
A siRNA screen reveals the prosurvival effect of protein
kinase A activation in conditions of unresolved
endoplasmic reticulum stress
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The endoplasmic reticulum (ER) has a crucial role in the proper folding of proteins that are synthesized in the secretory pathway.
Physiological and pathological conditions can induce accumulation of mis- or unfolded proteins in the ER lumen and thereby
generate a state of cellular stress known as ER stress. The unfolded protein response aims at restoring protein-folding
homeostasis, but turns into a toxic signal when ER stress is too severe or prolonged. ER stress-induced cellular dysfunction and
death is associated with several human diseases, but the molecular mechanisms regulating death under unresolved ER stress are
still unclear. We performed a siRNA-based screen to identify new regulators of ER stress-induced death and found that repression
of the Carney complex-associated protein PRKAR1A specifically protected the cells from ER stress-induced apoptosis, and not
from apoptosis induced by etoposide or TNF. We demonstrate that the protection results from PKA activation and associate it, at
least in part, with the phosphorylation-mediated inhibition of the PKA substrate Drp1 (dynamin-related protein 1). Our results
therefore provide new information on the complex regulation of cellular death under ER stress conditions and bring new insights
on the conditions that regulate the pro- versus anti-death functions of PKA.
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The endoplasmic reticulum (ER) is a cellular organelle in
which membrane and secreted proteins are synthesized
and matured. Many cellular conditions can alter proper ER
functions, resulting in the accumulation of un- or misfolded
proteins within the organelle lumen, and thereby creating a
state of cellular stress called ER stress. Eukaryotic cells have
developed a quality control system, known as the unfolded
protein response (UPR), to sense and adapt to ER stress.1 In
metazoans, the UPR is activated by three ER-anchored
receptors (inositol-requiring protein 1 (IRE1), protein kinase
RNA-like ER-kinase (PERK) and activating transcription factor
6 (ATF6)) that sense an increase of misfolded proteins in the
ER lumen and activate cytosolic signaling pathways aimed at
restoring protein homeostasis by reducing the protein load.
These pathways are activated in a dynamic manner. The UPR
promotes the transcriptional upregulation of genes involved in
protein folding and later blocks cap-dependent mRNA protein
synthesis and promotes protein degradation by ER-
associated degradation and autophagy.1 Although crucial for
restoring homeostasis to protein folding in the ER, the UPR is
probably not the only cellular response to ER stress. In
budding yeast, ER stress was recently reported to induce
protein kinase A (PKA) deactivation, which results in the
transcriptional upregulation of stress-related genes and
repression of ribosome biogenesis genes.2 PKA deactivation

would therefore, at least in yeast, also reduce the protein load
by affecting the translational capacity of the cell.
When ER stress is too severe or prolonged, the UPR is

unable to restore protein-folding homeostasis and conse-
quently turns into a toxic signal that commits the cell to die.1,3,4

Cell death caused by unresolved ER stress is a complex
process that remains poorly understood. Results from
previous studies indicate that the activated cell death pathway
and the resulting cell death modality depend on the cell type,
on the cellular context and possibly also on the source of ER
stress inducer. Indeed, although widely reported to induce
caspase-dependent apoptosis by activating the mitochondrial
intrinsic pathway, unresolved ER stress is also reported to
activate the death receptor extrinsic apoptotic pathway or even
to kill cells by necrosis or necroptosis, a regulated form of
necrosis.5–7 In the case ofmitochondrial apoptosis induction, it
is reported that signals emerging from the three branches of
the UPR (IRE1, PERK and ATF6) converge, or contribute
separately, to the dismantlement of the cell.6 Activation of the
intrinsic apoptotic pathway relies on the BAX/BAK (B-cell
lymphoma 2 (BCL-2)-Associated X protein/BCL-2 Antagonist/
Killer)-dependent induction of mitochondrial outer membrane
permeabilization (MOMP), which causes cytochrome c
release and assembly of the apoptosome, the procaspase
9-activating platform. The three UPR sensors are reported
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capable of inducing MOMP by modulating expression and/or
activation of various BCL-2 family members via distinct
mechanisms.8 Concomitantly with MOMP and cytochrome c
release, mitochondria have been reported to undergo
dynamin-related protein 1 (Drp1)-dependent fission during
apoptosis, but whether mitochondrial fragmentation is
required for apoptosis induction has long been a subject of
controversy.9

