved in TRAIL plus doxrubicine induced apoptosis, and
combined knockdown of Bim and Bid further reduced
apoptosis induction. Other studies in cells from double BH3-
only mutant mice support the idea that combined activation of
different BH3-only molecules and simultaneous engagement
of different downstream effectors may be required for efficient
cell death induction.32,39,40

In summary, our studies demonstrate a critical role of JNK-
mediated Bim activation in the TRAIL-mediated enhancement
of chemotherapy-induced apoptosis in liver-derived cells
lines, further supporting the importance of the TRAIL-JNK-
Bim axis in regulating apoptosis. As the synergistic induction
of cell death by TRAIL and doxorubicin was also observed in
untransformed primary human hepatocytes, our results also
point out potentially deleterious effects of TRAIL combination
therapy in promoting undesired liver destruction. Defined
manipulation or regulation of these processes may thus help
to either enhance tumor therapy or prevent tumor therapy-
induced tissue toxicity.

Materials and Methods
Cells and cell lines. The human hepatoma cell line HepG2 (ATCC HB-8065),
the human hepatocellular carcinoma cell lines Huh741 and Hep3B (ATCC HB-8064),
and the IHH cell line IHH42 were kindly provided by J-F Dufour (Institute of Clinical
Pharmacology, Inselspital, University of Bern, Switzerland). Cell were cultured in
IMDM containing 5% FCS, 1% L-glutamine and 0.1% gentamycin. The isolation and
culture of primary human hepatocytes from human liver specimens has been
described previously.43 Human hepatocytes were cultured in Williams E medium
containing 10% FCS, 1% L-glutamine, 0.1% gentamicin, 0.01% insulin/aprotinin and
0.05% transferrin. All media components were from Sigma-Aldrich (Buchs,
Switzerland).

Cell death assays. HepG2, Hep3B, Huh7 and IHH were grown in logarithmic
phase, harvested and plated in 96-well flat bottom plates. Primary human
hepatocytes were directly seeded into collagen-coated 96-well flat bottom plates.
After overnight adherence, medium was changed and cells were treated with
increasing concentrations of recombinant human TRAIL (untagged form, R&D
Systems, Abington, UK) and doxorubicin (Alexis, Lausen, Switzerland), stauro-
sporin (Sigma-Aldrich), irinotecan (camptothecin, Alexis), 5-fluorouracil (Valeant,
Aliso Viejo, CA, USA), or cisplatin (Alexis) for 16 h. Cell viability was the assessed by
MTT assay (Sigma-Aldrich) and normalized to untreated controls, as described
previously.12 Alternatively, cell death was also monitored by Annexin V staining.44 In
some experiments cells were pretreated with Jun kinase inhibitor II or V (Calbiochem,
Merck, Darmstadt, Germany) for 30 min, before the induction of cell death.

Caspase activity assay (DEVDase activity). Cells were treated with
TRAIL and/or drugs as indicated, and harvested after 6 h. Cells were then washed
and lysed for 10 min on ice with 200 ul PBS containing 1% Triton X-100. After
centrifugation for 5 min at 16 000� g at 41C, supernatant was harvested and 50 ml
were mixed with 150ml Hepes buffer (100 mM Hepes pH 7.5, 20% glycerol, 0.5 mM
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EDTA, 5 mM DTT) containing 100mM Ac-DEVD-AFC (Alexis). Reactions were
incubated for 1 h at 371C, and enzymatic activity was measured on a
spectrofluorometer (400 nm excitation, 505 nm emission). Background
fluorescence was measured by incubating caspase substrate with lysis buffer.

Western blotting and immunoprecipitation. After cell death induction
for different time intervals and using different trigger combinations, cells were
harvested, washed and lysed in cell lysis buffer (1% NP40, 50 mM Tris pH 8.0,
150 mM NaCl, 0.5% deoxycholic acid. In some instances, cells were directly lysed in
SDS-PAGE loading buffer containing 1% SDS (total lysates). After removal
of insoluble matter and nuclei, equal amounts of protein were separated on a
SDS-PAGE and transferred to a nitrocellulose membrane. Specific proteins
were then detected using antibodies for JNK, phospho-JNK (both from Cell Signaling
Technology, Bioconcept, Allschwil, Switzerland), Bim (Sigma-Aldrich), Bid (BD
Biosciences, Basel, Switzerland), Mcl-1 (BD Biosciences) and Bax (Upstate, Milipore,
Zug, Switzerland). Equal loading was confirmed by detection of JNK or tubulin.

In some experiments, Mcl-1 was immunoprecipitated using anti-Mcl-1 antibody
and Bim bound to Mcl-1 was detected by western blotting. Bax activation was
detected by immunoprecipitation of active Bax using an anti-Bax NT antibody
(Upstate) and detection by western blotting.

Cytochrome c and SMAC release assay. Cytochrome c and SMAC
release from mitochondria into the cytoplasm was analyzed by western blot as
described previously.45

Downregulation of Bim and Bid by small interfering RNA
(siRNA). Cells were transfected with 10 nM control, Bim- or Bid-specific siRNA
(Dharmacon, Lafayette, CO, USA) and 20 ul Hyperfect reagents (Qiagen,
Hombrechtikon, Switzerland) in 6 cm culture dishes over night. After washing
cells were harvested and redistributed into 96-well plates. After an additional 24 h
culture, cells were exposed for 6 h to apoptosis-inducing triggers. Cells were then
harvested, lyzed and analyzed for DEVDase activity, and Bim and Bid expression by
western blot.

Transfection and overexpression. HepG2 cells were transfected with
either control vector, Mcl-1 or Bcl-xL expression vectors (kindly provided by C Borner
and U Maurer, University of Freiburg, Germany), or the combination thereof, using
the Amaxa nucleofection method.

Statistical analysis. Differences between data sets were analyzed by
unpaired Students t-test. P-values o0.05 were considered statistically significant.
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