Cell death is an important biological outcome that protects
the organism from accumulating damaged or unnecessary
cells. Nevertheless, cell death needs tight regulation because
inappropriate cell death induction drives various human
pathologies, such as cancers or neurodegenerative
disorders.10,11 In this study, we performed a small-scale
siRNA-based screen to identify new regulators of ER stress-
induced death. Among the ‘hits’ obtained, we further
characterized PRKAR1A, a regulatory subunit of PKA.
PRKAR1A was identified as a tumor suppressor, due to the
fact that mutations in PRKAR1A, which lead to PKA activation,
cause an autosomal dominant disease called Carney com-
plex, a disorder characterized by hyperpigmentation of the
skin, cardiac and other myxomas, endocrine tumors and
schwannomas.12,13 Paradoxically, Prkar1a−/− mice die during
embryogenesis, and the lethality has been associated with an
increase in apoptosis.12,14–17 Interestingly, we found (I) that
PRKAR1A repression specifically protected cells from apop-
tosis induced by ER stress and not by other apoptotic triggers,
(II) that this protection is due to PKA activation and (III) that it is
partially attributed to Drp1 phosphorylation and consequent
inactivation. Taken together, our results provide new informa-
tion on the complex regulation of ER stress-induced apoptosis
and, by linking a prosurvival function of PKA to ER stress
conditions, bring a cellular context for the paradoxical
prosurvival versus prodeath role of PKA, which can be of
relevance in the case of the Carney complex disorder.

Results

A siRNA screen identifies new modulators of ER stress-
induced cell death. To identify new regulators of cell death
induced by ER stress, we carried out a screen on mouse
embryonic fibroblasts (MEFs) using an in-house library of
SMARTpool siRNAs targeting 275 distinct genes that had
previously been associated, closely or from further, with cell
survival/death decisions in different signaling pathways
(Supplementary Tables 1 and 2). ER stress-induced death
in MEFs was obtained by tunicamycin (Tu) treatment and
analyzed 18 h poststimulation, a timing allowing 30–45% cell
death in the nonspecific (NS) siRNA-transfected cells
(Figure 1a). The extent of cell death was determined by high
content imaging (BDPathway 855 instrument, BD Bios-
ciences, San Jose, CA, USA) of the nuclear stains Hoechst
and propidium iodide (PI). Hoechst is cell permeable and
used to stain all nuclei, while PI is cell impermeable and
therefore used to stain the cells with ruptured plasma
membrane. The percentage of cell death was therefore
defined as the percentage of cells positive for both staining
(Figure 1a). We previously showed that Tu treatment induces
apoptosis in MEFs and therefore used caspase-3-targeting

siRNAs as a positive control (Figure 1a).18 The workflow of
the screen consisted in knockdown (KD) of each set of genes
in 6-plicate plates, having every gene KD in six different
plates. Three plates were stimulated with Tu, and the others
with DMSO. This setup allowed us to discern whether the KD
of any given gene had an impact on cell viability on its own.
None of the targeted gene had a significant effect on basal
cell viability, except for Matk, Rbx1 and Ppp1cb that,
respectively, led to 14%, 13% and 7% cell death upon
repression, respectively. Both positive (Casp 3) and negative
(NS) controls were included in each plate. Because the Tu-
induced cell death varied between screening days, we
normalized the percentage of Tu-induced cell death for each
gene to the plate-specific NS control siRNA (Figure 1b). To
identify genes positively involved in the ER stress-induced
cell death pathway, genes providing at least 30% protection
upon repression were selected and defined as ‘hits’
(Figures 1b and c and Supplementary Tables 1 and 2). This
led us to the identification of 22 genes (Figure 1c), out of
which 7 were validated by kinetic cell death analysis
measuring nuclear SytoxGreen fluorescence in death
cells (Fluostar Omega fluorescence plate reader, BMG
Labtech, Ortenberg, Germany), as previously described19

(Figures 1d–j and Supplementary Figure 1). Of note, two of
these seven genes, Pmaip1 (Noxa) and Bad, are reported
mediators of ER stress-induced death,20,21 confirming the
validity of our screen.

Prkar1a depletion protects against ER stress-induced
apoptosis. Among the five newly identified positive regula-
tors of ER stress-induced death (Prkar1a, Ube2v1, Rnf11,
Zranb1 and Atp5a), we decided to further characterize
Prkar1a, a regulatory subunit of PKA linked to the Carney
complex disorder in human. We found that the protection to
Tu-induced cell death obtained by siRNA-mediated repres-
sion of Prkar1 in MEFs was associated with reduced
caspase-8, -9 and -3 processing as well as caspase-3 activity
(Figures 2a–c), indicative of reduced apoptosis induction.
Caspase inhibition by the pancaspase inhibitor z-VAD-fmk
greatly, but not entirely, protects MEFs from Tu-induced death
(Supplementary Figures 2A and B). To test whether Prkar1a
repression also protects MEFs from caspase-independent
death, we stimulated the cells with Tu in the presence of
z-VAD-fmk and observed no additional protection
(Supplementary Figure 2C). To exclude any off-target effect
of the Prkar1a-targeting siRNA, we confirmed our results in
Prkar1a−/− MEFs. To obtain these cells, Prkar1afl/fl MEFs22

were immortalized using SV40 large T antigen and trans-
duced with adenovirus expressing GFP or GFP-Cre recom-
binase. Following FACS sorting for GFP positivity, we
obtained Prkar1afl/fl (GFP) and Prkar1a−/− (GFP-Cre) MEF
cultures. As shown in Figure 2, genetic deletion of Prkar1a in
MEFs conferred protection to Tu-induced apoptosis similarly
as following siRNA-mediated repression of Prkar1a
(Figures 2d–f). Importantly, the protection was not limited to
Tu treatment but was also observed following thapsigargin
(Th) stimulation, another commonly used ER stress inducer
(Figures 1g and h). In line with this, we found that the
protection was not cell type or species specific, as PRKAR1A
repression also protected human HeLa cells from Tu- and
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Figure 1 A siRNA screen identifies new modulators of ER stress-induced cell death. (a) Representative images showing Hoescht and PI staining of MEFs transfected with
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Th-induced apoptosis (Supplementary Figures 2D–F). Taken
together, these results demonstrate that PRKAR1A depletion
protects cells from ER stress-induced apoptosis.

Loss of Prkar1a specifically protects cells from apoptosis
under unresolved ER stress conditions. Having
established that Prkar1a depletion provides protection to
ER stress-induced apoptosis, we next evaluated whether the
protection was specific to unresolved ER stress conditions, or
also observed when apoptosis is induced by other stimuli. ER
stress-induced apoptosis displays characteristics that are
found both in the receptor extrinsic apoptotic pathway and in
the mitochondrial intrinsic apoptotic pathway, that is, activa-
tion of the initiator caspase-8 and -9, respectively.1,3,4,23

Therefore, we decided to engage these two pathways
separately and test whether loss of Prkar1a also provides
some degree of protection under these specific conditions.
Interestingly, we found that Prkar1afl/fl and Prkar1a−/− MEFs
responded similarly to apoptosis induced by TNF in
combination with cycloheximide (CHX), a classical trigger
for activation of the extrinsic apoptotic pathway (Figures 3a
and b). To our surprise, the cells also succumbed to a similar
extent following activation of the intrinsic pathway by etopo-
side (Eto) stimulation (Figures 3c and d). These results
therefore indicate that absence of Prkar1a specifically
protects cells from ER stress-mediated apoptosis and
exclude the possibility that Prkar1a−/− cells have undergone

a physiological change that prevents them from dying under
different stimuli.

PKA activation mediates the protection against ER
stress-induced apoptosis. PRKAR1A is part of a hetero-
tetramer known as protein kinase A (PKA). This heterote-
tramer is composed of two heterodimers made of two
catalytic subunits (PKAc) and two regulatory subunits
(PRKAR). Within the human and mouse genome, there are
three variants of PKAc (α, β and γ) and four variants of
PRKAR (R1A, R1B, R2A and R2B), with PRKAR1A being the
most abundant and ubiquitously expressed.24 The function of
the regulatory subunits in the PKA complex is to hold the
catalytic subunits inactive. Binding of cAMP to PRKAR
subunits causes their dissociation from PKAc and results in
PKA activation. Physiologically, cAMP is produced when
G-protein-coupled receptors are activated upon ligand binding.
The Gsα subunit of some receptors stimulates adenylyl
cyclase to produce cAMP from ATP. We found that PRKAR1A
depletion protects cells against ER stress-induced apoptosis,
but whether the protection originates from the absence of
PRKAR1A or as a consequence of PKA activation is not
clear. To answer this question, we took different approaches.
First, we tested the effect of PKA depletion, obtained by
siRNA, on Tu-induced apoptosis in MEFs. As shown in
Figure 4, PKA depletion only slightly sensitized the cells to
Tu-induced apoptosis, but completely inhibited the protection
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obtained by siRNA-mediated repression of Prkar1a
(Figure 4a and Supplementary Figures 3A and B). Of note,
knocking down PKA caused a reduction in Prkar1a levels,
suggesting that Prkar1a is unstable when not in a complex
with the catalytic subunits of PKA (Figure 4b). The fact that
PKA repression indirectly decreases Prkar1a levels without
providing protection against cell death further supports the
notion that the protection is mediated by PKA. As a second
approach, we treated Prkar1afl/fl and Prkar1a−/− MEFs with

Tu alone or in combination with the PKA inhibitor H89. In line
with previous results, we observed that chemical inhibition of
PKA completely restored the sensitivity of the Prkar1a−/−

MEFs to Tu-induced apoptosis (Figure 4c). Intriguingly, we
observed that H89 had some toxicity in Prkar1afl/fl MEFs but
not in Prkar1a−/− MEFs (Supplementary Figure 3C), which
explains the higher level of cell death observed in Prkar1afl/fl

MEFs stimulated with Tu and H89 (Figure 4c). Finally, we
sought to activate PKA in a more physiological manner and
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took advantage of the well-known adenylyl cyclase agonist
Forskolin (Frsk). We challenged WT MEFs with Tu, Frsk or
the combination of both, and monitored cell death as well as
caspase activation. As shown in Figures 4d–e, PKA activa-
tion by Frsk protected the cells from Tu-induced death and
was associated with reduced caspase-8, -9 and -3 proces-
sing without affecting Prkar1a levels. Importantly, and in line
with our previous results, PKA activation by Frsk treatment
did not confer protection against cell death induced by TNF in
combination with CHX or by Eto (Figures 4f–g).

PKA activation has no impact on the UPR. Having
demonstrated that PKA activation provides protection against
ER stress-induced apoptosis, we sought to get further
insights on the molecular mechanisms responsible for this
protection. Upon release from PRKARs, the free catalytic

subunits of PKA can affect a wide range of cellular events by
phosphorylating a big array of substrates, including transcrip-
tion factors and enzymes.25,26 In addition, PKA activation has
been reported to not only prevent but also promote apoptosis,
and the molecular explanation for this paradox has not been
solved yet.15,27–29 Because the UPR has a dual role in the
response to ER stress, we decided to first analyze whether
PKA activation had any impact on the initiation and/or
intensity of the UPR. Using conditions of transient PKA
activation (siRNA-mediated repression of Prkar1a) or sus-
tained PKA activation (genetic deletion of Prkar1a), we
followed induction of various classical UPR markers over a
period of 20 h of Tu stimulation. We found that PKA had no
impact on the activation of the IRE1 or PERK pathway, as
monitored by XBP-1 (X-box-binding protein 1) mRNA splicing
and phosphorylation of PERK and elf2α, respectively
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(Figures 5a and b). In addition, the UPR as a whole did not
seem affected as similar induction levels of IRE1, CHOP (C/
EBP-homologous protein) and BIP were observed
(Figures 5a and b). Autophagy is a biological consequence
of the UPR known to have an important prosurvival role
during ER stress. We therefore next tested whether PKA
activation could protect cells by boosting autophagy induction
in our cellular systems. In contrast, we found that constitutive
PKA activation had no impact on autophagy, while transient
PKA activation repressed autophagy, as monitored by LC3
lipidation in the absence or presence of bafilomicyn A1
(Figures 5c and d). Taken together, these results indicated
that the protective effect of PKA was not resulting from
boosted or dampened UPR classic markers.

PKA-mediated protection partially results from Drp1
inhibition. The protective effect seen upon PKA activation
can result from phosphorylation of a wide array of substrates,

including transcription factors and enzymes. To test whether
the protection was the result of activation of a transcription
factor, and consequently relying on the transcription and
translation of target genes, we evaluated the effect of
translation inhibition by CHX treatment. Interestingly, we
found that CHX treatment protected Prkar1afl/fl MEFs from
ER stress-induced death but that PKA activation, obtained by
genetic deletion of Prkar1a (Prkar1a−/−), still further protected
the cells from death (Figure 6a). These results therefore
indicated that PKA protects the cells from ER stress-induced
apoptosis independently of translation of survival factors.
Mitochondrial fission, a process regulated by Drp1, is

reported to promote apoptosis by contributing to MOMP and
cytochrome c release.9,30 PKA and calcineurin were shown to
regulate mitochondrial fission and cell death by modulating
Drp1 activity through reversible phosphorylation.31 PKA
inactivates human Drp1 by phosphorylation on Ser637 and
abrogates its recruitment to mitochondria. We therefore
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decided to evaluate whether PKA activation in MEFs, obtained
via genetic depletion of Prkar1a or following Frsk treatment,
leads to Drp1 phosphorylation in our cellular systems. We
found that PKA activation was associated with Drp1 phos-
phorylation in both conditions (Figures 6b and c). More
importantly, we also found that siRNA-mediated repression
of Drp1 provided protection, although not to the same extent
as Prkar1a, against Tu-induced cell death (Figure 6d). The
reduction in cell death was associated with attenuated
caspase-3 processing (Figure 6e). The use of mitochondrial
division inhibitor-1 (Mdivi-1), a selective inhibitor of Drp1,32

further demonstrated the role of Drp1 in ER stress-induced
death (Figure 6f). Remarkably, and in line with the absence of
protection upon PKA activation, pharmacological inhibition of
Drp1 did not provide protection against cell death induced by
TNF and CHX or Eto (Figures 6g and h).
Altogether, these results indicate that PKA activation

selectively protects cells from ER stress-induced apoptosis,
at least in part, by phosphorylation-driven inactivation of Drp1,
and thereby limiting the activation of the mitochondrial
apoptotic pathway.

Discussion

The ER has a crucial role in the proper folding of proteins that
are synthesized in the secretory pathway, and which represent
up to 30% of the whole eukaryotic proteome. Stress in the ER,
a possible consequence of a high demand for protein
synthesis, is therefore a common feature of specialized
secretory cells, and is also associated with the pathogenesis
of many human diseases, such as immune disorders,
diabetes, cancers and neurodegenerative disorders.10,11,33

The UPR, a signaling network initiated by three ER sensors in
metazoans, is activated in cells undergoing ER stress. The
UPR aims at restoring proper ER function and protein-folding
homeostasis. However, when the stress is too severe or
prolonged, the UPR initiates signaling cascades resulting in
the death of the cell. Because cell death induction may
contribute to the pathologies associated with ER stress, we
performed a siRNA-based screen to identify new regulators of
ER stress-induced death. Our screen led to the identification
of several proteins that, when repressed, either sensitized or
protected the cells from death resulting from unresolved ER
stress. We confirmed 7 out of the 22 identified hits providing
the strongest protection upon repression. We decided to
further characterize the role of PRKAR1A, and found that its
depletion specifically protected the cells from ER stress-
induced apoptosis, and not from apoptosis induced by other
means. PRKAR1A is a negative regulatory subunit of PKA,
and we demonstrated that the protection obtained in cells
depleted in PRKAR1A was the result of PKA activation.
Accordingly, PKA activation by the adenylyl cyclase agonist
Frsk similarly protected the cells from ER stress-induced
apoptosis without affecting PRKAR1A levels. These results
are in contrast with the reported proapoptotic role of PKA in
various settings. Indeed, increased PKA activity has been
reported to promote apoptosis by causing transcriptional
induction and post-translational stabilization of BIM.29,34 In
line with this, genetic deletion of Prkar1a leads to early
embryonic lethality in mice,35,36 and its inducible loss in

diverse adult tissues is reported to trigger PKA activation and
apoptosis because of the upregulation of proapoptotic BCL-2
family members.15 Paradoxically, PKA is also reported to
promote cell survival and its hyperactivation causes hereditary
endocrine neoplasias. Indeed, heterogenic mutations in the
human PRKAR1A gene, which leads to overactivation of the
PKA signaling pathway, are strongly associated with a
disorder called Carney complex, a rare autosomal dominant
disorder characterized by hyperpigmentation of the skin,
cardiac and other myxomas, endocrine tumors and
schwannomas.12,17 The cellular conditions that regulate the
pro- versus antiapoptotic role of PKA are not entirely under-
stood. Here, we show that PKA has a prosurvival role in
mammalian cells undergoing ER stress. It is therefore
tempting to speculate that the prosurvival, prooncogenic, role
of PKA in endocrine cells (highly secretory cells) may result
from their higher basal levels of stress in the ER, owing to the
higher demand for protein synthesis. Interestingly, the UPR is
emerging as an important network contributing to the
remodeling of cancer gene expression, thereby either pre-
venting cell transformation or providing an advantage to
transformed cells.37,38 Our results indicate that PKA had no
effect on the activation of the UPR, and that its prosurvival role
was, at least in part, independent of gene activation. Indeed,
although protein translation inhibition by CHX partially
protected the cells from ER stress-induced death, the
protection was further enhanced when PKA was activated.
These results therefore also exclude a role for the
CREB transcription factor, a well-known substrate of PKA.
Autophagy, a consequence of UPR activation known to have a
protective role during ER stress, was not increased following
PKA activation. Instead, we observed reduced autophagy
induction in cells transiently activating PKA (siRNA against
Prkar1a), which correlates with the reported role of PKA in the
negative regulation of autophagy.39–41 This effect was,
however, not observed in cells with a constitutively active
PKA (genetic deletion), probably due to compensatory
mechanisms.
MOMP is commonly considered as a point of no return

during apoptosis. Mitochondrial fission, a process regulated
by Drp1, has been reported to occur concomitantly with
MOMP and cytochrome c release. Although controversial,
some reports indicate that fission is required for BAX
translocation into the mitochondrial membrane, cytochrome
c release and apoptosome assembly.9,42 Other studies have
instead reported that Drp1 regulates MOMP independently of
mitochondrial division, suggesting that Drp1 may regulate
apoptosis by different means.32 PKA was shown to regulate
mitochondrial fission and cell death by modulating Drp1
activity through phosphorylation. PKA inactivates humanDrp1
through phosphorylation on Ser637, which abrogates its
recruitment to the mitochondria.31 A recent study reported
that MAPL-dependent SUMOylation of Drp1, which occurs
downstream of PKA regulation, regulates the stability of the
ER/mitochondrial contact sites, which are important for Ca2+

flux, cytochrome c release and apoptosis induction.43 Inter-
estingly, ER stress-induced BAX/BAK-dependent apoptosis
has been associated with the release of ER calcium and
concomitant increase of mitochondrial calcium.44 The mito-
chondrial Ca2+ overload generated leads to the depolarization

PKA protects against ER stress-induced apoptosis
MA Aguileta et al

1678

Cell Death and Differentiation



of the inner membrane, the release of cytochrome c release
and the activation of caspases.45 In line with the reported
occurrence of mitochondrial fission during ER stress46–48 and
the role of Drp1 in ER stress-induced apoptosis of pancreatic
β-cells,49 we found that PKA activation led to Drp1 inhibition,
as monitored by Drp1 phosphorylation. Moreover, we demon-
strated that PKA activation and Drp1 inhibition protected cells
from apoptotosis induced by Tu but not by TNF or Eto, thereby
identifying a direct mechanistic link for the protective effect of
PKA activation in cells undergoing ER stress. It is important to
note that the protection obtained by Drp1 repression/inhibition
was not as potent as following PKA activation, suggesting that
PKA additionally promotes cell survival by phosphorylating
other target proteins. It was recently reported that AMPK also
protects pancreatic β-cells and endothelial cells from ER
stress-induced apoptosis through Drp1 phosphorylation,47,50

suggesting a common converging mechanism to protect cells
from death under ER stress conditions. Another recent study
performed in yeast indicates that PKA deactivation contributes
to the prosurvival response to ER stress by inducing
transcriptional upregulation of stress-related genes and
repression of ribosome biogenesis genes.2 Our results there-
fore highlight clear differences between yeast and mammalian
systems; nevertheless, it unmasks a central role of PKA during
the UPR in eukaryotic cells.
Taken together, our results reveal the protective role of PKA

activation in mammalian cells undergoing unresolved ER
stress, thereby suggesting a potential therapeutic benefit of
PKA-activating compounds for the treatment of pathologies
resulting from excessive apoptosis caused by ER stress. Our
results also bring potential new interpretations on the role of
ER stress to the oncogenic role of PKA in the Carney complex
disorder.

Materials and Methods
Antibodies and reagents. Antibodies were purchased from the following
companies: anticleaved caspase-8 (Cell Signaling, Danvers, MA, USA; no. 9429),
anti-caspase-3 (Cell Signaling; no. 9662), anti-caspase-9 (Cell Signaling; no. 9508),
anticleaved PARP (poly-(ADP-ribose) polymerase) (Asp214) (Cell Signaling; no.
9544S), anti-Prkar1a (BD Transduction Laboratories, San Jose, CA, USA; no.
610166), anti-PKA (Cell Signaling; no. 4782), anti-IRE1 (Cell Signaling; no. 3294),
anti-XBP1s (BioLegend, San Diego, CA, USA; no. 619501), anti-PERK (Cell
Signaling; no. 3192), anti-phospho-elf2α (Cell Signaling; no. 9721), anti-Bip (BD
Transduction Laboratories; no. 610978), anti-CHOP (Cell Signaling; no. 2895),
anti-LC3 (MBL, Woburn, MA, USA; no. PM036), anti-Drp1 (BD Transduction
Laboratories; no. 611113), anti-phospho-Drp1 (Cell Signaling; no. 4867), anti-β-
tubulin (Abcam, Cambridge, UK; no. ab6046-200). Tu was used at 1 μg/ml (Sigma-
Aldrich, St Louis, MO, USA; no. T7765) and Th was used at 1 μM (Sigma-Aldrich;
no. T-9033). Recombinant human TNF-α, produced and purified to at least 99%
homogeneity in our laboratory, has a specific biological activity of 3 × 107 IU/mg and
was used at 600 IU/ml (20 ng/ml) to stimulate MEFs. The general protein translation
inhibitor CHX (Sigma-Aldrich; no. C-7698) was used as 0.25 μg/ml (Figures 3a, b
and 6g) and 1 μg/ml (Figure 6a). Eto (Enzo Life Sciences, Farmingdale, NY, USA;
no. BML-GR307-0100) was used at a final concentration of 2 μM, H89
dihydrochloride (Calbiochem, Merck KGaA, Darmstadt, Germany; no. 371963)
was used at 10 μM, Frsk (Tocris Bioscience, Bristol, UK; no. 1099) was used at
12 μM and bafilomycin A1 (Sigma-Aldrich; no. B-1793) was used at 10 nM and
added 2 h before treatment with Tu. Mdivi-1 (Merck Chemicals NV, Overijse,
Belgium; no. 475856) was used at 125 μM.

Cell lines. SV40 large T-immortalized Ripk1+/+ MEFs (WT MEFs) have been
described previously.19 Prkar1fl/fl MEFs were immortalized following the same
protocol. HeLa and HEK293T cells were purchased from ATCC. The MEFs, HeLa

and HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal calf serum and L-glutamine (2 mM). Prkar1afl/fl

MEFs were transduced with adenovirus expressing EGFP or Cre-recombinase
EGFP (Vector Biolabs, Malven, PA, USA; no. 1710) following the manufacturer’s
instruction. The cells were FACS sorted according to their extent of EGFP
expression 48 h post-transduction. Prkar1a expression in the two cell populations
was then analyzed by western blot analysis following standard protocol.

siRNA screen. MEFs were seeded at 2.5 × 103 cells per well in BD-imaging
96-well plates. The cells were transfected 8 h later with SMARTpool siRNAs
(Dharmafect) (Supplementary Tables 1 and 2) using Dharmafect 1 (0.2 μl of
Dharmafect and siRNA to a final concentration of 28.5 nM per well). Each siRNAs
was transfected in six different plates (1 well per plate). The media were changed
24 h post-transfection. The plates were stimulated with Tu (1 μg/ml) or DMSO, in
triplicates, 48 h post-transfection. Cell death was measured 18 h later using a
BDPathway 855 instrument (BD Biosciences, San Jose, CA, USA) equipped with an
environmental control unit to ensure a constant temperature of 37 °C and 5% CO2

during image acquisition. Hoechst 33342 (2 μg/ml) (Invitrogen) and PI (3 μM)
(Sigma-Aldrich) were added to the cells 1 h before the analysis. Images were taken
using a × 10 objective (Olympus, NJ, USA) in a montage of 4 × 4, including at least
2000 cells per image and treatment condition (siRNA). Hoechst 33342 labeling was
used to segment the nuclei and to extract Hoechst and PI intensity values of each
nucleus, with the BD Attovision analysis software (BD Biosciences). The percentage
of cell death was determined by substracting total PI-positive area out of total
Hoescht area for every plate. The three plates treated with DMSO were analyzed
similarly to evaluate the impact of the KD on cell viability. The percentage of cell
death was normalized to the percentage of cell death per plate, using the NS-
treated cells as a reference.

Kinetic analysis of cell death. Cell death determined in a kinetic manner
was carried out using a Fluostar Omega fluorescence plate reader (BMG Labtech,
Ortenberg, Germany) with temperature- and atmosphere-controlled settings. MEFs
were seeded in triplicate at 10 000 cells per well in a 96-well adherent plate. The
next day, cells were treated with the indicated compounds in the presence of 5 μM
SytoxGreen (Invitrogen; no. S-7020) and 10 μM Ac-DEVD-AMC. SytoxGreen
intensity was measured in function of the time at intervals of 1 h by using a Fluostar
Omega fluorescence plate reader (BMG Labtech) with an excitation filter of 485 nm,
emission filter of 520 nm, gains set at 1100, 20 flashes per well and orbital
averaging with a diameter of 3 mm. Cell death was calculated by subtracting the
induced SytoxGreen fluorescence from the background fluorescence and by
dividing the obtained result by the maximal fluorescence (minus the background
fluorescence) obtained by permeabilization of the cells by using Triton X-100 at a
final concentration of 0.1%. Caspase-3 activity (cleaved DEVD-AMC) was obtained
using an excitation filter of 355 nm and an emission filter of 460 nm with the same
time intervals and gains of 1000 with 20 flashes per well and 3 mm orbital
averaging. In case of siRNA-mediated repression, the smart pools siRNAs
(Dharmafect) were transfected using Dharmafect 1 reagent following the
manufacturer’s instructions and the cell death trigger was added 48 h post-
transfection.

Statistical analysis. Statistical analysis was performed with GraphPad Prism
V6 software (GraphPad, La Jolla, CA, USA). Statistical significance between the
indicated conditions was analyzed by multiple comparisons using two-way ANOVA
(NS= P40.05; *Po0.05; **Po0.01).
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